簡易檢索 / 詳目顯示

研究生: 吳政賢
Wu, Cheng-Hsign
論文名稱: 以有機金屬化學氣相沉積法成長砷化銦鎵/氮砷化銦鎵太陽能電池之研究
Investigation and fabrication of InGaAs /InGaAsN Solar Cells Grown by MOVPE
指導教授: 蘇炎坤
Su, Yan-Kuin
莊文魁
Chuang, Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 87
中文關鍵詞: 磊晶砷化銦鎵氮砷化銦鎵太陽能電池
外文關鍵詞: epitaxy, InGaAs, InGaAsN, solar cell
相關次數: 點閱:107下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要研究目的著重於探討1 eV吸收波段的氮砷化銦鎵以及砷化銦鎵材了之磊晶參數與基本特性,並且將此兩種材料置於本質層以製作雙異質接面p-i-n太陽能電池。藉此我們可以將這些接近1 eV吸收波段的太陽能電池應用在未來多接面太陽能電池上,將傳統三接面太陽能電池中插入氮砷化銦鎵形成InGaP/GaAs/1 eV/Ge多接面太陽能電池之結構或是應用反向式之假晶(IMM) 結構,以形成InGaP/GaAs /InGaAs (1 eV),加入高銦含量的砷化銦鎵,進一步再將此吸收波段往較長波長的紅外光區段做延伸,以提升元件整體之開路電壓,並且提升其轉換效率。在研究中,我們使用了光激發螢光光譜及X射線繞射儀等設備來探討所成長磊晶層之薄膜品質以及元素組成。
    首先,我們使用有機金屬化學氣相沉積法成長砷化銦鎵與氮砷化銦鎵之薄膜於砷化鎵基板上。藉由調整氮含量以及成長壓力可改變材料中銦含量的組成比例,我們觀察到低壓成長可以獲得較好的光特性。其次,調整磊晶溫度有助於TMGa共價鍵裂解以及氮原子組成之摻入。另外,我們也使用熱回火製程來改善氮砷化銦鎵材料之光特性。在一系列的磊晶參數的比較後,我們成功地成長出與砷化鎵基板晶格匹配並且能隙接近1 eV的氮砷化銦鎵磊晶層。接著我們再成長高銦含量的砷化銦鎵,改變其成長溫度並且使用X射線繞射儀之模擬軟體精確的控制銦含量的組成。然而,由於砷化鎵基板與高銦含量之砷化銦鎵材料的晶格不匹配程度相當大;因此,我們利用了漸變式磊晶和超晶格結構來改善其磊晶品質。從實驗結果得知,結合漸變接面和超晶格的混和型結構有效的將表面粗糙度降低至1.77 nm。
    接著我們使用了砷化銦鎵,氮砷化銦鎵兩種材料作為本質層以吸收太陽能頻譜長波長之區段,製作雙異質接面p-GaAs/i-InGaAsN/n-GaAs 以及p-GaAs/i-In0.32GaAs/ n-GaAs太陽能電池。在氮砷化銦鎵太陽能電池中,我們改變了其本質層之五三比分別為45、60和115及厚度分別為600、900和1200 nm。從量測結果中發現,五三比最高的氮砷化銦鎵太陽能電池有著較佳的元件特性,其短路電流可從4.89 mA/cm2提升至16.4 mA/cm2,轉換效率可以從0.64% 提升至4.09%。但是在增加本質層厚度的元件上,其轉換效率不如預期,推論其原因乃此厚度不利於載子傳輸所致。另外,在高銦含量的砷化銦鎵太陽能電池中,我們也做了三種降低砷化鎵基板與砷化銦鎵晶格不匹配的成長結構,但其結果還是因為表面的粗糙度太大而影響元件之特性。最後,我們也做了量子效率的量測分析得到其吸收波段在氮砷化銦鎵及砷化銦鎵太陽能電池中分別可延伸至1225 nm (1.012 eV)及1255 nm (0.988 eV)。
    在未來,我們將嘗試將氮砷化銦鎵,砷化銦鎵太陽能電池應用到InGaP/GaAs/ 1 eV/Ge以及InGaP/GaAs/InGaAs (1 eV)多接面太陽能電池元件結構中,更進一步地提升整體的轉換效率。

    In this thesis, the main purpose of our research is to investigate the InGaAsN and InGaAs materials with 1 eV absorption region. Then we could grow the double heterojunction p-i-n solar cells by using these two materials as the intrinsic layer. In this way, we can apply the subcell of the near 1 eV absorption region to form the next-generation multi-junction solar cells. In the traditional triple-junction solar cells, we can insert the InGaAsN subcell between GaAs and Ge junctions to form InGaP/GaAs/1 eV/Ge multi-stacking structures or use the inverse metamorphic (IMM) structure to form InGaP/GaAs/InGaAs (1 eV) multi-stacking structures in the future. With the high indium composition InGaAs, we can further extend the absorption edge to longer wavelength to improve the open-circuit voltage and enhance the conversion efficiency. Different material characterization techniques such as photoluminescence (PL) system and high resolution X-ray diffraction (XRD) have been used to analyze the quality and composition of the epilayer.
