| 研究生: |
徐鈺翔 Hsu, Yu-Hsiang |
|---|---|
| 論文名稱: |
40-kHz 浸水式聲化學反應器共振空蝕模態之分析與實驗 Analysis and experiments of various resonant cavitation modes of a 40-kHz immersed-type sonochemical reactor |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 聲化學反應器 、有限元素分析 、基因演算法 、空蝕汽泡 、共振聲場模態 |
| 外文關鍵詞: | Sonochemical reactor, Finite element analysis, Genetic algorithm, Cavitation bubble, Resonant acoustic mode |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
浸水式超音波聲化學反應器主要由三部份組成,即壓電換能器、變幅桿及反應室。超音波是由壓電換能器產生,經由變幅桿傳遞至反應室的液體中產生空蝕汽泡。一般市售的系統中,空蝕汽泡的發生位置均在變幅桿的端面附近,不僅造成超音波能量的散射與散逸,導致聲化學能量轉換效率不佳,同時使變幅桿的端面產生空蝕侵蝕,減短設備的使用壽命並造成樣本的汙染。為了解決此一問題,本研究以有限元素分析搭配基因演算法,對一40-kHz的浸水式的超音波聲化學反應器進行最佳化設計。分析結果顯示,藉由調整反應室的半徑、液體高度及變幅桿端面到底板的距離,可將系統操作於特定的共振模態。同時我們也以實驗觀察比對不同共振聲場模態下所產生的空蝕汽泡場。本研究最重要的結果是:經由適當的分析設計,可將最大聲壓振幅的位置由變幅桿端面附近移至反應室的內部,使反應器在極低的功率密度下便能產生大區域的空蝕汽泡場。
Immersed-type ultrasonic sonochemical reactors contain three main parts, namely piezoelectric transducer, horn, and reaction cell. Ultrasonic wave is generated by the piezoelectric transducer and transmits to the liquid in the cell through the horn. Cavitation bubbles are then generated by ultrasound. For a general commercialized immersed-type sonochemical system, cavitation bubbles occur very near the horn tip, causing dispersion and dissipation of the ultrasound, poor sonochemical efficiency, severe cavitation erosion of the horn, contamination of the reaction mixture, and degeneration of the system performance. To solve this problem, this study employs a finite element analysis incorporated with a genetic algorithm to optimize a 40-kHz ultrasonic sonochemical reactor. Results show that, by adjusting the radius of the reaction cell, the liquid height and the distance from the horn to the cell bottom, the system can be operated in a specific resonant mode. Several acoustic resonance modes observed in the simulation are realized experimentally and used for generating cavitation fields. The most important finding of this study is that, through proper analysis and design, the location of the maximum ultrasonic pressure can be moved from the vicinity of the horn tip to the interior of the cell and a large field of cavitation bubbles can be generated using a very small ultrasonic power density.
[1]. 馬振基主編, “奈米材料科技原理與應用”, 全華科技圖書,民國92年
[2]. 姚明宗, “共振式聲化學反應器之分析與實驗”, 國立成功大學機械工程研究所碩士論文, 民國98年
[3]. W.T. Richards and A.L.Loomis,“The chemical effects of high frequency sound waves l.A Preliminary survey.” J. Am. Chem. Soc., Vol. 49, No. 12,pp.3068-3100,(1927)
[4]. T.G. Leighton, “Bubble population phenomena in acoustic cavitation,” Ultrasonics Sonochemistry, Vol. 2, (1994).
[5]. P.R. Birkin, J.F. Power, A.M.L. Vincotte, and T.G. Leighton, “A 1 kHz resolution frequency study of a variety of sonochemical processes,” Phys. Chem. Chem. Phys, Vol.5, pp.4170-4174, (2003).
[6]. P.R. Gogate and A.B. Pandit, “Sonochemical Reactors: Scale Up Aspects,” Ultrasonics Sonochemistry, Vol.11, pp.105-117, (2004).
[7]. J. Klíma, A. Frias-Ferrer, J. González-García, J. Ludvík, V. Sáez, and J. Iniesta, “Optimization of 20 kHz Sonoreactor Geometry on the Basis of Numerical Simulation of Local Ultrasonic Intensity and Qualitative Comparison with Experimental Results,” Ultrasonics Sonochemistry, Vol.14, pp. 19–28, (2007).
