簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsai, Tsung-Han
論文名稱: 中國南蘇魯地區隕硫鐵(磁黃鐵礦)於磷灰石中之結晶關係研究
Crystallographic relationship of troilite (pyrrhotite) in apatite host from the southern Sulu area, China
指導教授: 余樹楨
Yu, Shu-Cheng
蕭炎宏
Shau, Yen-Hong
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 103
中文關鍵詞: 磷灰石磁黃鐵礦隕硫鐵
外文關鍵詞: troilite, apatite, pyrrhotite
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   析出物的現象普遍存在於超高壓變質礦物中,然而超高壓礦物中析出的成因可能不同於在火成岩中之出溶現象。超高壓礦物的析出現象主要可能是肇因於在超高壓變質環境下,受壓力影響將不同離子充填進入主晶結構,之後超高壓岩體快速上升即相當於等溫減壓的過程而析出。

      本研究樣本取自江蘇省石湖(南蘇魯超高壓變質帶)之角閃石片岩。主要組成礦物為角閃石、綠簾石、斜長石和少量黑雲母、榍石及金紅石。在其附屬礦物氟-磷灰石中發現不透光析出物,由穿透式電子顯微鏡半定量和選區電子繞射分析結果得知,該硫化鐵為隕硫鐵,但不排除為磁黃鐵礦具有隕硫鐵超結構,成分約在Fe0.93S ~ Fe0.95S範圍。產狀有兩種,分別為(1)長桿狀長10 ~ 50 µm,寬0.5 ~ 1 µm;(2)短桿狀長1 ~ 4 µm,寬約0.5 ~ 1 µm。長短桿狀隕硫鐵的生長方向約成90度交角且沒有相交的現象,皆有優勢排列。長桿狀隕硫鐵之長邊平行磷灰石c軸生長,廣泛均勻分佈沒有集中於磷灰石中央或邊緣,相對於長桿狀隕硫鐵,短桿狀隕硫鐵的數量則較為稀少。經電子繞射分析長短桿狀兩種形式的隕硫鐵與磷灰石各大致有以下結晶順構關係(偏差約在1 ~ 2度):
    (1)長桿狀:[ 2 -1 -2 ]Ap // [ 1 -1 0 ]Tr;( 1 2 0 )Ap // ( 0 0 1 )Tr。
    (2)短桿狀:[ 2 -1 -2 ]Ap // [ 2 -2 1 ]Tr;( 1 2 0 )Ap // ( 1 1 0 )Tr。

      兩種結晶的生長方式主要是受主晶氟-磷灰石與隕硫鐵之晶體結構影響。磷灰石是由CaO5X (X=F,OH,Cl)多面體沿c軸方向呈六次對稱分佈。這些多面體沿c軸方向重複出現(Hughes et al, 1989)。而隕硫鐵結構是NiAs型的結構,在c軸方向因相鄰兩個FeS6正八面體是以共面關係相連,增高了其排斥力的作用,較為不穩定。因此推測當隕硫鐵的c軸方向與氟-磷灰石c軸方向垂直時,能生長為長桿狀;反之當隕硫鐵的c軸方向與氟-磷灰石c軸方向平行時,則生長為短桿狀。實驗結果顯示,則是分別在垂直面與平面產生角度上的旋轉偏差。但仍然證實隕硫鐵能夠生成為長桿狀,主要是氟-磷灰石結構沿著c軸方向是比較容易壓縮,而隕硫鐵在平面方向上結構較為穩定所影響;另一方面短桿狀隕硫鐵則是在結構可以延伸的平面方向,但卻受制於磷灰石同為平面方向的網狀相連結構,而形成短桿狀。隕硫鐵的不同產狀,最主要可能是由於結晶階段不同或變質過程中受到溫壓與應力變化所造成的,則需要更進一步的相關研究。

     Precipitate textures are not uncommon in ultrahigh-pressure (UHP) minerals. Precipitate in UHP minerals may have taken place during nearly isothermal decompression processes, in contrast to exsloution occurred with falling temperature in primary igneous minerals. Consequently, not only the mineral identity between the precipitated phase and the host matrix can be drastically different, their crystal structures may also be completely unrelated.

