簡易檢索 / 詳目顯示

研究生: 劉守恒
Liu, Shou-Heng
論文名稱: 電動力法處理污染土壤與污泥中銅 之精細結構研究
In-situ Speciation Studies of Copper in Contaminated Soils and Sludges during Electrokinetic Remediation
指導教授: 王鴻博
Wang, H. Paul
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 206
中文關鍵詞: 電動力整治重金屬污染土壤奈米銅溴氣汞蒸氣固態核磁共振光譜X射線吸收光譜之延伸區微結構近邊緣結構
外文關鍵詞: XANES, Humic substances (HS), Contaminated soils, Electrokinetic remediation (EKR), EXAFS, Sludges, Gas-phase Mercury, Halogen gas, FTIR, SSNMR, XPS, EPR
相關次數: 點閱:114下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電動力是近年來較受重視之土壤現地整治技術,利用重金屬污染物在電場中較具遷移性之特性,以電動力去除土壤中銅、鎘、鉻、砷、鉛、鈷、汞、鋅等重金屬,去除率可超過90%以上。雖然電動力整治技術已經在重金屬污染土壤現場被廣泛使用,但是複雜的重金屬傳輸反應及電化學現象並沒有被進一步了解。這些反應包括:離子擴散,離子交換、氧化還原、物理化學性吸附、礦化分解、鹽類沈澱及有機螯合等,因此,本研究之主要目的包括(1)研究銅吸附在土壤主要成分(Al2O3、SiO2)之微細結構及受其電場影響之移動性;(2)利用EXAFS(X射線吸收光譜之延伸區微細結構)研究重金屬在土壤中之結構及其涉及之物理化學反應;(3)電動力驅動之EDTA螯合污染土壤中銅之化學結構變化;(4)土壤中銅-腐植質(Cu-HS)之化學反應機制;及(5)進行電動力處理半導體製程中化學機械平坦化(chemical mechanical planarization)所產生(含微奈米銅)污泥之精細結構研究。另外,我們也進行去除發電廠所產生汞蒸氣污染之研究。
      實驗結果顯示,以5V/cm之電場作用180分鐘後,分別有54%及27%之銅從SiO2和Al2O3表面移動到陰極,XANES光譜顯示,銅吸附在SiO2表面主要是以外層錯合物(outer-sphere complexes)型式存在,然而吸附在Al2O3表面之銅則以外層錯合物(inner-sphere complexes)型式居多。電動力驅動下,銅在SiO2表面移動性較高,因為銅以edge-sharing bidentate之型式與Al2O3鍵結(EXAFS光譜之結果)。
      電動力處理含腐植質之銅污染土壤之研究,結果顯示土壤中銅之主要物種為50%之Cu-HS(銅-腐植質錯化物)、28%之CuCO3、11%之Cu2O及11%之CuO。FTIR光譜顯示,銅與腐植質可能是以unidentate complex型式存在。EXAFS數據顯示,距中心銅原子1.94 Å及2.17 Å處,分別有赤道向(equatorial)氧原子3.6個和軸向(axial)氧原子1.4個,經過180分鐘電動力反應,軸向Cu-O鍵距增加0.15 Å,推測可能是腐植質之羰酸基(carboxylic acid groups)與水分子產生配位交換(ligand exchange)反應,約50%之銅-腐植質錯化物從土壤中溶解至水相,71%之水相銅離子遷移至陰極。
      加入0.01 M之EDTA於受銅污染土壤中可提高電動力去除效率約10%,主要是因為EDTA可將銅從土壤表面溶出形成水相Cu-EDTA錯化物,但受電場及陽極電解水所產生的酸影響,Cu-EDTA中之羰酸基(carboxylic acid groups)被水分子取代,而形成銅的水合物遷移至陰極。
      以電動力方法也應用於回收半導體製程中化學機械平坦化所產生含奈米銅之污泥,實驗顯示之奈米CuO(14%)之移動性較其塊狀(bulk) CuO高,可能是奈米CuO活性較高,易溶於水,或是奈米銅受電場影響直接往陰極移動。
      另外,在美國勞倫斯柏克萊實驗室中,我們以硝酸蒸氣及鹵素氣體來氧化氣態汞蒸氣污染物,結果顯示溴氣可有效氧化元素汞為二價汞,且形成之產物易溶於後續之氣體吸收塔而去除,初步經濟效益評估結果顯示,以溴氣來去除發電廠中產生之汞污染,是相當經濟且可行的(與傳統活性碳吸附法比較可節省經費約六到十七倍)。
      本論文研究之主要成果包括:(1)銅吸附在Al2O3及SiO2表面之微細結構,尤其發現在電場作用下,銅在SiO2表面移動性較高;(2)在電場的影響下,銅-腐植質錯化物與水分子產生配位交換(ligand exchange)反應,使銅溶於水相,以銅的水合物遷移至陰極;(3)EDTA enhance電動力處理污染土壤之可能反應機制;(4)在電場作用下,奈米CuO與塊狀(bulk)CuO之移動性;及(5)針對發電廠所產生之汞蒸氣污染,提供一個新穎且經濟有效之方法。

      Electrokinetic remediation (EKR) has been becoming one of the most feasible technologies for in-situ soil decontamination. However, the complex transport phenomena, electrochemistry and complexation reaction paths involved in the EKR is still not well understood. Thus, the main objective of this work was to study the speciation of copper in heavy copper contaminated soils during EKR by EXAFS, XANES, solid-state NMR (SSNMR), FTIR, electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). An in-situ EXAFS cell was used to reveal the possible reaction pathway during EKR. In addition, EKR of sludges was also conducted to extend the applications.