    First, we tried to grow the InGaAs and InGaAsN thin films on GaAs substrates by MOVPE. We changed the nitrogen content and growth pressure to adjust the indium composition and observed that the lower growth pressure could help to obtain the better optical quality. And it was advantageous to the pyrolysis of TMGa and the incorporation of the nitrogen through varying the growth temperature. In addition, we also improved the crystal quality and the optical property by the post-thermal annealing process. Then, the InGaAsN bulk layers were successfully grown on GaAs substrate with the lattice matched condition and the band gap was about 1 eV under various epitaxial parameters. On the other hand, we grew the InGaAs epilayer with high indium composition in three growth temperatures of 550, 600 and 650˚C as well as precisely controlled the content of indium by the XRD simulation function. However, owing to the large lattice mismatch between GaAs and InGaAs layer, we adopted the gradient interface and superlattice structure to improve the quality of the epitaxy. From the results of the experiments, we have successfully grown the mirror-like surface and reduced the roughness to only 1.77 nm by using the hybrid structure with the gradient interface and superlattice structure.
    In the following, we grew the double heterojunction p-GaAs/i-InGaAsN/n-GaAs and p-GaAs/i-In0.32GaAs/n-GaAs solar cells. We varied the growth parameters of the intrinsic layer such as V/III ratio of 45, 60 and 115 as well as the thickness of 600, 900 and 1200 nm in the InGaAsN part, respectively. From the experiment results, we found that the devices grown with the highest V/III ratio condition possessed superior property, in addition, the short-circuit current could be improved from 4.89 to 16.4 mA/cm2 and the conversion efficiency would be enhanced from 0.64 to 4.09 %. But the efficiency was not as good as we expected in the different intrinsic layers thickness. Additionally, we also grew three different structures to reduce the lattice mismatch between i-In0.32GaAs and p-GaAs layers in the In0.32GaAs part. Yet the characteristics of the devices were still deteriorated due to the large roughness. After the quantum efficiency (QE) measurement, we could extend the absorption region to 1225 nm (1.012 eV) and 1255 nm (0.988 eV) for the InGaAsN and In0.32GaAs, respectively.
    In the future, the long-term goal of our research is to develop the InGaP/GaAs/1eV/ Ge and InGaP/GaAs/InGaAs(1 eV) multi-junction solar cells by applying InGaAsN and higher indium content InGaAs subcells to further improve the performance of multi-junction solar cells.

