| 研究生: |
蔡易祐 Tsai, I-You |
|---|---|
| 論文名稱: |
硝酸羥胺基推進劑之反應特性與原型推進器開發 Reaction Characteristics of Hydroxylammonium Nitrate Based Propellants and the Development of Prototype Microthrusters |
| 指導教授: |
吳明勳
Wu, Ming-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 224 |
| 中文關鍵詞: | 硝酸羥胺 、綠色推進劑 、線燃速 、活化能 、推進器 |
| 外文關鍵詞: | hydroxylammonium nitrate, green propellant, linear burning rate, activation energy, thruster |
| 相關次數: | 點閱:40 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硝酸羥胺(hydroxylammonium nitrate,以下簡稱HAN)為液態單基推進劑,在推進器中燃料的消耗率是由單基推進劑本身之化學反應及推進劑反應面間之熱質傳線燃速所主導。因此,線燃速(linear burning rate)為液態單基推進劑於推進器研究中最為關鍵的燃燒特性參數之一。HAN基配方推進劑被應用在推進器時雖然不需如雙基推進劑(bipropellant)有燃料與氧化劑兩套儲存槽,單純由燃料槽供應燃料且只需利用預熱之高溫觸媒將推進劑引燃,推進器整體結構相對簡單。但HAN基配方推進劑在無觸媒催化之情形下,熱解離反應慢且解離溫度高。故在實際應用中需藉由觸媒有效降低其點火溫度,以加快反應速率及提高點火可靠度。但單基推進劑引燃類似預混燃燒容易產生回火,若不慎產生熱回授至燃料儲存槽,將會造成管路爆炸危害。
在文獻中不同濃度之HAN水溶液之燃速差異極大,且文獻中80 wt.% HAN水溶液之線燃速較其他濃度有更為完整之數據。故本研究將以80 wt.% HAN水溶液為基準,將探討壓力對線燃速之影響,並再接續進行兩種HAN基配方推進劑之線燃速測試。由於推進器設定與系統管路規格設計需有可靠之推進劑線燃速數據,但公開文獻中有關於太空推進器所用之0.1-2 MPa壓力區間之線燃速記載甚少。且少數可獲得之不同來源線燃速數據也往往有高達50 %以上之差異。因此有必要進行實驗量測建立可靠之數據以利後續推進器及其系統設計。並利用同步熱儀分析HAN基配方推進劑的活化能及反應機制,以驗證推進器使用之性能。由於已知JAXA在開發以SHP163作為燃料之推進器已至少發生過四次爆炸意外,故在自製單基推進劑推進器試驗板應避免發生相同之意外。在自製推進器試驗版系統將測試不同觸媒種類、推進劑進料流率、觸媒預熱溫度等等之參數對於推進性能之影響,並評估自製HAN基推進器試驗版系統推進性能與理論計算值之差異。進行系統建置及推進劑於推進器試驗版進行引燃與燃燒測試,驗證自製HAN基配方推進劑未來在太空推進使用的可行性。
Hydroxylammonium nitrate (HAN) is a liquid monopropellant. The fuel consumption rate in the thrusters is not mainly controlled by the mixing efficiency of fuel and oxidizer in the bipropellant thruster, but by the chemical reaction rate of the monopropellant itself. The burning rate is dominated by the heat and mass transfer between the chemical reaction and propellant reaction surfaces. Therefore, the linear burning rate is one of the most critical combustion characteristic parameters in the research of liquid monopropellants. When the HAN-based propellant is applied to the thrusters, although it does not need two sets of storage tanks for fuel and oxidant like the bipropellant, the fuel is simply supplied by the fuel tank and the propellant only needs to be heated by a preheated high-temperature catalyst. The overall structure of the thruster is relatively simple. However, the thermal decomposition reaction of HAN-based formula propellants is slow, and the decomposition temperature is as high as 170°C or higher without catalyst catalysis. Therefore, in practical applications, it is necessary to effectively reduce the ignition temperature by means of catalysts, to speed up the reaction rate and improve the ignition reliability. However, the ignition of monopropellants is like premixed combustion, which is prone to flashback. If heat is accidentally generated back to the fuel storage tank, it will cause pipeline explosion hazards.
[1] V. Lappas and V. Kostopoulos (2020), Satellites Missions and Technologies for Geosciences, IntechOpen, United Kingdom. doi: 10.5772/intechopen.83246
[2] G.P. Sutton and O. Biblarz, Rocket Propulsion Elements (7th Ed.), John Wiley & Sons Inc., New York, 2001.
[3] T. Edwards (2003), Liquid Fuels and Propellants for Aerospace Propulsion: 1903-2003, Journal of Propulsion and Power 19(6), 1089-1107.