      In simplified soil EKR systems (SiO2 or Al2O3), by XANES, it was found that the main copper species on SiO2 and Al2O3 were outer-sphere complexes (aqueous Cu(II)) (80%) and inner-sphere complexes (Cu/Al2O3) (59%), respectively. The mobility of copper in the Al2O3 matrix during EKR was less than that in the SiO2 system possibly because of the strong bonding between copper and Al2O3 surfaces with the edge-sharing bidentate mode (inner-sphere complexes). It was found that about 54% and 27% of Cu(II) on SiO2 and Al2O3, respectively were migrated to the cathode under the electric field (5 V/cm) for 180 min.
      Speciation of copper-humic substances (HS) in the EKR of the contaminated soil was also studied by in-situ EXAFS and XANES spectroscopies. The least-square fits of the XANES spectra suggested that the main copper species in the contaminated soil were Cu-HS (50%), CuCO3 (28%), Cu2O (11%) and CuO (11%). By FTIR, Cu-HS as an unidentate complex was observed. The Cu-HS in the contaminated soil possessed equatorial and axial Cu-O bond distances of 1.94 and 2.17 Å with coordination numbers (CNs) of 3.6 and 1.4, respectively. In the EKR process, the axial Cu-O bond distance in the Cu-HS complexes was increased by 0.15 Å, which might be due to a ligand exchange of the Cu-HS with H2O molecules in the electrolyte. After 180 min of EKR, about 50% of the Cu-HS complexes (or 24% of total copper)    in the soil were dissolved and formed [Cu(H2O)6]2+ in the electrolyte and 71% (or 17% of total copper in the soil) of which were migrated to the cathode under the electric field (5 V/cm).
      In the ethylenediaminetetraacetic acid (EDTA)-enhanced EKR of soils, the main copper species in the contaminated soil were CuCO3 (41%), CuO (40%) and adsorbed copper (Cu/SiO2) (19%). The fitted EXAFS data showed that the bond distance of Cu-(O)-Si was 3.25 Å with a coordination number (CN) of 1.0 in the second shells, suggesting a chemical interaction between copper and the soil surfaces.   In the presence of EDTA (0.05 M), a Cu-EDTA complex having the equatorial and axial Cu-O bond distances of 1.96 Å and 2.21 Å, respectively, was observed. The EPR spectra showed that copper (Cu(II)) was complexed with EDTA in a square-plannar arrangement with four oxygen-containing groups. Interestingly, after 180 min of EKR, the axial Cu-O bond distance was increased by 0.1 Å. The perturbation might be attributed to the possibility that the weak-field carboxylic acid groups of EDTA in the equatorial plane of Cu(II) were replaced by the strong-field water molecules.
      In the EKR of a CMP sludge, the main copper species in the sludge were Cu(OH)2 (73%), nano CuO (14%) and CuO (13%). About 85% of the copper were dissolved (possibly formed [Cu(H2O)6]2+) in the electrolyte and 13% of which was migrated to the cathode under the electric field (5 V/cm) for 120 min. In addition, it was found that nano CuO has a higher mobility than its bulk CuO during EKR, which may be due to at least two possibilities: (1)nano copper has a higher dissolution rate; (2) nano CuO may be migrated directly to cathode.
      An exploratory study for oxidation of gas-phase mercury by nitric acid vapor and halogen gas was also conducted. Arrhenius expression for the oxidation of gas phase mercury by bromine gas is 8.4×10-16 exp [-(554 ± 69)/T] cm3 molecule-1s-1, corresponding to a rate coefficient of (1.3 ± 0.3)×10-16 cm3 molecule-1s-1 at 294 K and an activation energy of 4.6 ± 0.6 kJ mol-1. The cost for 90% removal of mercury from a simulated flue gas of power plants by Br2 gas was estimated to about 5000$/lb, which is a cost-effective method compared to other technologies. In addition, the oxidation products and excess bromine gas are easy to handle since the oxidized form of mercury can subsequently be removed by the dissolution in an aqueous gas absorber or by the adsorption on sorbents in a baghouse or electrostatic precipitator.

