| 研究生: |
林廷翰 Lin, Ting-Han |
|---|---|
| 論文名稱: |
評估聚(3-己烷噻吩)在不同鏈長自組裝單分子層上形貌準直排列的驅動力 Evaluating the Driving Forces of Morphological Alignment in P3HT Thin Films on Self-Assembled Monolayers with Different Chain Lengths |
| 指導教授: |
徐邦昱
Hsu, Bang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 聚(3-己烷噻吩) 、漢森溶解度參數 、自主裝單分子層 、分子間作用力 |
| 外文關鍵詞: | Poly( 3-hexylthiophene), Order morphology, Driving force |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軟性電子材料如導電高分子,因其分子單元組合多元,且電子結構與形貌及分子構形高度相關,為基礎研究與實際工業應用提供許多可行方向,吸引眾多研究者的目光。導電高分子依其的結晶方式,可分為無序 (Amorphous)、有序半結晶 (Semicrystalline)、與高度有序結晶 (Highly crystalline),高分子成膜過程因缺乏有效控制微觀分子堆疊的手段,使得軟性有機電子元件內存在複雜多變的電子結構,元件效率因而低下且無法被廣泛應用。以電子傳導為例,無序形貌中有許多分子堆疊缺陷,因此產生許多妨礙傳導的缺陷態與能障;高度有序排列的缺陷少,對電子傳導能障低,是元件高效傳導的基礎;半結晶型態則因是無序結構與有序結構混合後的傳導行為,電子傳導效率低,因此形成高度有序排列是有機半導體提升電子效能的重要基礎。
以溶液製程為例,高分子在溶液中會自發形成有序與無序混合的聚集體,表示無法控制高分子間之分子間作用力,要得到高度有序排列,就必須定量地控制分子間作用力,才能進一步控制微觀排列與電子傳導效能。定量控制分子間作用力是機半導體領域的一難題,且本實驗室過往的研究發現,巨觀有序形貌和微觀分子堆疊的有序性不存在絕對相關性,也支持了本研究兼顧巨觀與微觀作用力的實驗主軸。因此本實驗選用被廣泛研究的聚(3-己烷噻吩,P3HT)作為分析對象,透過漢森溶解度參數以內聚能密度分析分子間作用力的能量尺度與作用維度,並建立鹵素鍵漢森溶解度參數模型,以此為基礎引入蘭納-瓊斯勢能 (Lennard-Jones potential)定量計算P3HT溶解行為中分子間作用能的變化,最後結合吉布士自由能 (Gibbs free energy)分析不同溫度時,溶劑如何弱化P3HT分子間作用能,並找出有序排列發生的溫度區間。為了實驗驗證模型,使用三種不同碳鏈長度的自主裝單分子層 (Self-Assembled Monolayers,SAM),methyl chlorooxoacetate、methyl adipoyl chloride、methyl 10-chloro-10-oxodecanoate,來比較不同長度的分子鏈長對P3HT側鍊己基互嵌作用 (Interdigitation)的響應,透過原子力顯微鏡觀測高分子表面的巨觀排列,並以極化拉曼光譜測量微觀異向性的大小,可判斷高分子巨觀與微觀有序 (Order)結構的相依性,最後經由評估溶解度與互嵌作用對有序排列的影響,可判明何者為排列P3HT的主要驅動力。
除了分析出有序排列的驅動力外,也可確立高分子溶液中吉布士自由能、蘭納-瓊斯勢能、鹵素鍵漢森溶解度參數、單分子層鏈長與成膜驅動力的關係,得出可控制分子有序堆疊的分子間作用力之方法學,為有機電子元件效能的提升奠定重要的基礎。
Due to the complicated interactions in solution processes, organic semiconductors produce polymorphic states and result in morphologic and electronic defects. Defects localize the electronic states and lower performance of organic electronic devices. Therefore, to achieve high-performance organic electronics, ordered morphology is preferred. Hence, intermolecular interactions in the processes must be properly controlled. In our earl experiments, unidirectional poly( 3-hexylthiophene) nano-fibers were observed in AFM picture. However, the anisotropic ratio of the aligned fibers obtained by polarized Raman scattering measurement was less than 2, which revealed the inconsistency betweem macroscopic and microscopic alignements. When we further looked into the detailed structures of the nano-fibers the fibers were composed of small aggregates, which means uncontrollable precipitation in the solution and results in low anisotropic values. However, very high anisotropic values >5 were also observed in the nano-fibers from high-temperature process. This discovery strongly implies that there exists a proper process window which can provide proper intermolecular interactions among polymers, solvents, and substrates and produce consistent order in both macroscopic and microscopic scales. To study the complicated interactions, we use three kinds of the self-assembled monolayers to reveal interdigitation effect, establish a modified Hansen Solubility Parameter model for halogenate organic solvent. Finally, combining Lennard-Jones potential and Gibbs free energy illustrates and controls the microscopic interactions. The revised model successfully predicts the processing temperature that shall demonstrate high order.Furthermore, we not only can clarify the driving forces for ordering but reasonable rank their ampilitudes in different processing conditions. Interdigitation is the most affective one, temperature (or solubility) secondly.
