簡易檢索 / 詳目顯示

研究生: 林志勳
Lin, Chih-Hsun
論文名稱: 氧化鎵薄膜應用於深紫外光發光二極體
Investigation of Ga2O3 film in deep ultraviolet light emitting diode
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 59
中文關鍵詞: 低溫氣相冷凝系統氧化鎵N型氧化鎵深紫外光發光二極體
外文關鍵詞: vapor cooling condensation system, gallium oxide, N-type gallium oxide, Deep ultraviolet light-emitting diode
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用創新設計之低溫氣相冷凝系統製備出低溫鍍製之本質氧化鎵薄膜,再藉由矽元素摻雜製出N型矽摻雜氧化鎵薄膜,將低溫鍍製本質氧化鎵薄膜與N型氧化鎵薄膜堆疊於P型氮化鎵基板上,成功製備出P型氮化鎵/I型氧化鎵/N型矽摻雜氧化鎵之深紫外光發光二極體元件。
    其分析內容分為本質氧化鎵與N型矽摻雜氧化鎵薄膜,並探討薄膜特性。在本質氧化鎵方面,分析室溫鍍製氧化鎵薄膜(RT-Ga2O3)與低溫鍍製氧化鎵薄膜(LT-Ga2O3)之薄膜特性,其在低溫環境下成長之氧化鎵薄膜可有效降低薄膜的內部氧缺陷與鎵缺陷,透過高溫熱處理提升薄膜之結晶特性並經由霍爾量測可知其載子濃度為1.05×1015 cm-3;另一方面,為了有效製作出N型氧化鎵薄膜,將採用氧化鎵粉末與二氧化矽粉末進行共蒸鍍,利用高溫熱處理使得氧化鎵薄膜摻入矽元素,藉由改變蒸鍍源靶材重量,製作出不同矽摻雜含量的N型氧化鎵薄膜,最後利用霍爾量測與能量分散式光譜儀進行薄膜分析,可知薄膜中之矽摻雜量增加使濃度由1.05×1015 cm-3提升至2.20×1017 cm-3,並對光學能隙進行探討,由於二氧化矽光學能隙(Eg = 9 eV)遠大於氧化鎵之光學能隙(Eg = 5.19 eV),故不同矽摻雜N型氧化鎵薄膜之光學能隙將隨著矽摻雜量的增加而有所提升;此外,亦對於薄膜的結晶特性進行分析,由於矽離子(Si4+)的離子半徑為0.41 Å,而鎵(Ga3+)離子的離子半徑為0.62 Å,因此薄膜中的矽離子(Si4+)取代鎵(Ga3+)離子時,導致單位晶胞體積與晶格常數減小,而使得薄膜中特徵鋒值由30.48o增加至30.51o。本研究將本質與N型矽摻雜之氧化鎵薄膜應用於P-I-N發光二極體結構中,成功製備出順向起始偏壓為11.6 V且發光波段位於241 nm之深紫外光發光二極體元件。

    In this study, an intrinsic gallium oxide film and an N-type gallium oxide film were fabricated using an innovative vapor cooling condensation system to prepare a deep ultraviolet light-emitting diode.
    The gallium oxide film deposited in a low temperature environment (LT-Ga2O3) has a lower defect than the gallium oxide film deposited at room temperature (RT-Ga2O3), and the crystallization characteristics of the film are improved by high temperature heat treatment. On the other hand, the gallium oxide powder and the silicon dioxide powder are co-evaporated, and then an n-type gallium oxide thin film is formed by high temperature heat treatment. As the number of grams of silicon dioxide increases, the optical energy gap increases and the carrier concentration increases from 1.05 x 1015 cm-3 to 2.20 x 1017 cm-3. In addition, since the ionic radius of the silicon ion (Si4+) is 0.41 Å, and the ionic radius of the gallium ion (Ga3+) is 0.62 Å, the lattice constant decreases when the silicon ion replaced the gallium ion. This increases the XRD diffraction angle from 30.48o to 30.51o.
    Using the structure of P-GaN/I-Ga2O3/N-Ga2O3, we successfully fabricated a deep ultraviolet light-emitting diode with a forward starting bias of 11.6 V and an emission band of 241 nm.