    Contents Abstract (in Chinese) I Abstract (in English) III Acknowledgement VI Contents VII Table Captions X Figure Captions XII Chapter 1 Introduction 1.1 Development of Solar Cells 1 1.2 The III-V Multi-junction Solar Cells 2 1.3 Motivation and Related Materials 4 1.4 Organization of This Thesis 6 Chapter 2 Theories of Solar Cells and Related Equipment 2.1 The Physics of Solar Cells 9 2.1.1 Solar Spectrum 9 2.1.2 Fundamental Principles of Photovoltaic Devices 10 2.2 Equipment 12 2.2.1 Metal-Organic Vapor Phase Epitaxy (MOVPE) System 12 2.2.2 High Resolution X-Ray Diffraction (HRXRD) 13 2.2.3 Atomic Force Microscopy (AFM) 14 2.2.4 Photoluminescence (PL) measurement system 15 2.2.5 Solar Simulation and I-V measurement system 16 Chapter 3 Investigation of Growth Conditions of 1eV InGaAsN Epilayer and Lattice-matched with GaAs 3.1 The Growth of InGaAsN Lattice Matched to GaAs 22 3.1.1 Experiment details 22 3.1.2 InGaAsN Epilayer Grown in Low DMHy Flow Rate 23 3.1.3 Comparison of Growth in Different DMHy Flow Rate 23 3.1.4 Influence of Growth Temperature on InGaAsN Epilayer 25 3.1.5 Growth Enhancement by Adjusting V/III Ratio 26 3.1.6 Summary 26 3.2 The Effect of Annealing Temperature on InGaAsN Epilayer 27 3.2.1 Experiment Details 27 3.2.2 Material quality Enhancement by Post-Thermal Annealing 28 3.2.3 Summary 29 Chapter 4 Investigation of Growth Condition of InxGa1-xAs Epilayer with High Indium Composition 4.1 The Growth of InXGa1-XAs Epilayer with High In Content 45 4.1.1 Experiment details 45 4.1.2 InGaAs TQWs Grown in Different Growth Temperature 46 4.1.3 The XRD Simulation for InXGa1-XAs Epilayer 46 4.1.4 Summary 47 4.2 The Different Growth Structures of InXGa1-XAs Epilayer 48 4.2.1 Experiment details 48 4.2.2 Growth method of In0.2GaAs in Gradient Structure 48 4.2.3 Growth method of In0.2GaAs in Superlattice Structure 49 4.2.4 Optimization of InXGa1-XAs in Superlattice Structure 49 4.2.5 Summary 51 Chapter 5 Characteristics of Double Heterojunction GaAs-based Solar Cells 5.1 The Study of p-GaAs/i-1 eV-InGaAsN/n-GaAs Solar Cells 64 5.1.1 Experiment Details 64 5.1.2 Fabrication of Solar Cell Devices 65 5.1.3 The Performance of InGaAsN-based Solar Cells 65 5.2 The In0.32GaAs Double Heterojunction Solar Cells 67 5.2.1 Experiment Details 67 5.2.2 The Performance of In0.32GaAs Double Herteojunction Solar Cells 68 Chapter 6 Conclusion and Future Prospects 6.1 Conclusion 79 6.2 Future Prospects 81 References 83

    References for Chapter 1
    [1.1] E. Becquerel, “Recherches sur les effects de la radiation chimique de la lumière solaire, au moyen des courants électriques”, Compt. Rend. Acad. Sci., vol. 9, pp.145-149, 1839.
    [1.2] D. M. Chapin, C.S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., vol. 25, no.5, pp.676-677, 1954.
    [1.3] D. A. Jenny, J. J. Lofersk and P. Rappaport, “Photovoltaic effect in GaAs p-n junctions and solar energy conversion” Phys. Rev., vol. 101, no.3, pp.1208-1209, 1956.
    [1.4] M. A. Green, K. Emery, K. Bucher, D. L. King, “Solar Cell Efficiency Tables (version 7)”, Prog. Photovoll: Res. Appl., vol. 4, no.1, pp.59-62, 1996.
    [1.5] R. R. King et al., “Band-gap-engineered architectures for high-efficiency multi- junction concentrator solar cells”, 24th European PVSEC, pp.55-61, 2009.
    [1.6] S. Wojtczuk et al., “InGaP/GaAs/InGaAs concentrators using Bi-facial epigrowth”, 35th PVSC, pp.1259-1264, 2010.
    [1.7] M. Yamaguchil, “Super-high-efficiency multi-junction solar cells”, Prog. Photovolt: Res. Appl., vol. 13, pp.125-132, 2005.