第九章、參考文獻
1. Chang Liu, Kai Wang, Xiong Gong and Alan J. Heeger Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 2016. 45(17): p. 4825-4846.
2. Vasyl Skrypnychuk , Gert-Jan A. H. Wetzelaer , Pavlo I. Gordiichuk , Stefan C. B. Mannsfeld , Andreas Herrmann , Michael F. Toney , and David R. Barbero, Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment, Adv.Mater.2016, 28, 2359–2366.
3. Leslie H. Jimison, Michael F. Toney, Iain McCulloch, Martin Heeney, and Alberto Salleo, Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene), Adv. Mater. 2009, 21, 1568–1572.
4. Manish Pandey, Nikita Kumari, Shuichi Nagamatsuc and Shyam S. Pandey , Recent advances in the orientation of conjugated polymers for organic field-effect transistors, J. Mater. Chem. C, 2019, 7, 13323—13351.
5. Jianhua Liu, Mohammad Arif, Jianhua Zou, Saiful I. Khondaker, and Lei Zhai , Controlling Poly(3-hexylthiophene) Crystal Dimension: Nanowhiskers and Nanoribbons, Macromolecules 2009, 42, 9390–9393.
6. Do Hwan Kim, Yeong Don Park, Yunseok Jang, Sungsoo Kim, Kilwon Cho, Solvent Vapor-Induced Nanowire Formation in Poly(3-hexylthiophene) Thin Films , Macromol. Rapid Commun. 2005, 26, 834–839 .
7. Yeong Don Park , Seung Goo Lee , Hwa Sung Lee , Donghoon Kwak , Dae Ho Lee and Kilwon Cho , Solubility-driven polythiophene nanowires and their electrical characteristics , J. Mater. Chem., 2011, 21, 2338–2343 .
8. Gyounglyul Jo , Jaehan Jung, and Mincheol Chang , Controlled Self-Assembly of Conjugated Polymers via a Solvent Vapor Pre-Treatment for Use in Organic Field-Effect Transistors, Polymers 2019, 11(2), 332.
9. Sista P., Luscombe C.K. (2014) Progress in the Synthesis of Poly (3-hexylthiophene). In: Ludwigs S. (eds) P3HT Revisited – From Molecular Scale to Solar Cell Devices. Advances in Polymer Science, vol 265. Springer, Berlin, Heidelberg.
10. Charles M. Hansen, HANSEN SOLUBILITY PARAMETER A User’s Handbook Second Edition, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742,2007
11. Florian Machui ,Steven Abbott ,David Waller ,Markus Koppe ,Christoph J. Brabec, Determination of Solubility Parameters for Organic Semiconductor Formulations, Macromol. Chem. Phys. 2011, 212, 2159–2165.
12. Mincheol Chang, Dalsu Choi, Boyi Fu,and Elsa Reichmanis, Solvent Based Hydrogen Bonding: Impact on Poly(3-hexylthiophene) Nanoscale Morphology and Charge Transport Characteristics, ACS Nano 2013, 7, 6, 5402–5413.
13. Florian Machui , Stefan Langner , Xiangdong Zhu , Steven Abbott , Christoph J. Brabec , Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance, F. Machui et al. / Solar Energy Materials & Solar Cells 100 (2012) 138–146.
14. Chen, H., Barna, B., Rogers, T. et al. A screening methodology for improved solvent selection using economic and environmental assessments. Clean Prod Processes 3, 290–302 (2001).
15. Miranda Roesing, Jason Howell, David Boucher , Solubility Characteristics of Poly(3-hexylthiophene), JOURNAL OF POLYMER SCIENCE, PART B: POLYMER PHYSICS 2017, 55, 1075–1087.