    目錄 摘要 I Abstract III 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 參考資料 4 第二章 原理與簡介 6 2.1 氧化鎵薄膜簡介 6 2.2 發光二極體之相關理論 7 2.2.1 發光二極體 7 2.2.2 光的吸收與放射 8 2.3 金屬-半導體接面理論 8 2.3.1 歐姆接觸 9 2.4 薄膜穿透反射率與光學能隙之計算 9 2.5 X光繞射原理 10 2.6傳輸線模型(TLM) 11 參考資料 17 第三章 實驗製作流程及量測儀器 22 3.1 低溫氣相冷凝系統 22 3.2 電子束蒸鍍系統 23 3.3 元件製作流程 23 3.3.1 元件基板清潔與硫化處理 23 3.3.2黃光定義主動層及N型氧化鎵薄膜之區域 24 3.3.3製備主動層及N型氧化鎵薄膜 25 3.3.4黃光定義N型電極區域 26 3.3.5 製備N型電極區域 26 3.3.6 黃光定義P型環狀電極區域 27 3.3.7 製備P型環狀電極區域 28 3.4 量測儀器介紹 28 3.4.1 UV-VIS-NIR 光譜分析儀 28 3.4.2 霍爾量測系統 29 3.4.3 光致發光量測系統 29 3.4.4能量分散式光譜儀 30 3.4.5 電壓-電流量測系統 31 3.4.6 電激發光量測系統 31 參考資料 37 第四章 實驗結果與討論 38 4.1 氧化鎵薄膜之量測分析 38 4.1.1氧化鎵薄膜光學特性之分析 38 4.1.2氧化鎵薄膜吸收係數與近能隙邊緣之特性 38 4.1.3氧化鎵薄膜光致發光量測分析 39 4.2熱退火處理氧化鎵薄膜特性分析 39 4.2.1熱退火處理氧化鎵薄膜之光電特性分析 39 4.2.2熱退火處理氧化鎵薄膜之X光繞射量測分析 40 4.3矽摻雜氧化鎵薄膜之量測分析 41 4.3.1矽摻雜氧化鎵薄膜光電特性之分析 41 4.3.2矽摻雜氧化鎵薄膜能量分散式光譜儀量測 42 4.3.3矽摻雜氧化鎵薄膜之X光繞射量測分析 42 4.4深紫外光發光二極體元件之特性量測 43 4.4.1元件金屬電極歐姆接觸特性 43 4.4.2元件電壓-電流曲線與不同注入電流之元件EL特性 44 參考資料 57 第五章 結論 59 表目錄 表4.1 本質與N型不同矽摻雜氧化鎵薄膜之霍爾量測表 46 表4.2本質與N型不同矽摻雜氧化鎵薄膜之EDS量測結果 46 圖目錄 圖2.1 P-N接面電子電洞示意圖 13 圖2.2光子能量對於吸收、自發放射與激勵放射之示意圖 13 圖2.3當qϕm<qϕs,金屬與n型半導體未接觸之能帶示意圖 14 圖2.4 當qϕm<qϕs,金屬與n型半導體接觸後之能帶示意圖 14 圖2.5布拉格方程式相關參數與作用示意圖 15 圖2.6不同間距之傳輸線模型完成示意圖 15 圖2.7 傳輸線模型電阻值和不同電極間距關係圖 16 圖3.1 低溫氣相冷凝系統示意圖 32 圖3.2電子束蒸鍍系統示意圖 32 圖3.3 發光二極體製程光罩示意圖 33 圖3.4 P-GaN基板示意圖 34 圖3.5 沉積完主動層與N型氧化鎵薄膜元件示意圖 34 圖3.6蒸鍍完N型電極(Ti/Al/Ti/Au)之元件示意圖 35 圖3.7 蒸鍍完P型電極(Ni/Au)之元件示意圖 35 圖3.8 光致發光量測系統示意圖 36 圖3.9 電激發光量測系統示意圖 36 圖4.1 室溫與低溫鍍製氧化鎵薄膜之穿透率圖 47 圖4.2 室溫與低溫鍍製氧化鎵薄膜反射率圖 47 圖4.3 室溫與低溫鍍製氧化鎵薄膜(αhυ)2與hυ關係圖 48 圖4.4 室溫與低溫鍍製氧化鎵薄膜ln(αhυ)與hυ關係圖 48 圖4.5 室溫與低溫鍍製之氧化鎵薄膜光激發光量測 49 圖4.6 不同熱退火溫度之低溫鍍製氧化鎵薄膜穿透率圖 49 圖4.7 不同熱退火溫度之低溫鍍製氧化鎵薄膜反射率圖 50 圖4.8 不同熱退火溫度之低溫鍍製氧化鎵薄膜(αhυ)2與hυ關係圖 50 圖4.9 不同熱退火溫度之低溫鍍製氧化鎵薄膜X光繞射量測圖 51 圖4.10不同矽摻雜量之N型氧化鎵薄膜穿透率圖 51 圖4.11 不同矽摻雜量之N型氧化鎵薄膜反射率圖 52 圖4.12 不同矽摻雜量之N型氧化鎵薄膜(αhυ)2與hυ關係圖 52 圖4.13不同矽摻雜量之N型氧化鎵薄膜X光繞射量測圖 53 圖4.14 P-GaN與電極Ni/Au之歐姆接觸特性 53 圖4.15 N型矽摻雜氧化鎵薄膜(1.6g:0.40g)與Ti/Al/Ti/Au電極之電壓-電流特性 54 圖4.16 N型矽摻雜氧化鎵薄膜(1.6g:0.32g)與Ti/Al/Ti/Au電極之電壓-電流特性 54 圖4.17 N型矽摻雜氧化鎵薄膜(1.6g:0.16g)與Ti/Al/Ti/Au電極之電壓-電流特性 55 圖4.18 深紫外光元件之電壓-電流特性 55 圖4.19 不同注入電流EL特性圖 56

    第一章
    [1] L. Rezende, “Chronology of science facts on file science library,” Infobase Publishing, 2006.
    [2] 科技政策研究與資訊中心─科技產業資訊室整理。