    [1.8] Natalya V. Yastrebova, “High-efficiency multi-junction solar cells: current status and future potential”, pp. 78-85, 2007.
    [1.9] K. Zweibel, “Basic photovoltaic principles and methods”, 1984.
    [1.10] B. Burnett, “The basic physics and design of III/V multijunction solar cells”, pp.12-13, 2002.
    [1.11] Katsuaki Tanabe, “A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures”, Energies, vol. 2, pp. 504-530, 2009.
    [1.12] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell under Concentrated Light by Simulation Program with Integrated Circuit Emphasis”, Jpn. J. Appl. Phys., vol. 43, no.3, pp. 882-889, 2004.
    [1.13] F. L. Kazmerski, “Best Research-Cell Efficiencies”, National Renewable Energy Laboratory (NERL), 2013.
    [1.14] S. R. Kurtz, D. Myers, J. M. Olson, “Projected performance of three-and four-junction devices using GaAs and InGaP”, IEEE 26th Photovoltaic Specialists Conf., pp. 875-878, 1997.
    [1.15] S. B. Zhang and S. H. Wei, “Nitrogen solubility and N-induced defect complexes in epitaxial GaAs: N”, Phys. Rev. Lett., vol. 86, no. 9, pp. 1789-1792, Feb. 2001.
    [1.16] S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg and E. D. Jones, “Minority carrier diffusion, defects and dislocation in InGaAsN, with 2% nitrogen” Appl. Phys. Lett., vol. 77, no. 3, pp. 401-402, July 2002.
    [1.17] Tatsuya Takamoto et al., “World's highest efficiency triple-junction solar cells fabricated by inverted layers transfer process”, IEEE 35th Photovoltaic Specialists Conf., pp. 412-417, 2010.

    References for Chapter 2
    [2.1] American Society for Testing and Materials (ASTM), “ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances”, 1992.
    [2.2] NASA Solar System Exploration, “Planets : Sun : Facts & Figures”, 2011.
    [2.3] Peter Würfel, “The Physics of Solar Cells : From Principles to New Concepts”, 2005.
    [2.4] J. Nelson, “The Physics of Solar Cells” Imperial College Press, UK, 2003.
    [2.5] C. Gary, Bjorklund, M. B. Thomas, “Organic Thin-Film Solar Cell Research Conducted at Stanford University”, Photonics Spectra, 2007.
    [2.6] C. H. Wu, “MOVPE Growth of (In)GaNAs and GaInNP for Quantum Well Lasers and Heterojunction Bipolar Transistors ”, Ph.D. dissertation, NCKU, 2004.
    [2.7] D. K. Bowen, B. K. Tanner, “High Resolution X-ray Diffraction and Topography.”, CRC Press, USA, 1998.
    [2.8] G. Binnig, C. F. Quate, and Ch. Gerber, “SCANNING TUNNELING MICROSCOPY FROM BIRTH TO ADOLESCENCE”, Phys. Rev.Lett., 1986.

    References for Chapter 3
    [3.1] Dong-Joon Kim, “Effect of Growth Pressure on Indium Incorporation During the Growth of InGaN by MOCVD”,Journal of ELECTRONIC MATERIALS, 2001.
    [3.2] S. Kurtz, R. Reedy, G. D. Barber, J. F. Geisz, D. J. Friedman, W. E. McMahon and J. M. Olson, J. Cryst. Growth, vol. 234, no 2-3, pp. 318-322, Jan. 2002.
    [3.3] U. W. Pohl, C. Möller, K. Knorr, W. Richter, J. Gottfriedsen, H. Schumann, K. Rademann and A. Fielicke, “Tertiarybutylhydrazine: a new precursor for the MOVPE of Group III-nitrides”, Mater. Sci. Eng. B, vol. 59, no. 1-3, pp. 20-23, May 1999.
    [3.4] A. Ougazzaden, Y. L. Bellego, E. V. K. Rao, M. Juhel, L. Leprince and G. Patriarche, “Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine”, Appl. Phys. Lett., vol. 70, no. 21, pp. 2861-2863, May 1997.