    中文摘要 I ABSTRACT III ACKNOWLEDGMENT V CONTENT VI LIST OF TABLES IX LIST OF FIGURES XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE SURVEY 3 2.1 General Description of Soils 3 2.2 Sources of Metal Pollutants in Soils 5 2.3 Copper Complexation with Humic Substances 5 2.4 Remediation Technologies 12 2.5 Electrokinetic Remediation 17 2.6 Enhanced Electrokinetic Remediation 23 CHAPTER 3 EXPERIMENTAL METHODS 26 3.1 Experimental Design 26 3.2 Preparation of Samples 26 3.2.1 Preparation of Cu-SiO2/Al2O3 26 3.2.2 Preparation of Cu-HS compounds 27 3.2.3 Characterization of Soils 27 3.3 Electrokinetic Remediation 29 3.4 Analyses 30 3.4.1 In-situ X-ray Absorption Spectroscopy (XAS) 30 3.4.2 X-ray Photoelectron Spectra (XPS) 35 3.4.3 Fourier Transform Infrared (FTIR) 35 3.4.4 Electron Paramagnetic Resonance (EPR) 35 3.4.5 Solid-state Nuclear Magnetic Resonance (SSNMR) 35 CHAPTER 4 RESULTS AND DISCUSSION 36 4.1 XANES and EXAFS Studies of Cu(II) on SiO2 and Al2O3 during EKR 36 4.2 In-situ EXAFS Study of Copper in the Electrokinetic Remediation Processes 49 4.3 Speciation of Copper-Humic Substances in a Contaminated Soil during Electrokinetic Remediation 54 4.4 In-situ Speciation Studies of Copper with EDTA during Electrokinetic Remediation of a Contaminated Soil 70 4.5 Electrokinetic Remediation of Cu-contaminated Soils Assisted with CH3COOH and H3PO4 84 4.6 Copper in the Electroplating Sludges under an Electric Field 94 4.7 Speciation of Zinc in an Electroplating Sludge during Electrokinetic Treatments 103 4.8 Speciation of Copper in a CMP Sludge during Electrokinetic Treatments 112 4.9 Concepts of Engineering Applications 121 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 123 REFERENCES 191 RESUME AND PUBLICATIONS 203

    Acar, Y. B., J. T. Hamed, R. J. Gale, and G. Putnam. 1990. Acid/Base Distribution in Electroosmosis. Geotechnical Eng. 23-24.
    Alshawabkeh, A. N., and Y. B. Acar. 1992. Removal of Contaminants from Soils by Electrokinetics: A theoretical treatise. J. Environ. Sci. Health 27: 1835-1861.
    Acar, Y. B., A. N. Alshawabkeh, and R. J. Gale. 1993. Fundamentals Aspects of Extracting Species from Soils by Electrokinetics. Waste Management 12: 1410-1421.
    Acar, Y. B., R. J. Gale, and G. Putnam. 1990. Electrchemical Processing of Soils: Theory of pH Gradient Development by Diffusion and Linear Convection. J. Environ. Sci. and Health, Part A; Environ. Sci. Eng. 25: 687-714.
    Acar, Y. B., and A. N. Alshawabkeh. 1993. Priciples of Electrokinetic Remediation. Environ. Sci. Technol. 27: 13.
    Acar, Y. B., and A. N. Alshawabkeh. 1994. Electrokinetic Remediation. I. Pilot-scale tests with Lead-spiked Kaolinite. J. Geotech. Eng. 122: 3.
    Acar, Y. B., J. T. Hamed, A. N. Alshawabkeh, and R. J. Gale. 1994. Removal of Cd(II) from Saturated Kaolinite by the Application of an Electrical Current. Geotechnique. 44(2): 239-254.
    Acar, Y. B. and A. N. Alshawabkeh. 1996. Electrokinetic Remediation: 1. Pilot-scale Tests with Pb-spiked Kaolinite. J. Geotech. Eng. 122(3): 173-185.
    Acar, Y. B., E. E. Ozsu, A. N. Alshawabkeh, M. F. Rabbi, and R. J. Gale. 1996. Enhanced Soil Bioremediation with Eletric Fields. Chemtech. 26(4): 239-254.
    Allen, H. E., and P. H. Chen. 1993. Remediation of Metal Contaminated Soil by EDTA Incorporating Electrochemical Recovery of Metal and EDTA. Envi. Prog. 12(4): 284-293.
    Alshawabkeh, A. N., and Y. B. Acar. 1996. Electrokinetic Remediation: 2. Theoretical Model. J. Geotech. Eng. 122(3): 186-196.
    Alshawabkeh, A. N., R. J. Gale, E. Ozsu-Acar, and R. M. Bricka. 1999a. Optimizationof 2-D Electrode Configuration for Electrokinetic Extraction. J. Soil Contaminat. 8: 617-635.
    Alshawabkeh, A. N., A. T. Yeung, and R. M. Bricka. 1999b. Practice Aspects of In-situ Electrokinetic Extraction. J. Environ. Eng. 125(1): 27-35
    Bailey, G. W., S. M. Shevchenko, and H. Kamermans. 1997. Combining Scanning-Tunneling-Microscopy and Computer-Simulation of Humic Substances - Citric-Acid: a Model. J. Soil Sci. Soc. Am. 61(1): 92-101.
    Amrhein, G. T., M. J. Holmes, R.T. Bailey, G. A. Kudlac W. Downs, and D. A. Madden. 1999. Advanced Emissions Control Development Program: Phase III-Approved Final Report, DOE Contracr DE-FC22-94PC94251.
    Ariya, P. A., A. Khalizov, and A. Gidas. 2002. Reactions of Gaseous Mercury with Atomic and Molecular Halogens: Kinetics, Product Studies, and Atmospheric Implications. J. Phys. Chem. A 106: 7310-7320.
    Baker, A. J. M., and R. R. Brooks. 1989. Terrestrial Higher Plants which Hyperaccumulate Metal Elements: A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery 1: 81-126.