     The present research samples, hornblende-schists, were collected from Jiaocho(shihu), a small town in the southern Sulu UHP metamorphic belt . The major mineral composition of the schist involves hornblende, epidote, plagioclase, with minor amount of biotite, titanite and rutile. Occurred as an accessory mineral component in this hornblende-schist, apatite crystals are easily recognizable. Many distinct and well-oriented troilite (cannt exclude pyrrhotite with troilite superstructure) rods within the apatite host were identified in this study. The rods of troilite were crystallized in parallel arrangement and in two different orientations, one parallel with and the other perpendicular to the c-direction of the apatite host. These troilite rods distribute rather evenly in the apatite crystal. Based on optical examination and electron diffraction analysis, the rods of troilite have two kinds of different form in the apatite host : one is long rods, 10 ~ 50 μm in length and 1 ~ 3 μm in diameter ; the other is short rods, 1 ~ 4 μm in length and 0.5 ~ 1 μm in diameter. The growth direction of these two kinds of troilite rods are about 90° with long rods running in the c-axis of the apatite, but these two forms do not cross with each other. The approximately relative crystallographic orientation between the two kinds of troilite and the host phase, as determined from the electron diffraction patterns are long troilite rods(deviation : 1 ~ 2° ) : [ 2 -1 -2 ]Ap // [ 1 -1 0 ]Tr, ( 1 2 0 )Ap // ( 0 0 1 ) Tr, and short troilite rods : [ 2 -1 -2 ]Ap // [ 2 -2 1 ] Tr, ( 1 2 0 )Ap // ( 1 1 0 ) Tr.

     In view of the more compressible structural channel occupied by the larger F-ions running in the c-axis of the apatite host, the orientation of the troilite rods crystallized in the c-direction of the apatite matrix is consistent with the structural consideration. Since the structure of troilite is of NiAs type, and two successive FeS6 octahedra are linked together in c-axis by sharing octahedral face, and this structural feature results into a comparatively unstable and consequently energetic growth direction. This structural argument can be equally applied to the exsolution mechanism induced either by a temperature change or by a pressure effect.