[4] A. Mayer and W. Wieling (2018), Green Propulsion Research at TNO the Netherlands, Transactions on Aerospace Research 4(253), 1-24.
[5] M. Negri. (2018), New Technologies for Ammonium Dinitramide Based Monopropellant Thrusters – The Project RHEFORM, Acta Astronautica 143, 105-117.
[6] T. Pultarova (2017), Hydrazine Ban Could Cost Europe’s Space Industry Billions. https://spacenews.com/hydrazine-ban-could-cost-europes-space-industry-billions/, access on May 28, 2023.
[7] H. Uramachi, D. Shiraiwa, T. Takai, N. Tanaka, T. Kaneko and K. Furukawa (2019), Green Propulsion Systems for Satellites - Development of Thrusters and Propulsion Systems using Low-toxicity Propellants, Mitsubishi Heavy Industries Technical Review 56(1), 1-7.
[8] H. Meng, P. Khare, G.A. Risha, R.A. Yetter and V. Yang, Decomposition and Ignition of HAN-based Monopropellant by Electrolysis, AIAA Paper 2009-451, 47thAIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 5-8 January 2009.
[9] K. Hori, T. Katsumi, S. Sawai, N. Azuma, K. Hatai and J. Nakatsuka (2019), HAN‐Based Green Propellant, SHP163 – Its R&D and Test in Space, Propellants, Explosives, Pyrotechnics 44(9), 1080-1083.
[10] R. Amrousse, T. Katsumi, N. Azuma and K. Hori (2017), Hydroxylammonium Nitrate (HAN)-based Green Propellant as Alternative Energy Resource for Potential Hydrazine Substitution: From Lab Scale to Pilot Plant Scale-up, Combust Flame 176 334–348.
[11] M.H. Wu and R.A. Yetter (2009), A Novel Electrolytic Ignition Monopropellant Microthruster Based on Low Temperature Co-Fired Ceramic Tape Technology, Lab Chip 9, 910-916.
[12] K.F. Mueller and K.L.Wagaman (1999), Oxidizing agent, US Statutory Invention Registration H1768 (USH1768H), Published Jan 5.
[13] Q. Zhang and J. Shreeve (2014), Energetic Ionic Liquid as Explosives and Propellant Fuels: A New Journey of Ionic Liquid Chemistry, Chemcial Review 114(20), 10527-10574.
[14] A. Greer, J. Jacquemin and C. Hardacre (2020), Industrial Applications of Ionic Liquids, Molecules 25(21), 5207.
[15] H.S. Lee and T.A. Litzinger (2001), Thermal Decomposition of HAN-based Liquid Propellants, Combust. Flame 127(4), 2205-2222.
[16] G.P. Sutton and O. Biblarz, Rocket Propulsion Elements (8th Ed.), John Wiley & Sons Inc., New York, 2010.
[17] R.S. Jankovsky (1996), HAN-based Monopropellant Assessment for Spacecraft, 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, USA, July 1-3.
[18] E.W. Schmidt (1990), Hydroxylammonium Nitrate Compatibility Tests with Various Materials – A Liquid Propellant Study, BRL-CR-636.
[19] M.M. Decker, N. Klein, E. Freedman, C.S. Leveritt and J.Q. Wojciechowski (1987), HAN-based Liquid Gun Propellants: Physical Properties, BRL-TR-2864.
[20] J.Q. Wojciechowski (1990), The 5th Annual Conference on HAN-based Liquid Propellants, BRL-SP-86.
[21] F.B. Apollo, N. Sakae, M. Haruki and A. Muneo (2010), HAN/HN-Based Monopropellant Thrusters, IHI Engineering Review. 43, 22-28.
[22] N. Rasmont, E.J. Broemmelsiek and J.L. Rovey (2020), Linear Burn Rate of Green Ionic Liquid Multimode Monopropellant, Combust Flame 219, 212–224.
[23] A. A. Esparza, R. E. Ferguson, A. Choudhuri, N. D. Love and E. Shafirovich (2018), Thermoanalytical Studies on the Thermal and Catalyticdecomposition of Aqueous Hydroxylammonium Nitrate Solution, Combustion and Flame 193, 417-423.
[24] A. A. Esparza and E. Shafirovich (2019), Thermoanalytical Study of Hydroxylammonium Nitrate Decomposition at High Pressures, AIAA Propulsion and Energy Forum.
[25] R.E. Ferguson, A.A. Esparza and E. Shafirovich (2021), Combustion of Aqueous HAN/methanol Propellants at High Pressures, P Combust Inst 38, 3295–3302.
[26] Y.P. Chang, K. Josten, K. Kuo and B. Reed (2002), Combustion Characteristics of Energetic HAN/Methanol-Based Monopropellants, 38th Aiaa Asme Sae Asee Jt Propuls Conf Amp Exhib.
