| 研究生: |
劉妍伶 Liu, Yen-Ling |
|---|---|
| 論文名稱: |
添加 CaTiO3 及 SrTiO3 對於 TeO2 微結構及微波介電性質之影響 Effects of Calcium Titanate and Strontium Titanate Additives on Microstructure and Microwave Dielectric Properties of Tellurium Oxide |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 鈦酸鍶 、氧化碲 、鈦酸鈣 、微波介電陶瓷 |
| 外文關鍵詞: | Microwave dielectric ceramic, TeO2, CaTiO3, SrTiO3 |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來 TeO2 材料被發現適用於介電共振器之材料且擁有低熔點的特性,因此許多學者極力於研究可在低溫下燒結之氧化碲化合物的介電陶瓷材料,且此類化合物擁有不錯的介電常數及品質因子,但由於材料 τf 較高而難以被實際應用。因此本研究以 TeO2 陶瓷材料為主體,藉由添加 CaTiO3 及 SrTiO3 於 TeO2,以混相共存的方式調整共振頻率溫度係數,並同時探討添加不同配比的 CaTiO3 及 SrTiO3 對微結構與介電性質的影響。
實驗結果顯示,純相 TeO2 在 640℃ 持溫 4 小時燒結條件下,可獲得相對密度大於 95% 之燒結體,其介電常數約為 28.41,品質因子約為 34700 GHz (f0 = 12.94 GHz) 和共振頻率溫度係數約為 -101.81 ppm / ℃。
在 TeO2+x wt% CaTiO3 系統,經由 XRD 相鑑定分析、Raman 並且由 SEM 和 TEM 之能量分散式光譜儀 (EDS) 成分分析結果得知,在高溫過程中會反應生成 TiTe3O8 及 CaTe2O5 結晶相,且隨添加量增加,其 TiTe3O8 結晶相越明顯,因此使得介電常數及品質因子性質提升。且當 x = 10 wt% 在 645℃ / 8 h燒結條件下,其介電常數約為 28.65、品質因子約為 15600 GHz (f0 = 10.44 GHz) 和共振頻率溫度係數約為 -3.24 ppm / ℃。
在 TeO2+x wt% SrTiO3 系統,經由 XRD 相鑑定分析、Raman 並且由 SEM 和 TEM 之能量分散式光譜儀 (EDS) 成分分析結果得知,在高溫過程中會反應生成 TiTe3O8 及 SrTe2O5 結晶相。在燒結過程中,由於 SrTe2O5 產生局部液相,因而導致添加量增加,其品質因子性質沒有明顯變化趨勢。當 x = 15 wt% 在 610℃ / 8 h 燒結條件下,其介電常數約為 26.58、品質因子約為 12400 GHz (f0 = 11.08 GHz) 和共振頻率溫度係數約為 -3.81 ppm / ℃。
Recently, tellurium dioxide has been explored as a low-melting end member of dielectric ceramic compounds. Therefore, a number of tellurium-based low-temperature dielectric resonator materials with excellent dielectric constant and quality factor have been reported. However, most of these materials have a high τf and are not able to apply. This study is focus to compensate the negative temperature coefficient of TeO2 by adding of CaTiO3, SrTiO3 and investigate the effects on microstructure and dielectric properties.
This study shows pure TeO2 ceramics with >95% theoretical density can be produced by sintering at 640℃ for 4 hours. The TeO2 ceramic has a dielectric constant (εr) of 28.41, quality factor (Q × f) of 34700 GHz (at 12.94 GHz) and temperature coefficient of resonant frequency (τf) of -101.81 ppm / ℃.
In TeO2+x wt% CaTiO3 system by using X-ray powder diffractiometer, Raman spectroscopy, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) of Energy Dispersive Spectrometer (EDS) analysis results show that adding CaTiO3 to TeO2 generates the formation of TiTe3O8 and CaTe2O5. As the increasing of CaTiO3 content, the study shows the dielectric constant and quality factor increase. Addition 10 wt% CaTiO3 improves the τf to -3.24 ppm / ℃ with εr of 28.65 and Q × f value of 15600 GHz (at 10.98GHz) when sintered at 640℃ for 8 hours.