    Bavoso, A., L. Menabue, M. Saladini, and M. Sola. 1996. Coordination of 2-Hydroxyhippuric Acid to the Copper(II) Ion - A Solution and Solid-State Study. Inorg. Chim. Acta 244(2): 207-212.
    Boyd, S. A., L. E. Sommers, D. W. Nelson, and D. X. West. 1983. Copper(II) Binding by Humic Acid Extracted from Sewage Sludge: An Electron Spin Resonance Study. Soil Sci. Soc. Am. J. 47: 43-46.
    Breault, R. F., J. A. Colman, G. R. Aiken, and D. McKnight. 1996. Copper Speciation and Binding by Organic-Matter in Copper-Contaminated Streamwater. Environ. Sci. Technol. 30(12): 3477-3486.
    Brown, K. W., I. C. Thomans, and J. E. Slowey. 1983. Metal Accumulation by Bermuda Grass Grown on Four Diverse Soils Amended with Secondary Treated Sewage Effluent. Water, Air, and Soil Pollution 20: 431-446.
    Brown, T. D., D. N. Smith, R. A. Hargis, and W. J. O’Dowd. 1999. Mercury Measurement and Its Control: What We Know, Have Learned, and Need to Further Investigate. J. Air Waste Manage. Assoc. 1-97.
    Campbell, P. G., and A. Tessier. 1987. Metal Speciation in Natural Waters: Influence of Environmental Acidificatio. American Chemical Society, Washington, DC.
    Campbell, T. F. 1993. National Emissions Inventory of Mercury and Mercury Compounds: Interim Final Report. EPA 453/R-93-048. North California, USA, 171.
    Cheah, S.-F., G. E. Brown, Jr, G. A. Parks. 1998. XAFS Spectroscopy Study of Cu(II) Sorption on Amorphous SiO2 and Gamma-Al2O3 - Effect of Substrate and Time on Sorption Complexes. J. Colloid Interface Sci. 208 (1): 110-128.
    Chemical Market Reporter. 2002. October 21: 35-37.
    Cotton, F. A., and G. Wilkinson. 1967. Advanced Inorganic Chemistry – A Comprehensive Text. Second edition, P. 355 and 555, Interscience Publishers, A division of John Wiley & Sons, New York.
    Cox, C. D., M. A. Shoesmith, and M. M. Ghosh. 1996. Electrokinetic Remediation of Mercury-contaminated Soils using Iodine/Iodide lixiviant. Environ. Sci. Technol. 30(6): 1933-1938.
    Dismukes, E. B. 1994. Trace Element Control in Electrostatic Precipitators and Fabric Filters. Fuel Processing Technology 39: 403-416.
    Edwards, M., M. M. Benjamin, and J. N. Ryan. 1996. Role of Organic Acidity in Sorption of Natural Organic-Matter (Nom) to Oxide Surfaces. Collids Surf. 107: 297-307.
    Elzinga, E. J., R. J. Reeder. 2002. X-ray Absorption Spectroscopy Study of Cu2+ and Zn2+ Adsorption Complexes at the Calcite Surface: Implication for Site-specific Incorporation Preferences during Calcite Crystal Growth. Geochim. Cosmochim. Acta. 66: 3943-3954.
    Ephraim, J. H., and J. A. Marinsky. 1986. A Unified Physicochemical Description of the Protonation and Metal-Ion Complexation Equilibria of Natural Organic-Acids (Humic and Fulvic-Acids) .3. Influence of Poly-Electrolyte Properties and Functional-Heterogeneity on the Copper-Ion Binding Equilibria in an Armadale Horizons BH Fulvic-Acid Sample. Environ. Sci. Technol. 20: 367-376.
    Ephraim, J. H., and J. A. Marinsky. 1990. Ultrafiltration As a Technique for Studying Metal Humate Interactions - Studies with Iron and Copper.Anal. Chim. Acta 232: 171-180.
    EPRI 1995. Electric Utility Trace Substances Synthesis Report: Mercury in the Environment, EPRI TR-104614-V3. 3: 150.
    Esrig, M. I., 1968. Pore Pressures, Cosolidation, and Electrokinetics. J. Soil Mech. Found. Div. Am. Soc. Civ. Eng. 94: 899-921.
    Eykholt, G. R., and D. E. Daniel. 1994. Impact of System Chemistry on Electroosmosis in Contaminated Soil. J. Geotech. Eng. 120: 5.
    Eykholt, G. R. 1997. Development of Pore Pressures by Nonuniform Electroosmosis in Clays. J. Haz. Mat. 55: 171-186.
    Feeley, T. J., J. Murphy, J. Hoffmann, S. and S. A. Renninger. 2003. Review of U.S. DOE/NETL’s mercury control technology R&D program for coal-fired power plants. Environ. Manag.
    Gray, D. H., and J. K. Mitchell. 1967. Fundamental Aspects of Electroosmosis in Soils. J. Soil Mech. Found. Div. Am. Soc. Civ. Eng. 93: 209-236.
    Gray, D. H., and J. K. Mitchell. 1976. Fundamental Aspects of Electroosmosis in Soils, J. Soil Mech and Found. Div., ASCE. 93: 209-236.
    Gregory, V. K., I. F. Anatoly, and A. S. Edward. 1998. EXAFS Study of the Inner Shell Structure in Copper(II) Complexes with Humic Substances. Environ. Sci. Technol. 32: 2699-2705.