    目錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 附表目錄 Ⅸ 用語符號與縮寫表 Ⅸ 第一章 緒論 1 1-1 前言 1 1-2 前人文獻 3 1-2-1 地質背景 3 1-2-2 磷灰石與硫化鐵共生現象 6 1-3 研究動機 7 1-4 礦物簡介 8 1-4-1 磷灰石 8 1-4-2 磁黃鐵礦 ~ 隕硫鐵 10 第二章 研究方法與原理 12 2-1 採樣地點 12 2-2 實驗室工作 12 2-2-1 光學顯微鏡觀察 12 2-2-2 掃瞄式電子顯微鏡分析 12 2-2-3 全岩地球化學分析分析 14 2-2-4 穿透式電子顯微鏡分析 14 2-2-5 高溫拉曼光譜分析 16 2-2-5-1 拉曼光譜原理 16 2-2-5-2 高溫加熱設備 17 2-2-5-3 實驗條件 20 第三章 結果 23 3-1 岩象觀察與礦物化學分析 23 3-2 全岩分析 32 3-3 選區電子繞射分析 34 3-3-1 長桿狀硫化鐵 34 3-3-2 短桿狀硫化鐵 39 3-4 拉曼光譜與加熱實驗 44 3-4-1 氟-磷灰石單晶加熱實驗 44 3-4-2 高溫拉曼光譜實驗 44 第四章 討論 51 4-1隕硫鐵 (磁黃鐵礦)之鑑定 51 4-2隕硫鐵與磷灰石之結晶結構關係 53 4-3隕硫鐵之形成機制 60 第五章 結論 63 參考文獻 66 圖版 75 附表 87 表目錄 表3.1 角閃石化學組成(wt%)………………………………………………25 表3.1 綠簾石化學組成(wt%)………………………………………………27 表3.3 斜長石化學組成(wt%)………………………………………………31 表3.4 長桿狀硫化鐵:磁黃鐵礦鑑定結果………………………………36 表3.5 長桿狀硫化鐵:隕硫鐵(1)、(2)鑑定結果………………………36 表3.6 短桿狀硫化鐵:磁黃鐵礦鑑定結果………………………………40 表3.7 短桿狀硫化鐵:隕硫鐵(1)、(2)鑑定結果………………………40 表3.8 短桿狀硫化鐵:隕硫鐵(1)、(2)鑑定結果………………………41 表3.9 磷灰石拉曼拉曼光譜隨溫度變化…………………………………49 表3.10 隕硫鐵含量之估算………………………………………………62 圖目錄 圖1.1 蘇魯造山帶地質構造略圖……………………………………………5 圖1.2 磷灰石中陰離子在[ 0 0 1 ]方向的排列方式……………………9 圖1.3 氟-磷灰石之原子排列在( 0 0 1 )面的投影……………………9 圖1.4 紅砷鎳礦之晶體結構………………………………………………11 圖1.5 FeS-FeS2系統中,溫度-成分剖面之磁黃鐵礦(Fe1-xS)穩定區……11 圖2.1 採樣地點:石湖………………………………………………………13 圖2.2 TS1500加熱台…………………………………………………………18 圖2.3 TS1500加熱台:樣本放置於加熱原件中央…………………………19 圖2.4 將TS1500加熱台配合偏光顯微鏡……………………………………19 圖2.5 拉曼儀器圖(正面)…………………………………………………21 圖2.6 為雷射光射出之情形…………………………………………………21 圖2.7 拉曼儀器圖(反面)…………………………………………………22 圖3.1 角閃石片岩之角閃石成分範圍………………………………………26 圖3.2 角閃石片岩內之鈣質角閃石分類圖…………………………………26 圖3.3 斜長石之成分分佈圖..………………………………………………31 圖3.4 變質基性岩原岩分類圖………………………………………………32 圖3.5 長桿狀硫化鐵選區繞射圖……………………………………………36 圖3.6 磷灰石的[ 2 -1 -2 ]選區繞射圖…………………………………37 圖3.7 磷灰石的[ 2 -1 -2 ]與隕硫鐵的[ 1 -1 0 ]選區繞射圖………37 圖3.8 磷灰石的[ 1 -1 -1 ]選區繞射圖……………………………………38 圖3.9 磷灰石的[ 2 -1 -1 ]選區繞射圖……………………………………38 圖3.10 短桿狀硫化鐵選區繞射圖……………………………………………40 圖3.11 短桿狀硫化鐵選區繞射圖……………………………………………41 圖3.12 磷灰石的[ 2 -1 -2 ]與隕硫鐵的[ 2 -2 1 ]選區繞射圖………42 圖3.13 磷灰石的[ 2 -1 -4 ]與隕硫鐵的[ 1 -1 1 ]選區繞射圖………42 圖3.14 磷灰石[ 2 -1 -3 ]選區繞射圖……………………………………43 圖3.15 磷灰石[ 0 1 -1 ]選區繞射圖……………………………………43 圖3.16 磷灰石常溫(27℃)之拉曼光譜……………………………………48 圖3.17 一系列磷灰石拉曼震動模隨溫度變化……………………………50 圖3.18 隕硫鐵(NiAs型)原子排列在( 0 0 1 )面上投影………………55 圖3.19 長桿狀隕硫鐵與主晶磷灰石預期結晶方位關係………………………56 圖3.20 長桿狀隕硫鐵與主晶磷灰石實際結晶方位關係………………………56 圖3.21 短桿狀隕硫鐵與主晶磷灰石預期結晶方位關係………………………58 圖3.22 短桿狀隕硫鐵與主晶磷灰石實際結晶方位關係………………………58 圖3.23 磷灰石中析出隕硫鐵……………………………………………………61 圖3.24 標出析出物面積…………………………………………………………61 圖3.25 標出磷灰石總面積………………………………………………………61 附表目錄 附表一 榍石化學組成(wt%)………………………………………………………88 附表二 黑雲母化學組成(wt%)……………………………………………………89 附表三 金紅石化學組成…………………………………………………………90 附表四 磷灰石化學組成…………………………………………………………90 附表五 全岩分析…………………………………………………………………90 附表六 TEM-EDS半定量…………………………………………………………90 附表七 含主晶磷灰石之TEM-EDS半定量………………………………………91