    [3] http://my.so-net.net.tw/kib65169/001.html
    [4] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., vol. 81, pp. 1246–1248, 2002.
    [5] H. Morkoc, “Nitride Semiconductors and devices,” Springer-Verlag, Berlin, 1999.
    [6] W. Wenliang, W. Haiyan, Y. Weijia, Z. Yunnong, and L. Guoqiang. “A new approach to epitaxially grow high-quality GaN films on Si Substrates: the combination of MBE and PLD,” Sci. Rep., vol. 6, pp. 24448, 2016.
    [7] T. Y. Tsai, S. L. Ou, M. T. Hung, D. S. Wuu, and R. H. Horng, “MOCVD groeth of GaN on sapphire using a Ga2O3 interlayer,” J. Elctrochem. Soc., Vol. 158, pp. H1172-H1178, 2011.
    [8] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro,”A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, pp. 011301 2018.
    [9] H. Y. Lee, J. T. Liu, and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 30, pp. 549-552, 2018.
    [10] L. X. Qian, H. F. Zhang, Z. H. Wu, and X. Z. Liu, “High-sensitivity β-Ga2O3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate,” Opt. Mater. Express, vol. 7, pp. 3643-3653, 2017.
    [11] T. H. DiStefano and D. E. Eastman, “The band edge of amorphous SiO2 by photoinjection and photoconductivity measurement,” Solid State Commun., vol. 9, pp. 2259-2261, 1971.
    [12] D. Gogova, G. Wangner, M. Baldini, M. Schmidbauer, K. Irmscher, R. Schewski, Z. Galazka, M. Albrecht, and R. Fornari, “Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE,” Ceram. Int., vol. 44, pp. 3122-3127, 2018.
    [13] T. Kenichiro, F. Suguru, T. Isao, O. Hidenori, T. Daisuke, N. Toshiyuki, S. Mutsuo, M. Katsuya, S. Eddy, and C. Cor, “Investigation of Si doping effect in β-Ga2O3 films by co-sputtering of gallium oxide and Si.” Physica B, vol. 407, pp. 2900-2902, 2012.
    第二章
    [1] M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics,” Appl. Phys. Lett., vol. 103, pp. 123511, 2013.
    [2] W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, “High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method,” J. Alloys Compd., vol. 714, pp. 453–458, 2017.
    [3] W. Man Hoi, G. Ken, M. Hisashi, K. Yoshinao, and H. Masataka, “Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping,” IEEE Electron Device Lett., vol. 40, pp. 431-434, 2019.