    Grim, R. E. 1968. Clay mineralogy, MckGraw-Hill, New York.
    Grubdl, T., and C. Resse. 1997. Laboratory Study of Electrokinetic Effects in Complex Natural Sediments. J. Haz. Hat. 55: 187-201.
    Hall, B., N. S. Bloom, and J. Munthe. 1995. An Experimental Study of Two Potential Methylation Agents of Mercury in the Atmosphere: CH3I and DMS. Water, Air and Soil Pollution 80:337-341.
    Hamed, J., Y. B. Acar, and R. J. Gale. 1991. Pb(II) Removal from Kaolinite Using Electrokinetics. J. Geotech. Eng. 117: 2.
    Hansen, J. C., C. Timerman, and S. Liikala. 1990. Status of In-situ Virification Technology, Geosafe Corporation. Kirkland, WA.
    Haren, B. S., B. N. Popov, G. Zheng, and R. E. White. 1996. Development of a New Electrochemical technique for Decontamination of Hexavalent Chromium from Low Surface Charged Soils. Environ. Prog. 15(3): 166-172.
    Haren, B. S., B. N. Popov, G. Zheng, and R. E. White. 1997. Mathematic Modeling of Hexavalent Chromium Decontamination from Low Surface Charged Soils. J. Haz. Mat. 55: 93-107
    Helmke, P. A., R. D. Koons, P. J. Schonberg, and I. K. Iskandar. 1977. Determination of Trace Contamination of Sediments by Mutil-element Analysis of Clay-size Fraction. Environ. Sci. Technol. 11: 984-989.
    Hersterberg, D., D. E. Sayers, W. Zhou, W. P. Robarge, and G. M. Plummer. 1997. XAFS Characterization of Copper in Model Aqueous Systems of Humic-Acid and Illite. J. Phys. IV France. 7(C2): 833-834.
    Hess, A. N., and Y. P. Chin. 1996. Physical and Chemical Characteristics of Poly(Maleic Acid), a Synthetic Organic Colloid Analog. Collids Surf.107: 141-154.
    Hicks R. E., and S. Tondorf. 1994. Electrorestoration of Metal Contaminated Soils. Environ. Sci. Technol. 28: 12.
    Hippler, H., S.H. Luu, H. Teitelbaum, and J. Troe.1978. Flash photolysis study of the NO-catalyzed recombination of bromine atoms. Int. J. Chem. Kinet. 10: 155.
    Houthoofd, J. M., J. H. Mcready, and M. H. Roulier. 1991. Soil Heating Technologies for In-situ Treatment: A review. Proceedings of the 7th Annual RREL Hazardous Waste Research Symposium, 190-203.
    Huheey, J. E., 1978. Inorganic Chemistry: Principles of structure and reactivity, Harper and Row.
    Hunter, R. J., 1981. Zata Potential in Colloid Science: Principles and Applications, Academic, London.
    Ikan, R. and P. Ioselis. 1992. Sci. Total Environ. Chemical, Isotopic, Spectroscopic and Geochemical Aspects of Natural and Synthetic Humic Substances. 117/118: 1-12.
    Iskandar, I. K. 1975. Urban Waste as a Source of Heavy Metals in Land Treatment. Proceedings of International Conference on Heavy Metals in the Environment, 417-432.
    Iskandar, I. K., and T. F. Jenkins. 1985. Potential Use of Artificial Ground Freezing for Contaminant Immobilization. International Conference on New Frontiers for Hazardous Waste Management, Pittsburgh, PA, September, 15-18.
    Iskandar, I. K., and K. Mobley. 1988. Potential Use of Chelating Agents for Decontamination of Soils. US Army Cold Regions Research and Engineering Laboratory.
    Iskandar, I. K., and D. C. Adriano. 1997. Remediation of Soils Contaminated with Metals: A Review of Current Practices in the USA. 1-26.
    Jacobs, R. A., M. Z. Sengun, R. E. Hicks, and R. F. Probstein. 1994. Model and Experiments on Soil Remediation by Electric Fields. J. Environ. Sci. Health A29: 1933-1955.
    Kesari, J., P. S. Puglionesi, S. Poop and M. H. Corbin. 1987. Interim Technical Report: Heavy Metal Contaminated Soil Treatment. Aberdeen, MD, Report .
    Kotuby-Amacher, J., and R. P. Gambrell. 1988. Factors Affecting Trace Metal Mobility in Subsurface Soils. EPA Project, EPA-600/52-88-036.
    Kudlac, G. A., and G. T. Amrhein. 2000. Enhanced Mercury Control for Coal-fired Boiler, Proceedings of the 17th Annual Pittsburg Coal Conference, Pittsburgh, PA, 25-2.
    Lageman, R. 1993. Electroreclamation: Applications in the Netherlands. Environ. Sci. Technol. 27: 13.
    Laursen, S. 1997. Laboratory Investigation of Electroosmosis in bentonities and Natural Calys. Can. Geotech. J. 34: 664-671.
    Leenheer, J. A., R. L. Wershaw, and M. M. Reddy. 1995. Strong-Acid, Carboxyl-Group Structures in Fulvic-Acid from the Suwannee River, Georgia .2. Major Structures. Environ. Sci. Technol. 29(2): 399-405.