[27] J. C. Thomas, G. D. Homan-Cruz, J. M. Stahl and E. L. Petersen (2019), The Effects of SiO2 and TiO2 on the Two-phase Burning Behavior of Aqueous HAN Propellant, Proceedings of the Combustion Institute 37(3), 3159-3166.
[28] T. Katsumi, K. Hori, R. Matsuda and T. Inoue (2010), Combustion Wave Structure of Hydroxylammonium Nitrate Aqueous Solutions, 46th Aiaa Asme Sae Asee Jt Propuls Conf Amp Exhib.
[29] A. Mundahl, S.P. Berg and J. Rovey (2016), Linear Burn Rates of Monopropellants for Multi-Mode Micropropulsion, 52nd Aiaa Sae Asee Jt Propuls Conf.
[30] T. Katsumi and K. Hori (2021), , Successful Development of HAN Based Green Propellant, Energetic Materials Froniters 2(3), 228-237.
[31] R. Amrousse, K. Hori, W. Fetimi and K. Farhat (2012), HAN and ADN as Liquid Ionic Monopropellants: Thermal and Catalytic Decomposition Processes, Applied Catalysis B: Environmental 127, 121-128.
[32] N. Azuma, Y. Niboshi, T. Matsumura, K. Hori, T. Katsumi, K. Hatai, Y. Sugiyama and Y. Nakayama (2017), Basic Properties of HAN-based Monopropellant, Sci. Tech. Energetic Materials 78(2), 31-36.
[33] J.C. Thomas, F.A. Rodrigues, D.S. Teitge and E.L. Petersem (2023), Lab-scale Ballistic and Safety Property Investigations of LMP-103S, Combustion and Flame 253, 112810.
[34] B.N. Kondrikov, V.E. Annikov, V.Y. Egorshev and L.T.D. Luca (2000), Burning of Hydroxylammonium Nitrate, Combustion, Explosion, and Shock Waves 36(1), 135-145.
[35] S.R. Vosen (1990), Hydroxylammonium Nitrate-based Liquid Propellant Combustion-interpretation of Strand Burner Data and the Laminar Burning Velocity, Combustion and Flame 82, 3-4.
[36] C.K. Kuan, Indigenous Technology Development of a 100 mN HTP, Master Thesis, National Cheng Kung University, Taiwan, 2006.
[37] Y.L. Li, Development of Manganese Oxide Catalysts for HTP Monopropellant Thrusters, Master Thesis, National Cheng Kung University, Taiwan, 2015.
[38] R. Grist, Design and Experimental Investigation of a Hydroxylammonium Nitrate Based Workhorse Microthruster, M.S. Thesis, University of Washington, 2016.
[39] D.C. Naresh, M. Rudresh and M. Debadatta (2020), Design and Analysis of Combustion Chamber foe HAN Based Mono Propulsion System Thruster for Spacecraft Application, International Journal of Aviation Science and Technology 1, 66-70.
[40] Y.A. Chana, Development of a HTP Mono-propellant Thruster by Using Composite Silver Catalyst, Master Thesis, National Cheng Kung University, Taiwan, 2011.
[41] F.F. Maia, L.H. Gouvea, L.G.F. Pereira, R. Vieira and F.S. Costa (2014), Development and Optimization of a Catalytic Thruster for Hydrogen Peroxide Decomposition, Journal of Aerospace Technology and Management, 6(1). 61-67.
[42] E.F. Marsland, G.T. Roberts, C.N. Ryan and D. Gibbis (2021), Methodology for Geometric Optimization and Sizing for Subnewton Monopropellant Catalyst Beds, Journal of Propulsion and Power 37(5), 713-724.
[43] R. Amrousse, T. Katsumi, Y. Niboshi, N. Azuma, A. Bachar and K. Hori (2013), Performance and Deactivation of Ir-based Catalyst During Hydroxylamminium Nitrate catalytic Decomposition, Applied Catalysis A: General 452, 64-68.
[44] J.W. Guan, G.X. Li, H.M. Li, T. Zhang, J. Chen and Y.J. Gu (2021), Effect of Catalytic Bed Porosity and Mass Flow Rate on Decomposition and Combustion Processes of a HAN-Based Monopropellant Thruster, Vacuum 194, 110566.
[45] K. Hori (2016), Chemical Rocket Propulsion, A Comprehensive Survey of Energetic Materials, Springer Aerosp Technology, 801–818.
[46] S. Kang and S. Kwon (2021), Preparation and Performance Evaluation of Platinum Barium Hexaaluminate Catalyst for Green Propellant Hydroxylamine Nitrate Thrusters, Materials. 14(11), 2828.