    [3.5] Q. Gao, H.H. Tan et al., “Metalorganic chemical vapor deposition of GaAsN epilayers: microstructures and optical properties”, Journal of Crystal Growth, vol. 264, pp. 92–97, 2004.
    [3.6] E. Bourret-Courchesne, Q. Ye, D. W. Peter, J.Arnold, M. Ahmed, S. J C. Irvine, R. Kanjolia, L. M. Smith and S. A. Rushwortg, “Phrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium”, J. Cryst. Growth, vol. 217, no. 1-2, pp. 47-54, July 2000.
    [3.7] R. T. Lee and G. B. Stringfellow, “Pyrolysis of 1,1 dimethylhydrazine for OMVPE growth “, J. Electron. Mater., vol. 28, no. 8, pp. 963-969, Aug. 1999.
    [3.8] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs”, Appl. Phys. Lett., vol. 74, no. 5, pp. 729-731, Feb. 1999.
    [3.9] S. R. Kurtz, A. A. Allerman, C .H. Seager, R. M. Sieg and E. D. Jones, “Minority carrier diffusion, defects and localization in InGaAsN, with 2% nitrogen”, Appl. Phys. Lett., vol. 77, no. 3, pp. 401-402, July 2000.
    [3.10] K. Volz, D. Lackner, I. Ne’meth, B. Kunert, W. Stolz, C. Baur, F. Dimroth, A.W. Bett, “Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications”, J. Cryst. Growth, vol. 310, no. 7-9, pp. 2222-2228, 2008.
    [3.11] C.S. Peng, H.F. Liu, J. Konttinen, M. Pessa, “Mechanism of photoluminescence blue shift in InGaAsN/GaAs quantum wells during annealing”, J. Cryst. Growth, vol. 278, no. 1-4, pp. 259-264, 2005.

    References for Chapter 4
    [4.1] F. Bugge, U. Zeimer, H. Wenzel, G. Erbert, M. Weyers, ”Interdiffusion in highly strained InGaAs-QWs for high power laser diode applications”, J. Cryst. Growth, vol. 272, no. 1-4, pp. 531-537, Dec. 2004.
    [4.2] Sergey Stepanov, “X-ray server: an online resource for simulations of X-ray diffraction and scattering”, Proceedings SPIE, no. 5536, pp. 16-26, 2004.
    [4.3] Y. Gu, Y.G.Zhang, K.Wang, X.Fang, C.Li, L.Zhou, A.Z.Li, Hsby.Li, “Effects of growth temperature and buffer scheme on characteristics of InP-based metamorphic InGaAs photodetectors”, J. Cryst. Growth, January 2013.
    [4.4] Shin-ichiro Gozu, Tomohiro Kita, Yuuki Sato, Syoji Yamada, Masaaki Tomizawab, “Characterization of high indium content metamorphic InGaAs/InAlAs modulation-doped heterostructures”, J. Cryst. Growth, vol. 227-228, pp. 155-160, July 2001.

    References for Chapter 5
    [5.1] T. F. Kuech, E. Veuhoff and B. S. Meyerson, “Silicon doping of GaAs and AlxGa1-xAs using disilane in metalorganic chemical vapor deposition”, J. Cryst. Growth, vol. 68, no. 1, pp. 48-53, Sep. 1984.
    [5.2] M. Shimazu, K. Kamon, K. Kimura, M. Mashita, M. Mihara and M. Ishii, “Silicon doping using disilane in low-pressure OMVPE of GaAs”, J. Cryst. Growth, vol. 83, no. 3, pp. 327-333, June 1987.
    [5.3] P. R. Hageman, M. H. J. M. de Croon, X. Tang and L. J. Giling, “Pressure and temperature dependence of Zn incorporation in metalorganic chemical vapour deposition grown GaAs and AlGaAs using diethylzinc as precursor”, J. Cryst. Growth, vol. 129, no. 1-2, pp. 281-288, Mar. 1993.
    [5.4] Donald A. Neamen, “Semiconductor Physics and Devices: Basic Principles”, 3rd Edition, McGraw Hill Higher Education, 2002.
