| 研究生: |
許倢綸 Chu, Jie-Lun |
|---|---|
| 論文名稱: |
基於模型之適應控制於原子力顯微鏡精密掃描的應用 Model-based Adaptive Control for Precision AFM Scan |
| 指導教授: |
田思齊
Tien, Szu-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 原子力顯微鏡 、適應控制 |
| 外文關鍵詞: | Atomic force microscope, adaptive control |
| 相關次數: | 點閱:214 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原子力顯微鏡系統可經由控制壓電致動器之掃描精度以獲得奈米級解析度之影像。然而,其掃描精度會受到系統參數變化、壓電致動器遲滯、潛變等非線性現象以及外界干擾影響。因此, 本文目的是分析並實現原子力顯微鏡之控制方法以提升其掃描精度。為了達到此目地,我們以接觸式固定作用力模式進行掃描,並運用適應控制法控制顯微鏡的z軸探針系統以提升其性能。首先,以步階響應建立z軸探針系統之標稱模型,並加上以有限脈衝響應(FIR)型式的系統補償量,來降低系統建模誤差。接著透過系統反模型之控制器消除樣品對探針之干擾,來達到維持探針與樣品間之作用力等於設定值的目的。由實驗結果可知,使用建議之控制方法確實在掃描過程中消除樣品對z軸探針之干擾,使得探針在掃描過程中精確地追蹤樣品之形貌。
Atomic force microscopes (AFMs) can be used to get high resolution images at nano-meter level by controlling the piezo-actuators to increase scanning accuracy. However, the scanning accuracy is affected by the system variations, nonlinear phenomena of the piezo-actuators such as hysteresis and creeping, and external disturbances. Therefore, the purpose of this research is to analyze and implement how to control an AFM properly such that it scanning accuracy can be improved. In order to achieve this goal, under constant-force-mode operation, adaptive control scheme is utilized in controlling the z-axis probe system of an AFM to improve its performance. At first, a nominal model of the z-axis probe system is established based on its step response, and modeling errors are compensated for by adding corrective quantities in a finite-impulse-response (FIR) form. Then, the interaction force between the probe and the sample is kept to our desired value by using an inverse-system–based controller to reject external disturbances. Experimental results show that, with the proposed control scheme, disturbances from the sample can be rejected and the probe can track the sample topography precisely.
[1] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel. Surface studies by scanning
tunneling microscopy. Physical review letters, 49(1):57–61, 1982.
[2] G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Physical review
letters, 56(9):930–933, 1986.
[3] J. A. Last, P. Russell, P. F. Nealey, and C. J. Murphy. The applications of atomic
force microscopy to vision science. Investigative Ophthalmology & Visual Science,
51(12):6083–6094, 2010.
[4] T.G.Kuznetsova, M.N. Starodubtseva, and N.I. Yegorenkov. Atomic force microscopy
probing of cell elasticity. In Micron, volume 38, pages 824–833, 2007.
[5] S. Kasas, N. H. Thomson, B. L. Smith, P. K. Hansma, J. Miklossy, and H. G.
Hansma. Biological applications of the afm: from single molecules to organs. In-
ternational journal of imaging systems and technology, 8(2):151–161, 1997.
[6] Paul E. West. Introduction to Atomic Force Microscopy: Theory, Practice, Appli-
cations. P. West, 2006.
[7] G. Wiederrecht. Handbook of Nanofabrication. Academic Press, 2010.
[8] C. H. Choi, D. J. Lee, J. H. Sung, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee,
and B. H. O. A study of afm-based scratch process on polycarbonate surface and
grating application. Applied Surface Science, 256:7668–7671, 2010.
[9] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann,
W. Haberle, M. Lantz, H. E. Rothuizen, R. Stutz, et al. The” millipede”-nanotechnology entering data storage. IEEE Transactions on nanotechnology, 1(1):39–55,
2002.
[10] Toshio Fukuda Hyungsuck Cho Sergej Fatikow, Farrokh Janabi Sharifi and
Heikki N. Koivo. Control system for an afm based nanomanipulation station. Op-
tomechatronic Systems Control, 6719:67190N–1, 2007.
[11] Peter Eaton and Paul West. Atomic Force Microscopy. Oxford University Press
Inc, 2010.
