簡易檢索 / 詳目顯示

研究生: 金天慈
Chin, Tien-Tzu
論文名稱: 結合機器學習技術開發分析載子特性的多維半導體檢測技術
Development of Multi-dimensional Semiconductor Detection Technology for Carrier Characterization by a Machine Learning Based Technique
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 74
中文關鍵詞: 掃描電容顯微鏡非監督式機器學習有限元素分析法
外文關鍵詞: multi-dimensional scanning capacitance microscopy, unsupervised machine learning, finite element simulation
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體科技的發展,各式各樣的新穎材料逐漸地被開發以及元件尺寸的縮小,而如何去有效的分析及運用這些新穎半導體材料的電性特性。有許多種有效的分析量測方法,各個都有不同的優勢及特性。在眾多的測量模式中,掃描電容顯微鏡(SCM)是量測半導體元件重要的測量模式。通過SCM測量技術,我們可以獲得元件內部載子相關的訊息,然而SCM技術要求樣品表面有一層薄絕緣層,所以開發了新的量測技術,在基於靜電力顯微鏡(EFM)技術上的應用,將振幅調製的微波輸入到探針上,藉此量測靜態靜電力獲得電容相關訊息。
    結合了商用模擬軟體COMSOL Multiphysics 6.1的AC/DC低頻電磁靜電模組和半導體模組的非接觸電容模擬半導體檢測技術,探討探針與樣品間的電荷交互作用,解釋了一些實驗上電容量測中特殊現象的物理機制。
    機器學習不僅有顯著的去雜訊效果,還能透過聚類分群法在空間位置上將不同載子濃度的區域劃分出來,並分別對每個濃度區域的電壓譜進行主成分分析,從而分離出較乾淨的電容特徵曲線。我們也可以利用聚類分群法選取不同濃度進行分析,或者手動選取局部範圍進行分析,以彌補掃描電容顯微鏡在摻雜濃度靈敏度方面的不足。在標準樣品中,不同結構對應不同的摻雜濃度及種類,每個濃度對應不同的特徵曲線,我們可以整理出濃度與曲線之間的相對應關係。
    有限元素法的模擬幫助我們更了解不同參數是如何影響電容特徵曲線的行為,例如探針針尖的半徑大小和樣品表面氧化層厚度對電容訊號的強度和位置有影響。
    掃描電容顯微鏡對樣品的製備要求較高,需要在表面形成一層薄的絕緣層。因此,我們引入了振幅調製靜電力顯微鏡,這套量測方法不需要特殊樣品製備,並且可以量測到被掩埋在基板內部的摻雜結構,這對於半導體元件的量測具有優勢。振幅調製靜電力顯微鏡使用微波訊號產生器來對探針進行振幅調製,以獲得電容訊號。嘗試以量測不同直流偏壓下的高度譜來獲得電容電壓的特徵曲線,但關於摻雜濃度的定量分析還需要更進一步改善量測方法。

    With the rapid advancements in semiconductor technology and the development of various novel materials, as well as the miniaturization of device sizes, effective analysis and utilization of the electrical properties of these novel semiconductor materials have become crucial. There are numerous effective analysis and measurement methods, each with its advantages and characteristics. Among them, Scanning Probe Microscopy (SPM) is an efficient and non-invasive measurement technique. The application of Atomic Force Microscopy (AFM) within SPM is particularly widespread as it allows for effective nanoscale measurements and analysis without damaging the sample itself. When combined with the increasingly mature technology of Machine Learning, the analyzed data can reveal hidden information, and with the help of appropriate models and simulations, a clear understanding of the phenomena occurring during the measurements can be achieved, leading to better interpretation of experimental results.
    In measurements related to semiconductor materials, obtaining information about carrier properties inside the sample is often required. Scanning Capacitance Microscopy (SCM) is widely used for this purpose, enabling the observation of tiny variations in sample capacitance to analyze carrier concentration and types. However, factors influencing changes in sample capacitance go beyond just carrier type and concentration, including probe geometry, surface oxide thickness, trapped charges, defects, and sample size, among others.
    In this study, we combined the measurements of Scanning Capacitance Microscopy with simulations using the Finite Element Method to explain the behavior of atypical capacitance characteristic curves. Additionally, we employed Machine Learning to analyze experimental data from Scanning Capacitance Microscopy to extract more hidden carrier information.
    Due to the limitations of Scanning Capacitance Microscopy concerning sample structure, we established a new electrical characterization technique called Modulated Electrostatic Force Microscopy. This technique is based on the principles of electrostatic force microscopy and enables the measurement of dopant structures buried within silicon substrates. By coupling this technique with Finite Element Method simulations of capacitance-voltage curves, capacitance-height curves, capacitance-frequency curves, and other concentration-dependent parameters, quantitative measurements can be achieved. Furthermore, it can serve as a defect detector for analyzing flaws in semiconductor devices.