    LeHécho, I., S. Tellier, and M. Astruc. 1998. Industrial Site Soils Contaminated with Arsenic or Chromium: Evaluation of the Electrokinetic Method. Environ. Technol. 19: 1095-1102.
    Lepp, N. W. 1992. Uptake and Accumulation of Metals in Bacteria and Fungi. Biogeochemistry of Trace Metals 277-298.
    Linder, P. W., and K. Murray. 1987. Statistical Determination of the Molecular-Structure and the Metal-Binding Sites of Fulvic-Acids. Sci. Total Environ. 64: 149-161.
    Lindgren, E. R., E. D. Mattson and M. W. Kozak. 1994. Electrokinetic Remediation of Unsaturated Soils. ASC Symp. Ser. 554: 33-50.
    Lindqvist, O, and H. Rodhe. 1985. Atmospheric Mercury: A Review. Tellus 37B: 136-159.
    Lindqvist, O., K. Johanson, M. Aastrup, A. Anderson, L. Bringmark, G. Hovesenius, L. Hakanson, A. Iverfeldt, M. Meili, and B. Timm. 1991. Mercury in the Swedish Environment: Recent Research on Causes, Consequences and Corrective Methods. Water, Air and Soil Pollution 55: 1-261.
    Lodenius, M. 1994. Mercury in Terrestrial Ecosystem: a Review, Mercury Polltion: Interation and Synthesis, Florida, USA, Lewis Publishers.
    Lorenz, P. B. 1969. Surface Conductance and Electrokinetic Properties of Kaolinite Beds. Clays Clay Miner. 17: 223-231.
    Lu, X. Q., and W. D. Johnson. 1997. The Reaction of Aquatic Humic Substances with Copper(II) Ions - An ESR Study of Complexation. Sci. Total Environ. 203(3): 199-207.
    Luster, J., T. Lloyd and G. Sposito. 1996. Multiwavelength Molecular Fluorescence Spectrometry for Quantitative Characterization of Copper(II) and Aluminum(III) Complexation by Dissolved Organic-Matter Environ. Sci. Technol. 30(5): 1565-1574.
    McIntyre, C., B. D. Batts, and D. R. Jardine. 1997. Electrospray Mass-Spectrometry of Groundwater Organic-Acids. J. Mass spectrum. 32(3): 328-330.
    Mitchell, J. K. 1991. Conduction Phenomena: From Theory to Practice. Geotechnique 41: 299-340.
    Mitchell, J. K., and A. T. Yeung. 1991. Electrokinetic Flow Barriers in Compacted Clay. Transp. Res. Rec. 1288: 1-9.
    Mitchell, J. K. 1993. Fundamentals of Soil Behavior, 2nd edition, John Wiley & Sons, New York, NY.
    Murphy, E. M., and J. M. Zachara. 1995. The Role of Sorbed Humic Substances on the Distribution of Organic and Inorganic Contaminants in Groundwater. Geoderma 67:103-124.
    Nakamoto, K., Y. Morimoto, Y., and A. E. Martell.1963. Infrared Spectra of Aqueous Solutions III. Ethylenediaminetetraacetic Acid, N-hydroxyethylenediaminetriacetic Acid, and Diethylenetriaminepentaacetic Acid. J. Am. Chem. Soc. 85: 309-316.
    Odin, M., A. Feurtet-Mazel, F. Ribeyre, A. Boudou. 1994. Actions and Interactions of Temperature, pH, and Photoperiod on Mercury Bioaccumulation by Nymphs of the Burrowing mayfly Hexagenia Regida, from the Sediment Contamination Source. Environmental Toxiicology and Chemistry 13: 1291-1302.
    Pacyna, J. M., and J. Műnch. 1991. Atmospheric Mercury Emissions in Europe. Water, Air and Soil Pollution 56: 51-61.
    Pai, P., P. Karamchandani, and C. Seigneur. 1997. Simulation of the Regional Atmospheric Transport and Fate of Mercury Using a Comphrehensive Eulerian Model. Atmospheric Environment 31: 2717-2732.
    Palazzo, A. J., and C. M. Reynolds. 1991. Long-term Changes in Soil and Plant Metal Concentration in an Acidic Dredge Disposal Site Receiving Sewage Sludge. Water, Air, and Soil Pollution 57-58: 839-848.
    Pamukcu, S., L. I. Khan, and H. Y. Fang. 1991. Zinc detoxification of Soils by Electroosmosis. Transp. Res. Rec. 1288” 41-46.
    Pamukcu, S., and J. K. White. 1992. Electrokinetic Removal of Selected Heavy Metals from Soils. Environmental Progress 11: 4.
    Pompe, S., M. Bubner, M. A. Denecke, T. Reich, A.Brachmann, G.. Giepel, R.Nicolai, K. H. Heise and H. Nitsche. 1996. A Comparison of Natural Humic Acids with Synthetic Humic-Acid Model Substances - Characterization and Interaction with Uranium(VI). Radiochim. Acta 74: 135-140.
    Probstein, R. F., and R. E. Hicks. 1993. Removal of Contaminants from Soils by Electric Fields. Science 260: 498-503.
    P’yankov, V. A. 1949. Kinetics of the Reaction between Mercury Vapor and Ozone. J. of General Chemistry 19: 187-192.