[12] C. A. J. Putman, B. G. De Grooth, N. F. Van Hulst, and J. Greve. A detailed
analysis of the optical beam deflection technique for use in atomic force microscopy.
Journal of applied physics, 72(1):6–12, 1992.
[13] G. Schitter, K. J. Astrom, B. E. DeMartini, P. J. Thurner, K. L. Turner, and
P. K. Hansma. Design and modeling of a high-speed afm-scanner. Control Systems
Technology, IEEE Transactions on, 15(5):906–915, 2007.
[14] G. Schitter, P. Menold, H. F. Knapp, F. Allgower, and A. Stemmer. High performance
feedback for fast scanning atomic force microscopes. Review of Scientific
Instruments, 72(8):3320–3327, 2001.
[15] D. Croft, G. Shedd, and S. Devasia. Creep, hysteresis, and vibration compensation
for piezoactuators: Atomic force microscopy application. In American Control
Conference, 2000. Proceedings of the 2000, volume 3, pages 2123–2128, 2000.
[16] B. Widrow and E. Walach. Adaptive Inverse Control, Reissue Edition: A Signal
Processing Approach. John Wiley and Sons, 2007.
[17] S. Gibson B.-S. Kim and T.-C. Tsao. “adaptive control of a tilt mirror for laser
beam steering. in Proc. American Control Conference, pages 3417–3421, 2004.
[18] T. S. Lid C. C. Shaw and S. H. Chien. “adaptive inverse control for pickup head
flying height in near-field optical disk drives. 2004.
[19] C. Y. Lin and T. C. Tsao. Adaptive control with internal model for highperformance
precision motion control and its application to a fast-acting piezoelectric
actuator. Journal of Dynamic Systems, Measurement, and Control, 135:061012–
1, 2013.
[20] J. E. Lennard-Jones. Cohesion. Proceedings of the Physical Society, 43(5):461, 1931.
[21] W.S. Chen. Design,manufacturing,and control of atomic force microscopies. Master’s
thesis, National Cheng Kung University, 2013.
[22] M. Tortonese, R. C. Barrett, and C. F. Quate. Atomic resolution with an atomic
force microscope using piezoresistive detection. Applied physics letters, 62:834, 1993.
[23] D. Rugar, H. J. Mamin, and P. Guethner. Improved fiber-optic interferometer for
atomic force microscopy. Applied Physics Letters, 55(25):2588–2590, 1989.
[24] K. K. Leang. Iterative learning control of hysteresis in piezo-based nano-positioners:
theory and application in atomic force microscopes. PhD thesis, University of Washington,
2004.
[25] P. J. Ko. Design, manufacturing and control of piezo-stage. Master’s thesis, National
Cheng Kung University, 2010.
[26] Y.P. Wang. The compensation for coupling-effect in multi axis motion: a tracking
and levelling example with postioning stages. Master’s thesis, National Cheng Kung
University, 2012.
[27] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. trans.
ASME, 64(11), 1942.
[28] K. Ogata. Modern control engineering. Pearson Education International, 2002.
[29] S. Haykin and B. Widrow. Least-mean-square adaptive filters. John Wiley Sons,
2003.
[30] Alan V. Oppenheim and Ronald W. Schafer. Discrete Time Signal Processing.
Prentice Hall, 1999.
[31] Adriaan van den Bos. Parameter Estimation for Scientists and Engineers. John
Wiley Sons, 2007.
[32] Xu Jingyan. Averaging analysis of adaptive plant disturbance canceling. PhD thesis,
STANFORD UNIVERSITY, 2003.
[33] Haydon. 21 H4AA-V data sheet.
[34] Budget Sensors. Probe Tap300-G Datasheet.
[35] R. Chassaing. Digital Signal Processing and Applications with the C6713 and C6416
DSK. John Wiley and Sons, Inc., 2005.
[36] Pintek Electronics Co., Ltd. HA-205 spections.
[37] Piezomechanik: GmbH. Piezo-mechanical and electrostrictive Stack and ring actuators:
Product range and Technical data.
[38] Raise Electro-optics Co., Ltd. Visible laser diode.
[39] Advanced Photonix, Inc. Red enhanced bi-cell silicon photodiode.
[40] Vishay Semiconductors. TCST2103 data sheet.
[41] Piezomechanik. PSt-HD200 data sheet.