[8]. 謝玉宸, “超音波聲化學反應器之共振模態分析與實驗”, 國立成功大學機械工程研究所碩士論文, 民國97年
[9]. J.H. Holland, Adaptation in Natural and Artificial System, The University of Michigan Press, Ann Arbor, MI, 1975.
[10]. D. Goldenberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1989.
[11]. Y. Asakura, T. Nishida, T. Matsuoka, S. Koda , ” Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors” , Ultrasonics Sonochemistry 15 244–250 (2008)
[12].覃兆海,陳馥衡,謝毓元 “超聲波在有機合成中的應用” 化學進展1998年第1期 No.1, (1998).
[13].溫傅亮等人 “藍杰文振動子共振腔體設計與動態行為之研究” 第十三屆中華民國振動與噪音學術研討會, 民國94年
[14].賴耿陽, “超音波工學理論實務”, 復漢出版社, 民國90年.
[15].林憲陽, “精密位移量測實習”, 德霖技術學院機械工程系
[16].黃繼模, “參數型超音波空蝕系統應用於聲化奈米製程”, 國立成功大學機械工程研究所博士班資格考論文計畫書, 民國97年
[17]. P.R. Birkin, T.G. Leighton, J.F. Power, and M.D. Simpson,“Experimental and Theoretical Characterization of Sonochemical Cells. Part 1. Cylindrical Reactors and Their Use to Calculate the Speed of Sound in Aqueous Solutions,” J. Phys. Chem. A, Vol.107, pp.306-320, (2002).
[18]. K.S. Suslick, “The chemical effects of ultrasound”, Scientific American,Vol.2,pp.80-86, (1989)
[19]. W.T. Richards and A.L. Loomis,“The chemical effects of high frequency sound waves l.A Preliminary survey,” J. Am. Chem. Soc., Vol. 49, No. 12,pp.3068-3100, (1927)
[20]. S.W. Dähnke and F.J. Keil “Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles.” Chemical Engineering Science, Vol. 54, pp. 2865-2872, (1999).
[21]. Y. Matsumoto, J.S. Allen, S.Yoshizawa,T. Ikeda, and Y. Kaneko, “Medical ultrasound with microbubbles.”, Experimental Thermal and Fluid Science, Vol. 29, pp. 255–263, (2005).
[22]. T.G. Leighton, “What is ultrasound?”, Progress in Biophysics and Molecular Biology, Vol. 93, pp. 3-83, (2007).
[23]. L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sander ,”Fundamentals of Acoustic”, 3rd edition, John Wiley & Sons (1982).
[24]. T.J. Mason and J.P. Lorimer. ”Applied Sonochemistry. The Uses of Power Ultrasound in Chemistry and Processing” ,Wiley-VCH (2002).
[25]. B. Toukoniitty, J-P. Mikkola, D.Yu. Murzin, and T. Salmi, ”Utilization of electromagnetic and acoustic irradiation in enhancing heterogeneous catalytic reactions”, General 279 p1-p22 (2005).
[26]. Apfel RE, Holland CK,“Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound” Ultrasound in Medicine and Biology 17(2), 179-185 ,(1991).
[27]. Comsol “Structural Mechanics Module User’s Guide.” Comsol. (2006).
[28]. P. Bourbe, ”DFT(Discrete Fourier Transform)FFT(Fast Fourier Transform)”, (1993)
[29]. J.L. Pons, H. Rodríguez, E. Rocon, J.F. Fernández, M. Villegas”Practical consideration of shear strain correction factor and Rayleighdamping in models of piezoelectric transducers”, Sensors and Actuators A 115 202–208 (2004)
[30]. Comsol “Acoustics Module User’s Guide. ” Comsol. (2006).
[31]. Comsol “Acoustics Module Model Library . ” Comsol. (2006).
[32]. K.S. Suslick and G.J. Price, “Applications of Ultrasound to Materials Chemistry,” Ann. Rev. Mater. Sci., Vol.29, pp.295-326, (1999)