    Reddy, K. R., and U. S. Parupudi. 1997. Removal of Cromium, Nikel, and Cadium from Clays by In-situ Electrokinetic Remediation. J. Soil Contaminant 6(4): 391-407.
    Reed, B. E., M. T. Berg, J. C. Thompson, and J. H. Hatfield. 1995. Chemical Conditioning of Electrode Reservoirs during Electrokinetic Soil Flushng of Pb-contaminated Slit Loam. J. Environ. Eng. 121(11): 805-815.
    Renauld, P. O., and R. F. Probstein. 1987. Electroosmotic Control of Hazardous Waste. Physicochemical Hydrodynamics 9: 345-360.
    Ribeiro, A. B., and J. T. Mexia. 1997. A Dynamic Model for the electrokinetic Removal of Copper from a Polluted Soil. J. Hazad. Matt. 56: 257-271.
    Ricca, G., and F. Severini. 1993. Structural Investigations of Humic Substances by Ir-FT, C-13-NMR Spectroscopy and Comparison with a Maleic Oligomer of Known Structure. Geoderma 58: 223-244.
    Romero, L., L. Moreno, and I. Neretnieks. 1991. A Compartment Model for Solute Transport in the Near Field of a Repository for Radioactive Waste. 4-7, Strasbourg.
    Sah, J. G., and J. Y. Chen. 1998. Study of the Electrokinetic Process on Cd and Pb Spiked Soils. J. Hazardous Materials 58: 301-315.
    Sakaguchi, U., and Addison, A. W. 1979. Spectroscopic and redox studies of some copper(II) complexes with biomimetic donor atoms: Implications for protein copper centres. J Chem. Soc., Dalton Trans. 600-608.
    Salomons, W., U. Förstner, and R. Allan. 1995. Heavy Metal: Problems and Solutions. Springer-Verlag , Berlin, Germany.
    Sarret, G., A. Manceau., I. L. Hazelamn, A. Gomez, and M. Mench. 1997. EXAFS Study of the Nature of Zinc Complexation Sites in Humic Substances as a Function of Zn Concentration. J. Phys. IV France 7(C2): 799-802.
    Schnitzer, M., H. Kodama, and J. A. Ripmeester. 1991. Determination of the Aromaticity of Humic Substances by X-Ray-Diffraction Analysis.Soil Sci. Soc. Amer. J. 55: 745-750.
    Schroeder, W. H., G. Yarwood, and H. Niki. 1991. Transfromation Processes Involving Mercury Species in the Atmosphere: Results from a Literature Survey. Water, Air and Soil Pollution 56: 653-666.
    Segall, B. A., and C. J. Bruell. 1992. Electroosmotic Contaminant Removal Processes. J. Environ. Eng. 118(1): 84-100.
    Seigneur, C., J. Wrobel, and E. Constantinou. 1994. A chemical Kinetic Mechanism for Atmospheric Inorganic Mercury. Environ. Sci. & Technol. 28: 1589-1597.
    Seiler, W., C. Eberling and F. Slemr. 1980. Global Distribution of Gaseous Mercury in the Troposphere. Pageoph 118: 963-973.
    Senesi, N., 1990. Molecular and Quantitative Aspects of the Chemistry of Fulvic-Acid and Its Interactions with Metal-Ions and Organic-Chemicals .1. The Electron-Spin-Resonance Approach. Anal. Chim. Acta 232: 51-75.
    Senesi, N., D. F. Bocian, and G. Sposito. 1985. Electron-Spin Resonance Investigation of Copper(II) Complexation by Fulvic-Acid Extracted from Sewage-Sludge. Soil Sci. Soc. Amer. J. 49: 114-126.
    Senesi, N., G. Sposito, J. P. Martin. 1987. Copper(II) and Iron(III) Complexation by Humic Acid-like Polymers (Melanins) from Soil Fungi. Sci. Total Environ. 62: 241-252.
    Shapiro, A. P., and R. F. Probstein. 1993. Removal of Contaminants from Saturated Clay by Electroosmosis. Environ. Sci. Technol. 27(2): 283-291.
    Singer, M. J., and D. N. Munns. 1996. Soils: An Introduction. Prentice-Hall, Inc., New Jersey, USA.
    Slemr, F., G. Schuster, and W. Seiler. 1985. Distribution, Speciation and Budget of Atmospheric Mercury. Journal of Atmospheric Chemistry 3: 407-434.
    Sloss, L.L. 2002. Mercury – emissions and control. CCC/58, ISBN 92-9029-371-3, London, UK, IEA Coal Research 43.
    Smith, L. A., J. L. Means, A. Chen, B. Alleman, C. C. Chapaman, J. S. Tixier Jr., S. E. Brauning, A. R. Gavaskar, and M. D. Royer. 1995. Remedial Options for Metals-contaminated Sites. CRC Press.
    Snaub, W. M. 1993. Mercury Emissions from MSW Incinerators: an Assessment of the Current Situation in the United States and Forecast of Future Emissions. Resources, Conservation and Recycling 9: 31-59.
    Sommar, J., M. Hallquist, E. Ljungstrom, and O. Lindgvist. 1997. On the Gaseous Reaction between the Volatile Mercury Species and the Nitrate Radical. J. of Atmospheric Chemistry 27: 233-247.