    中文部分
    朱永峰 (2005) 磷灰石中磁黃鐵礦出溶結構的發現,岩石學報21(2),405-410頁。
    江佩珊 (2003) 中國東部蘇魯超高壓變質帶之變質岩石學研究,國立成功大學碩士論文,98頁。
    余樹楨 (1989) 晶體之結構與性質,渤海堂文化事業有限公司,596頁。
    李玉玲 (2000) 磷酸鹽礦物-磷灰石、獨居石之高溫、高壓光譜研究,國立成功大學碩士論文,100頁。
    張成基、王世進 (1997) 膠南造山帶新進展,山東地質,第13期第一卷,1-11頁。
    張澤明、許志琴、劉福來、孟繁聰 (2002) 南蘇-魯造山帶根部的物質組成及變質作用,第三屆海峽兩岸祈連山及鄰區地學研討會-中央造山帶的演化論文摘要,44-47頁。
    張澤明、許志琴、劉福來、游振東、孟繁聰和李天福 (2003) 南蘇魯造山帶的超高壓變質岩及岩石化學研究,地質學報,第77卷,第4期,478-491。
    黃怡禎 (2002) 礦物學,地球科學文教基金會,台北,686頁譯。
    劉福來、許志琴和楊經綏 (2001) 中國蘇北預先領導孔CCSD-PP2片麻岩中鋯石的礦物包裹體及其超高壓變質作用的證據。科學通報,第46卷第三期,241-246頁。
    蔡宗翰、蕭炎宏、黃怡禛和余樹楨 (2004) 南蘇魯地區角閃石片岩中磷灰石析出現象之研究,中國地質學會年會暨學術研討會。
    蔡憲璋、蕭炎宏、劉永欣、余樹楨、楊經綏和許志琴 (2005) 中國蘇魯超高壓變質帶東海地區榴輝岩之礦物析出物研究,中國地質學會年會暨學術研討會論文集。

    英文部分
    Carswell, D. A., Willson, R. N. and Zhai, M. (1996) Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shunghe in Dabieshan, Central China, Mineralogical Magazine, 60, 461-471.

    Caraswell, D. A., Wilson, R. N. and Zhai, M. (2000) Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China, Lithos 52, 121–155.

    Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps : a first record and some consequences, Contributions to Mineralogy and Petrology, 86, 107-118.

    Chopin, C. and Sobolev, N. V. (1995) Principal mineralogic indicators of UHP in crustal rocks, in Ultrahigh Pressure Metamorphism (eds Coleman, R. G. and Wang, X.) 96-161 (Cambridge Univ. Press, New York).

    Comodi, P., Liu Y., Stoppa, F. and Woolley, A.R. (1999) A multi-method analysis of Si-, S- and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy), Mineralogical Magazine 63, 661-672.

    Comodi, P., Liu Y., Frezzotti, M. L. (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation, Phys Chem Minerals 28, 225-231.

    Cong, B. L. and Wang, Q. C. (1994) Review of researches on ultrahigh-pressure metamorphic rocks in China, Chinese Science Bulletin, 39, 2068-2075.

    Cong, B., Zhai, M., Carswell, D. A., Willson, R. N., Wang, Q. and Zhao, Z. (1995) Petrogenesis of ultrahigh-pressure rocks and their country rocks at Shunghe in Dabieshan, Central China, Eur.J.Mineral, 7, 119-138.

    Cong B.(Ed) (1996) Ultrahigh-Pressure Metamorphic Rocks in the Dabieshan-Sulu Region of China, science press.

    Cox, K., Bell, J. D. and Pankhurst, R. J. (1979) The interpretation of igneous rocks, Allen and Unwin, 450p.

    Deer, W. A., Howie, R. A. and Zussman, J. (Eds) (1992) An Introduction to Rock-Forming Minerals.

    Dobrzhinetskaya, L., Green, H. W. and Wang, S. (1996) Alpe Arami : a peridotite massif from depths of more than 300 kilometers, Science 271, 1841-1845.

    Enami, M. and Banno, S. (1999) Major Rock-Forming Minerals in UHP Metamorphic Rocks, Internatiomal Geology Review, Vol. 41, 1058-1066.

    Fadini, A. and Schnepel, F. M. (1989) “Vibrational Spectroscopy-
    Methods and Applications”, Ellis Horwood Limited, England, 205p.

    Furukawa, Y. and Barnes, H. L. (1996) Reactions forming smythite Fe9S11, Geochimica et Cosmochimica Acta, 60, 19, 3581-3591.

    Green, H. W., Dobrzhinetskaya, L. and Bozhilov, K. N. (2000) Mineralogical and experimental evidence for very deep exhumation from subduction zones, Journal of Geodynamics, 61-76.

    Gosselin, J. R., Townsend, M. G., Tremblay R. J. and Webster, A. H. (1976) Mössbauer effect in single-crystal Fe1−xS, Journal of Solid State Chemistry 17, 43-48.