16. Yanli Zeng, Xueying Zhang, Xiaoyan Li, Lingpeng Meng, and Shijun Zheng, The Role of Molecular Electrostatic Potentials in the Formation of a Halogen Bond in Furan···XY and Thiophene···XY Complexes, ChemPhysChem 2011, 12, 1080 – 1087.
17. V. R. Pedireddi,D. Shekhar Reddy, B. Satish Goud, Donald C. Craig, A. David Raeb and Gautam R. Desiraju, The Nature of Halogen.Halogen Interactions and the Crystal Structure of 1,3,5,7-Tetraiodoadamantane, J. CHEM. soc. PERKIN TRANS. 2 1994.
18. Lydia C. Gilday, Sean W. Robinson, Timothy A. Barendt, Matthew J. Langton, Benjamin R. Mullaney, and Paul D. Beer, Halogen Bonding in Supramolecular Chemistry, Chem. Rev. 2015, 115, 15, 7118–7195.
19. Pierangelo Metrangolo, Franck Meyer, Tullio Pilati, Giuseppe Resnati, and Giancarlo Terraneo, Halogen Bonding in Supramolecular Chemistry, Angew. Chem. Int. Ed. 2008, 47, 6114 – 6127
20. HALOGEN BONDS IN BIOLOGICAL MACROMOLECULES ,Submitted by Matthew Robert Scholfield Department of Biochemistry and Molecular Biology.
21. Yi-Cen Ge, Hui Yang, Arne Heusler, Zhijie Chua, Ming Wah Wong,,and Choon-Hong Tan, Halogen-Bonding-Induced Conjugate Addition of Thiophenes to Enones and Enals, Chem. Asian J. 2019, 14, 2656 – 2661.
22. Christer B. Aakeroy, Abhijeet S. Sinha, Prashant D. Chopade and John Desper, Halogen bonding or close packing? Examining the structural landscape in a series of Cu(II)-acac complexes, Dalton Trans., 2011, 40, 12160.
23. Ibon Alkorta, Goar Sa´nchez-Sanz and Jose´ Elguero, Linear free energy relationships in halogen bonds3,CrystEngComm, 2013, 15, 3178.
24. Rupa Madyal Chemistry Department, S.I.W.S. College (India) ,Molecular Modeling: a Tool to Understand Reactivity of Heterocyclic Compounds Effectively
25. JANE S. MURRAY, PAT LANE, PETER POLITZER, Simultaneous Ϭ-Hole and Hydrogen Bonding by Sulfur- and SeleniumContaining Heterocycles, International Journal of Quantum Chemistry, Vol 108, 2770 –2781 (2008).
26. Wanchalerm Srirachat, Thanaporn Wannachod, Ura Pancharoen, Soorathep Kheawhom, Effect of polarity and temperature on the binary interaction between D2EHPA extractant and organic solvents (kerosene, n-heptane, chlorobenzene and 1-octanol): Experimental and thermodynamics, Fluid Phase Equilibria 434 (2017) 117-129.
27. PROPERTIES AND HAZARDS OF 108 SELECTED SUBSTANCES -1992 EDITION Jeffrey E. Lucius1 , Gary R. Olhoeft1 , Patricia L. Hill1 , and Steven K. Duke2 U.S. Geological Survey Open-File Report 92-527 September 1992.
28. THERMODYNAMICS OF BINARY LIQUID MIXTURES BY G. K. RAMAN AND P. R. NAIDU (Sri Venkateswara University Chemical Laboratories, Tirupati, S. India) Received January 1, 1973 (Communicated by Prof. M. Santappa).
29. Carl L. Yaws,Thermophysical Properties of Chemicals and Hydrocarbons, Gulf Professional Publishing, 18th June 2014.
30. Xiaobo Shen , Volodimyr V. Duzhko , and Thomas P. Russell, A Study on the Correlation Between Structure and Hole Transport in Semi-Crystalline Regioregular P3HT, Adv. Energy Mater. 2013, 3, 263–270.
31. A Molecular Dynamics Lennard-Jones Chain model for Phase Separation Behavior of Polythiophene and Fullerene Mixtures, Isaac Riisness June 13, 2012.
32. Javier Pe´rez-Pellitero, Philippe Ungerer, and Allan D. Mackie, An Anisotropic United Atoms (AUA) Potential for Thiophenes, J. Phys. Chem. B 2007, 111, 4460-4466.