    Sommar, J., K Gårdfeldt, D. Strömberg, X. Feng. 2001. A Kinetic Study of the Gas-phase Reaction between the Hydroxyl Radical and Atomic Mercury. Atmospheric Environment 35: 3049-3054.
    Sposito, G. 1984. The Surface Chemisty of Soils. Oxiford University Press, New York.
    Sposito, G. 1989. The Chemisty of Soils. Oxiford University Press, New York.
    Stern, E. A., M.Newville, B. Ravel, Y. Yacoby, and D. Haskel. 1995. The Uwxafs Analysis Package - Philosophy and Details. Phys. B 208/209: 117-120.
    Stumm, W., and J. Morgan. 1981. Aquatic Chemistry. John Wiley and Sons, Inc., New York. .
    Tokos, J. J., B. Hall, J. A. Calhoun, and E. M. Prestbo. 1998. Homogeneous Gas-phase Reaction of Hg0 with H2O2, O3, CH3I, and (CH3)2S: Implications for Atmospheric Hg Cycle. Atmospheric Environment 32: 823-827.
    Trombly, J. 1994. Electrchemical Remediation: Take to the Field. Environ. Sci. Technol. 28: 6.
    Tsezos, M., and R. G. L. Mccready. 1991. The Pilot Testing of the Continuous Extraction of Radionuclides using immobilized Biomass, Environmental Biotechnology for Waste Treatment.
    U.S. EPA 1993. R.E.D. Facts EPA-738-F-93-023.
    U.S. EPA. 1997. EPA-452/R-97-0030, Mercury Study Report to Congress. 1: Executive Summary. Washington, DC.
    U.S. EPA. Mercury Study Report to Congress.1997. EPA-452/R-97-010, Vol. VIII: An evaluation of mercury control technologies and costs.
    U.S. EPA. 2002. Control of mercury emissions from coal-fired electric utility boilers: Interim report including errata dated 3-21-02, EPA-600/R-01-109.
    U.S. EPA 2003. National Advisory Committee for Acute Exposure Guideline Levels (AEGLs) for Hazardous Substances, OPPT-2002-0027; FRL-7189-8, Federal Register, 68 (138), 42717-42718.
    Vernet, J.-P. 1991. Heavy Metals in the Environment. Elserier Science Publishers, New York, USA.
    Wada, S., and Y. Umegaki. 2001. Major Ion and Electrical Potential Distribution in Soil under Electrokinetic Remediation. Environ. Sci. Technol. 35: 2151-2155.
    Wang, Q., W. Shen, and Z. Ma. 2000. Estimation of Mercury Emissions from Ccoal Combustion in China. Environ. Sci. & Technol. 34(13): 2711-2713.
    Weng, C. H., L. R. Takiyama, and C. P. Huang. 1994. Electroosmosis for In-situ Ttreatment of Chromium-contaminated Soil. Hazardous Industrial Wastes. 26: 496-505.
    West, L. J., and D. L. Stewart. 1995. Effect of Zata Potential on Soil Electrokinesis. Geoenvironment 2000, ASCE, Geotechnical Special Publication. 46(2): 1535-1549.
    West, L. J., D. L. Stewart, A. M. Binley, and B. Shaw. 1997. Resistivity Image of Electrokinetic Transport in Soil. Geoeviromental Engineering. Thomas Telford, London, 565-574.
    Wong, J. S. H., R. E. Ricks, and R. F. Probstein. 1997. EDTA-enhanced Electroremediation of Metal-contaminated Soils. J. Haz. Mat. 55:61-79.
    Xia, K., W. Bleam, and P. A. Helmke. 1997. Studies of the Nature of Cu2+ and Pb2+ Binding-Sites in Soil Humic Substances Using X-Ray-Absorption Spectroscopy. Geochim. Cosmochim. Acta 61(11): 2211-2221.
    Yeung, A. T. 1994. Electrokinetic Flow Processes in Porous Media and Their Applications. Advances in Porous Media. M. Y. Corapcioglu, ed., Elsevier, The Netherlands, 2: 307-399.
    Yeung, A. T., C. Hsu, and R. M. Menon. 1996. EDTA-enhanced Electrokinetic Extraction of Lead. J. Geotech. Eng. 122: 8.
    Yeung, A. T., C. Hsu and R. M. Menon. 1997. Physicochemical Soil-contaminated Interactions during Electrokinetic Extraction. J. Haz. Mat. 55: 221-237.
    Yucel, I, F. Arpaci, A. Ozet, B. Doner, T. Karayilanoglu, A. Sayar, O. Berk. 1994. Serum Copper and Zinc Levels and Copper/Zinc Ratio in Patients with Breast Cancer. Biol. Trace Elem. Res. 40: 31-38.
    Zabinsky, S. I. J. J.Rehr, A. Ankudinov, R. C. Albers, and M. Eller. 1995. Multiple-Scattering Calculations of X-Ray-Absorption Spectra J. Phys. Rev. B 52: 2995-3009.
    Zillioux, E. J., D. B. Porcella, and J. M. Benoit. 1993. Mercury Cycling and Effects in Freshwater Wetland Ecosystem. Environmental Toxicology and Chemistry 12: 2245-2264.

    下載圖示 校內:2005-07-09公開
    校外:2005-07-09公開
    QR CODE