    Gottesmann, B. and Wirth, R. (1997) Pyrrhotite inclusions in dark pigmented apatite from granitic rocks, European Journal of Mineralogy, 9, 491-500.

    Hemley, R. J. (Ed) (1998): Ultrahigh-Pressure Mineralogy : Physics and Chemistry of the Earth’s Deep Interior, Reviews in Mineralogy Vol. 37, 71-86.

    Hermann, J., O’Neill, H. S. C. and Berry, A. J. (2005) Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine, Contributions to Mineralogy and Petrology 148, 746–760.

    Hirajima, T., Walis, S. R., Zhai, M. and Ye, K. (1993) Eclogitized metagranitoid from the Su-Lu Ultrahigh pressure (UHP) province, eastern China. Proceedings of Japanese Academy 69B, 249-254.

    Huang, E. (1992) Pressure measurements in diamond anvil cell by ruby fluorescence method and some applications, J. Geol. Soc. China, 35, 2, 135-150.

    Hughes, J. M., Cameron, M. and Crowl, K. D. (1989) Structural variation in nature F, OH, and Cl apatite, American Mineralogist, 74, 870-876.

    Hughes, J. M., Cameron, M. and Crowl, K. D. (1990) Crystal structures of natural ternary apatites : solid solution in the Ca5(PO4)3X (X=F,OH,Cl) system, American Mineralogist, 75, 295-304.

    Jamieson, J. C., Fritz, J. N. and Manghnani, M. H. (1982) Pressure measurement at high temperature in x-ray diffraction studies : gold as primary standard, High-Pressure Research in Geophysics, Center for Academic Publications Japan, 27-48.

    Kieffer, S. W., (1985) Heat capacity and entropy: systematic relations to the lattice vibrations, in “Rev. in Mineral., vol. 14, ed. by Veblen, D. R., Mineral. Soc. Amer., 65-126.

    Kohn, M. J., Rakovan, J. and Hughes, J. M. (Eds) (2002) : Phosphates-Geochemical, Geobiological, and Materials Importance,Reviews in Mineralogy and Geochemistry Vol 48.

    Kong, X., Lou, T. and Li, Y.(2005) Fe7S8 nanorods and nanosheets, Journal of Alloys and Compounds 390, 236–239.

    Larsen, R. B., Eide, E. A. and Burke, E. A. A. (1998) Evolution of metamorphoc volatiles during exhumation of microdiamond-bearing granulites in the Western Gneiss Region, Norway, Contributions to Mineralogy and Petrology 133, 106-121.

    Leake, B. E., Woollet, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C.,
    Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G.,
    Linthout, K., Laird, J. O., Maresch, W. V., Nickei, E. H., Rock, N. M. S.,
    Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L.,
    Whittaker, E. J. W. and Youzhi, G. (1997) Nomenclature of amphiboles, Canadian Mineral, 35, 219-246.

    Li, F. and Franzen, H. F. (1996) Phase transitions in near stoichiometric iron sulfide. Journal of Alloys and Compounds 238, 73-80.

    Liu, Y. and Comodi, P. (1993) Some aspects of crystal chemistry of apatite. Mineralogical Magazine 57, 709-719.

    McMillan, P. F. (1985) Vibration spectroscopy in the mineral sciences, in “Rev. in Mineral.”, vol. 14, ed. by Veblen, D. R., Mineral. Soc. Amer., 9-63.

    McMillan, P. F. and Hofmeister, A.M. (1988) Infrared and Raman spectroscopy, in “Rev. in Mineral.”, vol. 18, ed. Hawthorne, F. C. ,Mineral. Soc. Amer., 99-160.

    Nagasaki, A. and Enami, M. (1998) Sr-bearing zoisite and epidote in ultra-high pressure (UHP) metamorphic rocks from the Su-Lu province, eastern China: An important Sr reservoir under UHP conditions, American Mineralogist, 83, 240–247.

    Novikov, G. V., Egorov, V. K., Popov, V. I., and Sipavina, L. V. (1977) Kinetics and Mechanism of Transformations in Iron-Rich Pyrrhotites and in Troilite-Pyrrhotite Metastable Assemblages, Phys. Chem. Minerals 1, 1-14.

    Novikov, G. V., Egorov, V. K. and Sipavina, L. V. (1978) Mossbauer and X-Ray Studiesm of Relaxation Kinetics in Troilite-Pyrrhotite Assemblages, Phys. Chem. Minerals 3, 82-83.