In TeO2+x wt% SrTiO3 system by using X-ray powder diffractiometer, Raman spectroscopy, and Scanning electron microscopy (SEM) of Energy Dispersive Spectrometer (EDS) analysis results show that adding SrTiO3 to TeO2 generates the formation of TiTe3O8 and SrTe2O5. As the increasing of SrTiO3 content, the study shows the dielectric constant and quality factor have similar values. Because of the dielectric constant and quality factor are influenced by producing a liquid phase in the densification process. Addition 15 wt% SrTiO3 improves the τf to -3.81 ppm / ℃ with εr of 26.58 and
Q × f value of 12400 GHz (at 11.08GHz) when sintered at 610℃ for 8 hours.
1. 王惠傑、陳聰文,低溫燒結高介電多層陶瓷微波材料與製程,工業材料,119期,85年11月。
2. M. Udovis, M. Valant, and D. Suvorov, “Phase Fromation and Dielectric Characterization of the Bi2O3–TeO2 System Prepared in an Oxygen Atomsphere,” J. Am. Ceram. Soc., 87 [4], 591-597 (2004).
3. D. K. Kwon, M. T. Lanagan, and T. R. Shrout, “Microwave Dielectric Properties of BaO–TeO2 Binary Compounds,” Mater. Lett., 61, 1827–1831 (2007).
4. G.. Subodh and M. T. Sebastianw, “Glass-Free Zn2Te3O8 Microwave Ceramic for LTCC Applications,” J. Am. Ceram. Soc., 90 [7], 2266–2268 (2007).
5. G. Subodh and M. T. Sebastianw, “Microwave Dielectric Properties of ATe3O8 (A = Sn, Zr) Ceramics,” Jpn. J. Appl. Phys., 47, 7943-7946 (2008).
6. D. K. Kwon, M.T. Lanagan, and T. R. Shrout, “Synthesis of BaTiTe3O9 ceramics for LTCC application and its dielectric properties,” J. Ceram. Soc. Jpn., 113 [3], 216–219 (2005).
7. D. K. Kwon, M. T. Lanagan, and T. R. Shrout, “Microwave Dielectric Properties and Low Temperature Co-firing of BaTe4O9 with Aluminum Electrode,” J. Am. Ceram. Soc., 88 [12], 3419–3422 (2005).
8. R. D. Richtmyer, Dielectric Resonator, J. Appl. Phys., 10, 391-398 (1939).
9. S. B. Cohn, “Microwave Bandpass Filters Containing High - Q Dielectric Resonator,” IEEE Trans. On MTT, MTT-16, 217-218 (1968).
10. O. Prytz and J. Tafto, “Accurate Determination of Orientation Relationships between Ferroelastic Domains:The Tetragonal to Monoclinic Transition in LaNbO4 as an example,” Acta Mat., 53, 297-302 (2005).
11. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed.,
John Wiley and Sons, New York (1976).
12. H. Ouchi and S. Kawashima, “Dielectric Ceramics for Microwave Application,” Jpn. J. Appl. Phys., 24 [suppl. 24-2], 60-64 (1985).
13. 吳朗,電子陶瓷,全欣科技圖書 (1994)。
14. W. Wersing, High Frequency Ceramic Dielectrics and their Application for Microwave, in Electronic Ceramics, edited by B. C. H. Steele, 67 (1991).
15. D. A. Sagala and S. Nambu, “Microscopic Calculation of Dielectric Loss at Microwave Frequencies for Complex Perovskite Ba (Zn1/3Ta2/3) O3,” J. Am. Ceram. Soc., 75 [9], 2573-2575 (1992).
16. I. T. Kin, Y. H. Kim, and C. J. Chung, “Order-Disorder Transition and Microwave Dielectric Properties of Ba (Ni1/3Nb2/3) O3 Ceramics,” Jpn. J. Appl. Phys., 34, 4096-4103 (1995).
17. S. Nomura and K. Kaneta, “Ba (Mg1/3Ta2/3) O3 Ceramics with Ultra-Low Loss at Microwave Frequency,” Jpn. J. Appl. Phys., 23, [4], 507-508 (1984 ).
18. H. M. O’Bryan, J. Thomson, and J. K. Plourde, “ A New BaO-TiO2 Compound with Temperature-Stable High permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10], 450-453 (1974).
19. S. J. Penn, N. Mcn. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina,” J. Am. Ceram. Soc., 80 [7], 1885-1888 (1997).
20. E. S. Kim and K. H. Yoon, “Effect of Nickel on Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3,” J. Mater. Sci., 29, 830-34 (1994).
21. X. Chen, X. Zhao, L. Luo, and W. Chen, “Effects of CaO–B2O3 Glass on Sintering and Microwave Properties of Cordierite Ceramics for Low-Temperature Co-fired Ceramics,” Jpn. J. Appl. Phys., 47 [5], 3572-3575 (2008).