    [4] J. Mun, K. Cho, W. Chang, H. W. Jung, and J. Do, “2.32KV breakdown voltage lateral beta-Ga2O3 MOSFETs with source-connected field plate,” ECS J. Solid State Sci. Technol., vol. 8, pp. Q3079-Q3082, 2019.
    [5] Y. J. Lv, X. B. Song, Z. Z. He, X. Tan, Z. Y. Zhou, Y. G. Wang, G. D. Gu, and Z. H. Feng, “Ga2O3 MOSFET Device with Al2O3 gate dielectric,” J. Inorg. Master., vol. 33. pp. 976-980, 2018.
    [6] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Appl. Phys. Lett., vol. 70, pp. 3561–3562, 1997.
    [7] Z. Li, Z. An, Y. Xu, Y. Cheng, Y. Cheng, D. Chen, Q. Feng, S. Xu, J. Zhang, C. Zhang, and Y. Hao, “Improving the production of high-performance solar-blind beta-Ga2O3 photodetectors by controlling the growth pressure,” J. Master, Sci., vol. 54, pp. 10335-10345, 2019.
    [8] A. Pratiyush, U. UI Muazzam, S. Kumar, P. Vijayakumar, S. Ganesamoorthy, N. Subramanian, R. Muralidharan, and D. Nath, “Optical float-zone grown bulk beta-Ga2O3-based lineat MSM array of UV-C photodetectors,” IEEE Photonics Technol. Lett., vol. 31, pp. 923-926, 2019.
    [9] L. Y. Jian, H. Y. Lee, and C. T. Lee, “Ga2O3-based p-i-n solar blind deep ultraviolet photodetectors,” J. Mater. Sci-Mater. Electron., vol. 30, pp. 8445-8448, 2019.
    [10] M. Fleischer, L. Hollbauer, and H. Meixner, “Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases,” Sens. Actuators B, vol. 18, pp. 119–124, 1994.
    [11] L. Kong, J. Ma, and C. Luan, “Structural and optical properties of heteroepitaxial beta Ga2O3 films grown on MgO (100) substrates”, Thin Solid Films, vol. 520, pp. 4270-4274, 2012
    [12] S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films”, J. Phys. Chem. C, vol.117, pp. 4194-4200, 2013.
    [13] Trinchi A, Wlodarski W, and Y. X. Li, “Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC,” Sens. Actuator B-Chem., vol. 100, pp. 94–98, 2004.
    [14] Z. X. Feng, M. R. Karim, and H. P. Zhao, “Low Pressure chemical vapor deposition of beta-Ga2O3 thin film: dependence on growth parameters,” APL Mater., vol. 7, pp. 022514, 2019.
    [15] N. Winkler, R. A. Wibowo, W. Kautek, G. Ligorio, E. J. W. List-kratochvil, and T. Dimopoulos, “Nanocrystalline Ga2O3 films deposited by spray pyrolysis from water-based solutions on glass and TCO substrates,” J. Mater. Chem. C, vol. 7, pp. 69-77, 2019.
    [16] M. Q. Li, N. Yang, G. G. Wang, H. Y. Zhang, and J. C. Han, “Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application,” Appl. Surf. Sci., vol. 471, pp. 694-702, 2019.
    [17] Y. C. Cai, K. Zhang, Q. Feng, Y. Zuo, Z. Z. Hu, Z. Q. Feng, H. Zhou, X. L. Lu, C. F. Zhuang, W. H. Tang, and J. C. Zhang, “Tin-assisted growth of epsilon-Ga2O3 film and the fabrication of photodetectors on sapphire substrate by PLD,” Opt. Mater. Express, vol. 8, pp. 3506-3517, 2018.
    [18] M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films,” Appl. Phys. Lett., vol. 81, pp. 250-252, 2002.
    [19] F. Alema, B. Hertog, A. Osinsky, P. Mukhopadhyay, M. Toporkov, and W. V. Schoenfeld, “Fast growth rate of epitaxial β–Ga2O3 by close coupled showerhead MOCVD,” J. Cryst. Growth, vol. 475, pp. 77-82, 2017.
    [20] J. T. Yan and C. T. Lee, “Improved detection sensitivity of Pt/β-Ga2O3/GaN hydrogen sensor diode,” Sens. Actuators B, vol. 143, pp. 192-197, 2009.
    [21] A. Zukauskas, “Introduction to solid-state lightion,” John Wiley & Sons, New York, 2002.
