| 研究生: |
蔡承達 Tsai, Cheng-Da |
|---|---|
| 論文名稱: |
鎵化合物光觸媒在分解水產氧之應用 Gallium-Containing Compounds as Photocatalysts for Oxygen Production from Water |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | GaON 、CuGaO2 、分解水 、光觸媒 、產氧 |
| 外文關鍵詞: | GaON, CuGaO2, water splitting, photocatalyst, oxygen production |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用摻雜不同的離子進去氧化鎵內,來合成出不同的光觸媒。包括摻雜氮得到GaON以及摻雜亞銅得到的CuGaO2。吸收光譜顯示,摻入不同的離子所得到的光觸媒,其能隙也有所改變。藉由電化學分析,得知不管是摻雜氮或是亞銅都有助於價帶能階位置往負電位方向移動,而導帶能階位置往正電位方向移動。導帶及價帶的位置分別適合水的還原及氧化。導入氮後形成的GaON相較於導入亞銅形成的CuGaO2有著較窄的能隙,因此可括 更長波長的光,當半導體的吸光效率增加時,更可以有效的促進半導體的光催化活性。
在本研究中,我們發現GaON在搭配共觸媒Rh-Cr mixed oxide,可以得到比一般商用產氧觸媒,WO3搭配共觸媒RuO2,更好的效果。因此預期未來可將此觸媒應用在Z-Scheme複合式光觸媒系統的產氧端,進而得到更好的全分解水效果。
We use doping different ions into gallium oxide for forming different photocatalysts. We get GaON by doping nitrogen and CuGaO2 by doping copper(I). From the UV-vis absorption, different photocatalysts have different bandgaps. By electrochemical analysis, we can know no matter nitrogen or copper(I) doping all help valence band shifts to negative electric potential and conduction band shifts to positive electric potential. The band position of conduction band can be suitable for reducing water and the band position of valence band can be suitable for oxidizing water. The bandgap of GaON is smaller than the bandgap of CuGaO2, so the GaON can absorb longer wavelength. When the absorption efficiency increases, the activity of semiconductor will increase.
We find GaON loading Rh-Cr mixed oxide can get better result than commercial WO3 loading RuO2. In the future, we will use the GaON in Z-Scheme system as oxygen production catalyst. We hope it can get a better overall water splitting.
參考文獻
1. 張立群譯, “光清淨革命-活躍的二氧化鈦光觸媒”, 協志工業叢書印行, 2000
2. 藤嶋昭, 本多健一, 菊池真一, “工業化學”, 1969, 72, 108.
3. A. Fujishima, K. Honda, Nature, 1972, 238, 37.
4. A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
5. A. Kudo, Catal. Surv. Asia, 2003, 31, 7.
6. A. Mills, S. L. Hnute, J. Photochem. Photobiol. A:Chem., 1997, 108, 1.
7. M. Cratzel, Nature, 2001, 414, 338.
8. A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
9. F. E. Osterloh, Chem. Mater., 2008, 20, 35.
10. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Chem. Commun. 2001, 2416.
11. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Chem. Lett. 2004, 33, 1348.
12. R. Abe, K. Sayama, H. Sugihara, J. Phys. Chem. B 2005, 109, 16052.
13. K. Maeda, K. Domen, J. Phys. Chem. C, 2007, 111, 7851.
14. A. Kudo, Inter. J. Hydrogen Energy., 2006, 31, 197.
15. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, Catal. Today, 2007, 122, 51.
16. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato, J. Solid State Chem., 2004, 177, 4205.
17. J. N. Nian, C. C. Hu, H. Teng, Inter. J. Hydrogen Ener., 2008, 33, 2897.
18. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, J. Phys. Chem. B, 2001, 105, 10893.
19. H. Kato, A. kudo, J. Phys. Chem. B, 2001, 105, 4285.
20. T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, J. Phys. Chem. B, 1999, 103, 1.
21. H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B, 2002, 106, 12441.
22. A. Kudo, H. Kato, Chem. Phys. Lett., 2000, 331, 373.
23. S. Licht, J. Phys. Chem. B, 2003, 107, 4253.
24. A. Galinska, J. Walendziewski, Energy & Fuels, 2005, 19, 1143.
25. H. Kato, M. Hori, R.Konda, Y. Shimodaira, A. Kudo, Chem. Lett., 2004, 33, 1348.
26. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, Chem. Commum., 2001, 23, 2416.
27. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photochem. Photobiol. A, 2002, 148, 71.
28. D. A. Tryk, A. Fujishima, K. Honda, Electro. Acta., 2000, 45, 2363.
29. M. Machida, J. Yabunaka, T. Kihima, Chem. Commun. 1999, 1939.
30. H. Kato, A. Kudo, Chem. Lett. 1999, 1207.
31. A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B 2000, 104, 571.
32. 32.M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 2000, 12, 812.
33. 33.H. Kato, A. Kudo, J. Photochem. Photobio. A: Chem. 2001, 145, 129.
34. 34.K. Shimizu, Y. Tsuji, M. Kawakami, K. Toda, T. Kodama, M. Sato, Y. Kitayama, Chem. Lett. 2002, 1158.
35. 35.M. Yoshino, M. Kakihana, Chem. Mater. 2002, 14, 3369.
36. M. Machida, K. Miyazaki, S. Matsushima, M. Arai, J. Mater. Chem. 2003, 13, 1433.
37. J. Ye, Z. Zou, A. Matsushita, Int. J. Hydrogen Energ. 2003, 28, 651.
38. T. Ishihara, N. S. Baik, N. Ono, H. Nishiguchi, Y. Takita, J. Photochem. Photobio. A: Chem. 2004, 167, 149.
39. D. F. Li, N. Xu, Y. F. Chen, Z. G. Zou, Res. Chem. Intermed. 2005, 31, 521.
40. K. I. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato, K. Toda, Chem. Mater. 2005, 17, 5161.
41. S. Ikeda, M. Fubuki, Y. K. Takahara, M. Matsumura, Appl. Catal. A: General 2006, 300, 186.
42. R. Abe, M. Higashi, K. Sayama, Y. Abe, H. Sugihara, J. Phys. Chem. B 2006, 110, 2219.
43. H. Kato, A. Kudo, Chem. Phys. Lett. 1998, 295, 487.
44. Z. Zou, H. Arakawa, J. Photochem. Photobio. A: Chem. 2003, 158, 145.
45. V. M. Aroutiounian, V. M. Arakelyan, G. E. hahnazaryan, Solar Energy, 2005, 78, 581.
46. A. Kudo, Int. J. Hydrogen Energ. 2006, 31, 197.
47. D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature Commun. 2006, 440, 295.
48. Z. Zou, J. Ye, H. Arakawa, Chem. Phys. Lett. 2000, 332, 271.
49. Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature Lett. 2001, 414, 625.
50. M. Machida, S. Murakami, T. Kijima, J. Phys. Chem. B 2001, 105, 3289.
51. K. Sayama, H. Arakawa, K. Domen, Catal. Today 1996, 28, 175.
52. A. Kudo, H. Kato, Chem. Lett. 1997, 867.
53. H. Kato, A. Kudo, Chem. Lett. 1999, 1207.
54. A. Kudo, H. Okutomi, H. Kato, Chem. Lett. 2000, 1212.
55. Y. Takahara, J. N. Kondo, D. Lu, K. Domen, Solid State Ionics 2002, 151, 305.
56. G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, Chem. Commun. 2002, 1698.
57. H. Kato, A. Kudo, Phys. Chem. Chem. Phys. 2002, 4, 2833.
58. M. Machida, T. Mitsuyama, K. Ikeue, J. Phys. Chem. B 2005, 109, 7801.
59. K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo, J. Catal. 2005, 232, 102.
60. T. Ikeda, S. Fujiyoshi, H. Kato, A. Kudo, H. Onishi, J. Phys. Chem. B 2006, 110, 7883.
61. T. Kurihara, H. Okutomi, Y. Miseki, H. Kato, A. Kudo, Chem. Lett. 2006, 35, 274.
62. M. Yashima, Y. Lee, K. Domen, Chem. Mater. 2007, 19, 588.
63. H. Kato, A. Kudo, Catal. Today, 2003, 78, 561.
64. A. Kudo, R.Niishiro, A. Iwase, H. Kato, Chem. Phys., 2007, 339, 104.
65. A. Kudo, H. Kato, I. Tsuji, Chem. Lett., 2004, 33, 1534.
66. R. Abe, K. Sayama, K. Domen, H. Arakawa, Chem. Phys. Lett., 2002, 362, 441.
67. M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, Chem. Phys. Lett., 2008, 452, 120.
68. K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, Bull. Chem. Soc. Jpn. 2007, 80, 1004.
69. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, J. Phys. Chem. B, 2005, 109, 20504.