22. T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, ”Effect of Glass Additions on BaO-Ti02-WO3 Microwave Ceramics,” J . Am. Ceram. Soc., 77 [7], 1909-1916 (1994).
23. D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, Mass., 407-412 (1989).
24. 劉適嘉,Ba [ZrxZn (1-x)/3 Nb2 (1-x) /3] O3 介電陶瓷之微波特性及其應用,國立成功大學電機工程研究所碩士論文 (2001)。
25. D. Kajfez, “Computed Modal Field Distribution for Isolated Dielectric Resonators,” IEEE. Trans. MTT, MTT - 32, 1609-1616 (1984).
26. D. Kajfez, “Basic principle give understanding of Dielectric Wave-guides and Resonators,” Microwave System News, 13, 152-161 (1983).
27. D. Kajfez and P. Guillon, Dielectric Resontors, Artech House, Dedham, Mass. (1979).
28. W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering, Sintering Processes, Edited by G. C. Kuczynski, New York: Plenum Pr-ess, 189-202 (1979).
29. H. S. Cannon and F.V. Lenel in, Proceedings of the Plansee Seminar, Edited by F. Benesovsky Metallwerk Plansee, Reutte, 106 (1953).
30. V. N. Eremenko, Y. V. Naidich and I. A. Lenko, Liquid Phase Sintering, New York: Conultants Bureau , ch4 (1970).
31. K. S. Hwang, PhD Thesis, Rensselaer Ploytechnic in Troy (1984).
32. R. B. Heady and J. W. Cahn, “Analysis of Capillary Force in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 7, 406-409 (1970).
33. A. P. Mirgorodsky, T. Merle-Me´jean, J.-C. Champarnaud, P. Thomas, and B. Frit, “Dynamics and structure of TeO2 polymorphs:model treatment of paratellurite and
tellurite; Raman scattering evidence for new γ-and δ-phases,” J. Phys. Chem. Solids., 61, 501–509 (2000).
34. M. Udovic, M. Valant, and D. Suvorov, “Dielectric Characterization of TiO2-TeO2 Binary System,” J. Eur. Cerarn. Soc., 21, 1735-1738 (2001).
35. M. Valant, and D. Suvorov, ‘‘Glass Free Low Temperature Cofired Ceramics: Calcium Germinates Silicates and Tellurates,’’ J. Eur. Ceram. Soc., 24, 1715–1719 (2004).
36. H. Zhuang, Z. Yue, S. Meng, F. Zhao, and L. Li, “Low-Temperature Sintering and Microwave Dielectric Properties of Ba3 (VO4)2–BaWO4 Ceramic Composites,” J. Am. Ceram. Soc., 91 [11], 3738–3741 (2008).
37. H. Su, and S. Wu, “Studies on the (Mg, Zn) TiO3-CaTiO3 microwave dielectric ceramics,” Mater. Lett., 59, 2337–2341 (2005).
38. K. Haga, T. Ishi, J. Mashiyama, and T. Ikeda, ‘‘Dielectric Properties of Two Phase Mixtures Ceramic Composed of Rutile and its Compounds,” Jpn. J. Appl. Phys., 31, 3156–3159 (1992).
39. S. X. Dai, R. F. Huang, and D. L. Wilcos Sr., “Use of Titanates to Achieve a Temperature Stable Low Temperature Cofired Ceramic Dielectric for Wireless Application,” J. Am. Ceram. Soc., 85 [4], 828–32 (2002).
40. 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。
41. R. Mishra, P.N. Namboodiri, S.N. Tripathi, and S.R. Dharwadkar, “ Partial Phase Diagram of CaO–TeO2 System,” J. Alloys Compd., 280, 56–64 (1998).
42. 陳良友,碲化合物低溫製程介電陶瓷,國立台北科技大學材料科學與工程研究所碩士論文 (2007)。
43. R. S. Roth, T. Negas, and L. P. Cook., Phase Diagrams For Ceramists Volume Ⅳ, The American Ceramic Society, INC., 5179-5181 (1981).
44. T. Takada, S. F. Wang, S. Yoshikawa, S.J. Jang, and R. E. Newnham, “Effects of Glass Additions on (Zr, Sn) TiO3 for Microwave Applications,” J. Am. Ceram. Soc., 77 [9], 2485-2488 (1994)