    [5.5] S. M. Sze and Kwok K. Ng, “Physics of Semiconductor Devices”, 3rd Edition, John Wiley & Sons, Inc. Publication, USA, 2007.
    [5.6] L. H. Li, Z. Pan, W. Zhang, Y. W. Lin, Z. Q. Zhou and R. H. Wu, “Effects of rapid thermal annealing on the optical properties of GaNxAs1-x/GaAs single quantum well structure grown by molecular beam epitaxy”, J. Appl. Phys., vol. 87, no. 1, pp. 245-248, Jan. 2000.
    [5.7] I. A. Buyanova, G. Pozina, P. N. Hai, N. Q. Thinh, J. P. Bergman, W. M. Chen, H. P. Xin and C. W. Tu, “Mechanism for rapid thermal annealing improvements in undoped GaNxAs1-x/GaAs structures grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 77, no. 15, pp. 2325-2327, Oct. 2000.
    [5.8] Q. D. Zhuang, A. Krier and C. R. Stanley, “Strain enhancement during annealing of GaAsN alloys”, J. Appl. Phys., vol. 101, no. 10, pp. 103536, May 2007.
    [5.9] K. Bouzidi, M. Chegaar and M. Aillerie, “solar cells parameters evaluation from dark I-V characteristics”, Energy Procedia, vol. 18, pp. 1601-1610, 2012.
    [5.10] O. Breitenstein, J. Bauer, A. Lotnyk, J.-M. Wagner, “Defect induced non-ideal dark I-V characteristics of solar cells”, Superlattices and Microstructures, vol. 45, pp. 182-189, 2009.

    References for Chapter 6
    [6.1] D.C. Johnson et al., “Advances in Bragg stack quantum well solar cells”, Solar Energy Materials & Solar Cells , vol. 87, pp. 169-179, 2005.
    [6.2] Pei-Hsuan Wu et al., “MOVPE growth of Quantum well GaAs/In 0.10 GaAs for solar cell applications.”, Proc. of SPIE, vol. 6649, pp.66490E-1-7, 2007.
    [6.3] R. Kellenbenz, W. Guter, P. Kailuweit, E. Oliva, and F. Dimroth, ”Strain-balanced GaInAs/GaAsP Multi Quantum Wells for Space Solar Cells”, Proceedings of the 8th European Space Power Conference ,pp. 1–6, 2008.
    [6.4] R. Kellenbenz et al., “Development of radiation hard GaInP/GaInAs/Ge space solar cells with multi quantum wells”, 35th PVSC, 2010.
    [6.5] Yunpeng Wang, Momoko Deura, Masakazu Sugiyama, Yoshiaki Nakano, “Post and in-situ characterization of strain control and crystal quality in quantum well solar cell structure”, Materials Science Forum, vol. 675, pp.73-76, 2011.
    [6.6] T. W. Kim et al., “Narrow band gap (1eV) InGaAsSbN solar cells grown by metalorganic vapor phase epitaxy”, APPLIED PHYSICS LETTERS 100, 121120, 2012.
    [6.7] W. Ha, V. Gambin, S. Bank, M Wistey, H. Yuen, S. Kim and J. S. Harris Jr., “Long- wavelength GaInNAs(Sb) lasers on GaAs”, IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1260-1267, Sep. 2002.
    [6.8] W. C. Chen, Y. K. Su, R. W. Chuang and S. H. Hsu, “Investigation of the optical properties of InGaAs(N):(Sb) quantum wells grown by metal organic vapor phase epitaxy”, J. Vac. Sci. Technol. A, vol. 24, no. 3, pp. 591-594, May 2006.
    [6.9] S. R. Bank, M. A. Wistey, L. L. Goddard, H. B. Yuen, V. Lordi and J. S. Harris Jr., “Low-threshold continuous-wave 1.5-µm GaInNAsSb lasers grown on GaAs”, IEEE J. Quantum Electron., vol. 40, no. 6, pp. 656-664, June 2004.

    下載圖示 校內:2023-06-30公開
    校外:2023-06-30公開
    QR CODE