70. K. Maeda, H. Terashima, K. Kase, K. Domen, Appl. Catal. A:Gener., 2009, 357, 206.
71. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, Catal. Today, 2003, 518, 555.
72. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, J. Am. Chem. Soc., 2008, 130, 7176.
73. X. Wang, K. Maeda, Y. Lee, K. Domen, Chem. Phys. Lett., 2008, 457, 134.
74. A. Kudo, I. Mikami, J. Chem. Soc., 1998, 94, 2929.
75. I. Tsuji, H. Kato, A. Kudo, Angew. Chem. Int. Ed., 2005, 44, 3565.
76. T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, J. Photochem. Photobio. A: Chem. 1997, 106, 45.
77. K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa,J. Photochem. Photobiol., A, 2002, 148, 71.
78. R. Abe, T. Takata, H. Sugihara and K. Domen, Chem. Commun., 2005, 3829.
79. M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, Chem. Lett., 2008, 37, 138.
80. M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani and K. Domen, Chem. Phys. Lett., 2008, 452, 120.
81. V. Leute, “Solid state reactions in semiconductor systems”, Solid State Ionics., 1985, 17, 185.
82. W. J. Daw son, “Hydrothermal Synthwsis of Asvanced Ceramic Powders”, Cerm. Bull, 1988, 10, 67.
83. B. Jirhennsons, M. E. Staumanis, “Colloid Chemistry”, McMillan Co., New York, 1962.
84. M. Hara, T. Takata, J. N. Konda, K. Domen, Catal. Today, 2004, 313.
85. K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, K. Domen, , Bull, Chem. Soc. Jpn., 2008, 81, 927.86
86. K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue, K. Domen, J. Phys. Chem. B, 2006, 110, 13107.88
87. K. Maeda, K. Teramura, K. Domen, J. Catal., 2008, 254, 198.90
88. K. Maeda, H Hashiguchi, H. Masuda, R. Abe, K. Domen, J. Phys. Chem. C, 2008, 112, 3447.
89. K. Kamata, K. Maeda, D. Lu, Y. Kako, K. Domen, Chem. Phys. Lett., 2009, 470, 90.
90. Che-Chia Hu, Hsisheng Teng, J. Phys. Chem. C 2010, 114, 20100–20106
91. Roland Gillen, John Robertson R. Bruce Gall, Nathan Ashmore, Meagen A. Marquardt, Xiaoli Tan, David P. Cann, Journal of Alloys and Compounds 391 (2005) 262–266
92. K. sayama, H. Arakawa, J. Chem. Soc. Farady Trans., 1997, 93, 1647.
93. K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, J. Phys. Chem., 1986, 90, 2921
94. K. Maeda, K. Terumura, D. Lu, N. Saito, Y. Inoue, K. Domen, Angew. Chem. Int. Ed., 2006, 45, 7806.
95. H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 2003, 125, 3082.
96. Che-Chia Hu and Hsisheng Teng, J. Phys. Chem. C 2010, 114, 20100–20106
97. Che-Chia Hu, Yuh-Lang Lee, and Hsisheng Teng, J. Phys. Chem. C 2011, 115, 2805–2811
98. J. Pellicer-Porres, A. Segura, Ch. Ferrer-Roca, D. Martı´nez-Garcı´a, J. A. Sans, and E. Martı´nez, PHYSICAL REVIEW B 69, 024109 (2004)
99. R. Bruce Gall, Nathan Ashmore, Meagen A. Marquardt, Xiaoli Tan, David P. Cann, Journal of Alloys and Compounds 391 (2005) 262–266
100. K. Gurunathan b, Jin-Ook Baeg, Sang Mi Lee,E. Subramanian, Sang-Jin Moon a, Ki-Jeong Kong, Catalysis Communications 9 (2008) 395–402
101. Jonathan W. Lekse, M. Kylee Underwood, James P. Lewis, and Christopher Matranga, J. Phys. Chem. C 2012, 116, 1865–1872
102. Masaaki Kitano and Michikazu Hara,J. Mater. Chem., 2010, 20, 627–641