    [22] Sir Norman Lockyer, “Nature,” Macmillan Journals Limited, 1879.
    [23] R. S. Bauer, “Surfaces and Intergaces : Physics and Electronics,” Elsevier, 2012.
    [24] S. M. Sze, “Semiconductor device physics and technology 2nd edition,” Wiley, chap. 7.1, 2001.
    [25] K. K. Bharathi, N. R. Kalidindi, and C. V. Ramana, “Grain size and strain effects on optical and electrical properties of hafnium oxide nanocrystalline thin film,” J. Appl. Phys., vol.108, pp. 083529-1-083529-5, 2010.
    [26] S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C, vol. 117, pp. 4194-4200, 2013.
    [27] B. Pivac, K. Furic, and D. Desnica, “Raman line profile in polycrystalline silicon,” J. Appl. Phys., vol. 86, pp. 4383, 1999.
    [28] S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Structural and electrical properties of polycrystalline silicon produced by low-temperature Ni silicide mediated crystallization of the amorphous phase,” J. Appl. Phys., vol. 87, pp. 609, 2000.
    [29] A. A. Al-Tabbakh, N. Karatepe, A. B. Al-Zubaidi, A. Benchaabane, and N. B. Mahmood, “Crystallite size and lattice strain of lithiated spinel material for rechargeable battery by X-ray diffraction peak-broadening analysis,” Int. Energy Res., vol. 43, pp. 1903-1911, 2019.
    [30] H. Morkoc, A. D. Catlo, and R. Cingolani, “GaN-based modulation doped FETs and UV detector,” Solid-State Electron., vol. 46, pp. 157, 1999.
    [31] B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuator B-Chem., vol. 56, pp. 164, 1999.
    [32] Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687, 1994.
    第三章
    [1] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.
    [2] Y. J. Lin, and C. T. Lee, “Investigation of surface treatments for nonalloyed ohmic contact formation in Ti/Al contacts to n-type GaN,” J. Appl. Phys., vol. 77, pp. 3986-3988, 2000.
    [3] V. R. Aline, O. Marcelo, and Orlandi, “Study of intense photoluminescence from mondispersed β-Ga2O3 ellipsoidal structures,” Ceram. Int., vol. 45, pp. 5023-5029, 2019.
    第四章
    [1] J. Pankove, “Absorption edge of impure gallium arsenide,” Physical Review, vol. 140 pp. 2059, 1965.
    [2] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique,” J. Appl. Phys., vol. 108, pp. 073119-1-073119-6, 2010.
    [3] S. Yan, L. Wan, Z. Li, Y. Zhou, and Z. Zou “Synthesis of a mesoporous single crytal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO,” Chem. Commun., vol. 46, pp. 6388-6390, 2010.
    [4] D. Gogova, G. Wangner, M. Baldini, M. Schmidbauer, K. Irmscher, R. Schewski, Z. Galazka, M. Albrecht, and R. Fornari, “Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE,” Ceram. Int., vol. 44, pp. 3122-3127, 2018.
    [5] T. Kenichiro, F. Suguru, T. Isao, O. Hidenori, T. Daisuke, N. Toshiyuki, S. Mutsuo, M. Katsuya, S. Eddy, and C. Cor, “Investigation of Si doping effect in β-Ga2O3 films by co-sputtering of gallium oxide and Si.” Physica B, vol. 407, pp. 2900-2902, 2012.
    [6] D. Hu, Y. Wang, S. Zhuang, X. Dong, Y. Zhang, J. Yin, B. Zhang, Y. Lv, Z. Feng, G. Du, “Surface morphology evolution and optoelectronic properties of heteroepitaxial Si-doped beta-Ga2O3 thin films grown by metal-organic chemical vapor deposition,” Ceram. Int., vol. 44, pp. 3122-3127, 2018.
    [7] V. Malyutenko, S. S. Bolgov, and A. D. Podoltsev, “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/Gan light emitting diodes,” Appl. Phys. Lett., vol. 97, pp. 251110, 2010.
    [8] D. Wang, S. Feng, C. Lu, A. Motayed, M. Jah, S. Mohammad, K. Jones, and L. Salamanca-Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., vol. 89, pp. 6214-6217, 2001.

    下載圖示 校內:2024-08-30公開
    校外:2024-08-30公開
    QR CODE