[47] S. Hoyani, P. Patel, C. Oommen and R. Rajeev (2017), Thermal Stability of Hydroxylammonium Nitrate (HAN), Journal of Thermal Analysis and Calorimetry 129(2), 1083-1093.
[48] H. OuYang, Synthesis Atmospheric Electrolytic Decomposition Characteristics of Hydroxylammonia Nitrate Aqueous Solutions, Master Thesis, National Cheng Kung University, Taiwan, 2020.
[49] K.I. Lao, Catalytic Decomposition of HAN-Based Monopropellants with Hexaaluminates, Master Thesis, National Cheng Kung University, Taiwan, 2022.
[50] R. Sasse (1990), Analysis of Hydroxylammonium Nitrate Based Liquid Propellants, BRL-TR-3154.
[51] R. Sasse (1998), Thermal Characteristics of Concentrated Hydroxylammonium Nitrate Solutions, BRL-MR-3651.
[52] T. Katsumi, H. Kodama, T. Matsuo, H. Ogawa, N. Tsuboi and K. Hori (2009), Combustion Characteristics of a Hydroxylammonium Nitrate Based Liquid Propellant. Combustion Mechanism and Application to Thrusters, Combustion, Explosion and Shock Waves 45(4), 442-453.
[53] Y.T. Chou, Electrolytic Decomposition Characteristics of Hydroxylammonium Nitrate Based Propellants, Master Thesis, National Cheng Kung University, Taiwan, 2022.
[54] DSG645:https://www.teo.com.tw/products?product_id=655, access on 28 May, 2023.
[55] PSW:https://www.gwinstek.com/zh-TW/products/detail/PSW-Series, access on 28 May, 2023.
[56] Miro 310 Lab:http://www.avelocidad.com/detalle.php?id_prod=26, access on 28 May, 2023.
[57] Rightek technologies: https://www.rightek.com.tw/product_list/%E5%82%85%E7%AB%8B%E8%91%89%E8%BD%89%E6%8F%9B%E7%B4%85%E5%A4%96%E7%B7%9A%E5%85%89%E8%AD%9Cftir%E5%88%86%E6%9E%90%E5%8E%9F%E7%90%86/, access on 28 May, 2023.
[58] Jing Teng technologies: https://www.pcbshop.org/tw/supplier/product_details.asp?ProID=1530&SupID=873, access on 28 May, 2023.
[59] Kctech: https://www.kctech.com.tw/%E5%A6%82%E4%BD%95%E4%BD%B, access on 28 May, 2023.
[60] The Precision Instruments Center, National Cheng Kung University: http://higem.ncku.edu.tw/index.php?option=module&lang=cht&task=showlist&id=333&index=3, access on 28 May, 2023.
[61] D. Setiorini S, TG-FTIR Study on Pyrolysis and Oxy-combustion Characteristics of Rice Straw and Husk, Master Thesis, National Cheng Kung University, Taiwan, 2015.
[62] S. Vyazovkin, A.K. Burham, J.M. Criado and L.A. Perez-Maqueda (2011), ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochimica Acta 520, 1-19.
[63] G.J. Lu, S.B. Wu and R. Lou (2010), Kinetic Study of Thermal Decomposition of Hemicellulose Isolated from Corn Stalk, Bioresources 5(2), 1281-1291.
[64] K. Jayaraman and I. Gökalp (2015), Pyrolysis, Combustion and Gasification Characteristics of Miscanthus and Sewage Sludge, Energy Conversion and management 89, 83-91.
[65] J. Opermann and E. Kaisersberger (1992), An Advantageous Variant of the Ozawa-Flynn-Wall Analysis, Thermochimica Acta 203, 167-175.
[66] A. Khawam and D.R. Flanagan (2006), Solid-State Kinetic Models: Basic and Mathematical Fundamentals, J. Phys. Chem. B 110, 17315-17328.
[67] N.K.K. Chai, E.M. Bugay, E. Boyer and R.A. Yetter (2023), High-Pressure Combustion of HAN-Based Monopropellants, 13th International Symposium on Special Topics in Chemical Propulsion, 16802.
[68] Y.P. Chang, Combustion Behavior of HAN-Based Liquid Propellants, Ph.D. Dissertation, The Pennsylvania State University, USA, 2002.
[69] R. Agnihotri and C. Oommen (2021), Kinetics and Mechanism of Thermal and Catalytic Decomposition of Hydroxylammonium Nitrate (HAN) Monopropellant, Propellants, Explosives, Pyrotechnics 46, 286-298.
[70] K. Slopiecka, P. Bartocci and F. Fantozzi (2012), Termogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis, Applied Energy 97, 491-497.
[71] H. Lee and T.A. Litzinger (2003), Chemical Kinetic Study of HAN Decomposition, Combustion and Flame 135, 151-169.