33. Marçal Capdevila-Cortada, Júlia Castelló and Juan J. Novoa, The nature of the C–Cl⋯Cl–C intermolecular interactions found in molecular crystals: a general theoretical-database study covering the 2.75–4.0 Å range, CrystEngComm, 2014, 16, 8232.
34. Marçal Capdevila-Cortada and Juan J. Novoa, The nature of the C–Br⋯Br–C intermolecular interactions found in molecular crystals: a general theoretical-database study, Cite this: CrystEngComm, 2015, 17, 3354.
35. FRANCISCO RODRI´GUEZ-ROPERO, JORDI CASANOVAS, CARLOS ALEMAN, Ab Initio Calculations on p-Stacked Thiophene Dimer, Trimer, and Tetramer: Structure, Interaction Energy, Cooperative Effects, and Intermolecular Electronic Parameters, J Comput Chem 29: 69–78, 2008.
36. Yan Guo, Lang Jiang, Xiaojing Ma, Wenping Hu and Zhaohui Su, Poly(3-hexylthiophene) monolayer nanowhiskers, Polym. Chem., 2013, 4, 4308.
37. Kobayashi, S., Nishikawa, T., Takenobu, T. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nature Mater 3, 317–322 (2004).
38. Barry Arkles,Hydrophobicity, Hydrophilicity and Silane Surface Modification, Gelest, Inc, 11 East Steel Rd. Morrisville, PA 19067
39. Stephen Saddow, Silicon Carbide Biotechnology,A Biocompatible Semiconductor for Advanced Biomedical Device and Applications, Elsevier, 1st March 2016
40. Erin E. Flater,W. Robert Ashurst, and Robert W. Carpick,
Nanotribology of Octadecyltrichlorosilane Monolayers and Silicon: Self-Mated versus Unmated Interfaces and Local Packing Density Effects, Langmuir 2007, 23, 9242-9252.
41. Yutaka Ito, Ajay A. Virkar, Stefan Mannsfeld, Joon Hak Oh, Michael Toney, Jason Locklin, and Zhenan Bao, Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors, J. AM. CHEM. SOC. 2009, 131, 9396–9404.
42. Shigeaki Obata and Yukihiro Shimoi, Control of molecular orientations of poly(3-hexylthiophene) on self-assembled monolayers: molecular dynamics simulations, Phys. Chem. Chem. Phys., 2013, 15, 9265-9270.
43. Yoshinori Horii, Mitsuhiro Ikawa, Koichi Sakaguchi, Masayuki Chikamatsu, Yuji Yoshida, Reiko Azumi, Hiroshi Mogi, Masahiko Kitagawa, Hisatoshi Konishi, Kiyoshi Yase, Investigation of self-assembled monolayer treatment on SiO2 gate insulator of poly(3-hexylthiophene) thin-film transistors, Thin Solid Films 518 (2009) 642–646.
44. Alejandro L. Briseno Joanna Aizenberg Yong-Jin. Han Rebecca A. Penkala Hyunsik MoonAndrew J. Lovinger Christian Kloc and Zhenan Bao, Patterned Growth of Large Oriented Organic Semiconductor Single Crystals on Self-Assembled Monolayer Templates, J. AM. CHEM. SOC. 2005, 127, 12164-12165.
45. Mingji Wang, Kenneth M. Liechti, Qi Wang,and J. M. White, Self-Assembled Silane Monolayers: Fabrication with Nanoscale Uniformity,Langmuir 2005, 21, 5, 1848-1857.
46. Shou-Zheng Weng, Wei-Shan Hu, Chi-Hsien Kuo, and Yu-Tai Tao, Anisotropic field-effect mobility of pentacene thin-film transistor: Effect of rubbed self-assembled monolayer, Appl. Phys. Lett. 89, 172103 (2006).
47. Guido Scavia, William Porzio , Silvia Destri , Luisa Barba, Gianmichele Arrighetti, Silvia Milita, Luca Fumagalli, Dario Natali, Marco Sampietro, Effect of the silanization and annealing on the morphology of thin poly(3-hexylthiophene) (P3HT) layer on silicon oxide, Surface Science 602 (2008) 3106–3115.
48. W. Porzio , G. Scavia, L. Barba, G. Arrighetti, S. Milita, Depth-resolved molecular structure and orientation of polymer thin films by synchrotron X-ray diffraction, European Polymer Journal 47 (2011) 273–283.
校內:2025-08-20公開