    Ogasawara, Y., Fukasawa, K. and Maruyama S. (2002) Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan, American Mineralogist, 87, 454–461.

    Parat, F., Dungan, M. A. and Streck, M. J. (2002) Anhydrite, pyrrhotite, and sulfur-rich apatite : tracing the sulfur evolution of an Oligocene andesite ( Eagle Mountion, CO, USA), Lithos 64, 63-75.

    Parat, F. and Holtz, F. (2003) The effect of sulfur on phosphorus solubility and sulfur partition coefficient between apatite and melt, Geophysical Research Abstracts, 5, 09139.

    Parat, F. and Holtz, F. (2004) Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing condition, Contributions to Mineralogy and Petrology 147, 201-212.

    Parkinson, C. D., Katayama, I., Liou J. G. and Maruyama, S. (Eds) (2002) : The Diamond-Bearing Kokchetav Massif, Kazakhstan-Petrochemisty and Tectonic Evolution of an Unique Ultrahigh-Pressure Metamorphic Terrane, Universal Academy Press, Inc., 157-188.

    Philippot, P., Arrinier, P., and Scambelluri, M. (1998) Chlorine cycling during subduction of altered oceanic crust, Earth Planet. Sci. Lett., 161, 33-44.

    Scambelluri, M., Pennacchioni, G., and Philippot, P. (1998) Salt-rich aqueous fluids for formed during eclogitization of metabasites in Alpine continental crust (Austroalpine Mt. Emilius unit, Italian Alps), Lithos, 43, 151-167.

    Taborszky, F. (1962) Geochemie des Apatits in Tiefengesteinen am Beispiel des Odenwaldes, Beitr. Miner. Petrogr., 8, 354-392.

    Taborszky, F. (1972) Chemismus und Optik der Apatite, N. Jb. Miner. Mh., 2, 79-91.

    Wang, Q. C., Zhai, M. G., and Cong, B. L. (1996) Regional Geology. In : Cong Bolin, ed. Ultrahigh pressure metamprphic rocks in Dabie-Sulu region of China. Science Press, Bejing. And Kluwer Academic Publishers, Dordrecht, Boston, London, 8-26.

    Wallis, A. R., Ishiwataari, A., Hirajima, T., Ye, K., Guo, J., Nakamura, D., Kato, T., Zhai, M., Enami, M., Cong, B. and Banno, S., Occurrence and field relationships of ultrahigh-pressure metagranitoid and coesite eclogite in the Su-Lu terrane, eastern China : a preliminary study. European Journal of Mineralogy, 5, 141-152.

    Winkler, H. G. F. (1981) Petrogenesis of Metamorphic Rock, 5th ed. Springer Verlag, New York, 348.

    Ye, K., and Hirajima, T. (1996) High-pressure marble at Yangguantun Rongcheng Country, Shandong Province, Eastern China, Mineral. Petrol., 57, 151-165.

    Ye, K., Liu, J. B., Cong, B. L., Ye, D.N., Xu, P., Omori, S. and Maruyama, S. (2002) Ultrahigh-pressure (UHP) low-Al titanites from carbonate-bearing rocks in Dabieshan-Sulu UHP terrane, eastern China, American Mineralogist, 87, 875-881.

    Ye, K., Yao, Y. P. and Katayama, I. (2000) Large areal ectent of ultra-high-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China : New implications from coesite and omphacite inclusions in zircon of granitic gneiss., Lithos., 52, 157-164.

    Zhang, R. Y., Liou, L. G. and Cong, B. L. (1994) Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-Lu ultrahigh-P metamorphic terrane, easten China, J. metamorphic Geol., 12, 169-186.

    Zhang, R. Y., Hacker, B. and Liou, L. G. (1997) Exsolution in ultrahigh-P minerals from the Dabie-Sulu (China) and Kokchetav (Kazakhstan) terranes. Terra Nova 9:43.

    Zhang, R. Y. and Liou, L. G. (1997) Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu terrane, eastern China., J. metamorphic Geol., 15, 183-202.

    Zhang, R. Y. and Liou, L. G. (1998) Ultrahigh-pressure metamorphism of Sulu terrane, eastern China : A prospective view. Continental Dynamics.

    Zhang, R. Y., Shu, J. F., Mao, H. K. and Liou, L. G. (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, east-central China, American Mineralogist, 84, 564-569.

    下載圖示 校內:2006-08-26公開
    校外:2007-08-26公開
    QR CODE