    摘要 I Abstract III 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第1章 緒論 1 第2章 文獻回顧 3 2.1 掃描電容顯微鏡定量分析 3 2.2 寬帶靜電力顯微鏡 (broadband electrostatic force microscopy, bb-EFM) 12 2.3 金屬-絕緣層-半導體結構 (MIS) 17 2.4 矩陣分解(Matrix factorization framework ) 20 第3章 實驗原理與方法 25 3.1 原子力顯微鏡 25 3.2 AFM運作原理與操作模式 26 3.3 靜電力顯微鏡(Electron Force Microscopy, EFM) 30 3.4 機器學習 33 3.5 主成分分析(Principal component analysis, PCA) 33 3.6 聚類分群分析法(clustering analysis) 35 3.7 有限元素法 36 第4章 結果與討論 39 4.1 掃描電容顯微鏡動態多維數據擷取 39 4.2 掃描電容顯微鏡(SCM)的機器學習進階分析 45 4.3 擷取頻率對MIS電容的影響 48 4.4 結合有限元素法對SCM信號分析 53 4.5 振幅調製靜電力顯微鏡(Amplitude modulation EFM, AM-EFM) 58 4.6 直流偏壓改變載子濃度 60 4.7 頻率及掃描高度對載子濃度的影響 64 第5章 結論 70 參考文獻 72

    1. Scanning Capacitance Microscopy ( SCM ) High Resolution and High Sensitivity Imaging of Charge Distribution. 2010.
    2. Nakagiri, N., et al., Application of scanning capacitance microscopy to semiconductor devices. Nanotechnology, 1997. 8(3A): p. A32.
    3. Zavyalov, V.V., J.S. McMurray, and C.C. Williams, Advances in experimental technique for quantitative two-dimensional dopant profiling by scanning capacitance microscopy. Review of Scientific Instruments, 1999. 70(1): p. 158-164.
    4. Zavyalov, V.V., J.S. McMurray, and C.C. Williams, Surface and tip characterization for quantitative two dimensional dopant profiling by scanning capacitance microscopy. AIP Conference Proceedings, 1998. 449(1): p. 753-756.
    5. Zavyalov, V.V., J.S. McMurray, and C.C. Williams, Noise in scanning capacitance microscopy measurements. Journal of Vacuum Science & Technology B, 2000. 18(3): p. 1125-1133.
    6. Beyer, R. and B. Schmidt, Scanning capacitance microscopy and the role of localized charges in dielectric films: Infering or challenging? Microelectronic engineering, 2007. 84(3): p. 376-381.
    7. Bowallius, O. and S. Anand, Evaluation of different oxidation methods for silicon for scanning capacitance microscopy. Materials science in semiconductor processing, 2001. 4(1-3): p. 81-84.
    8. Zavyalov, V.V., et al., Two dimensional dopant and carrier profiles obtained by scanning capacitance microscopy on an actively biased cross-sectioned metal–oxide–semiconductor field-effect transistor. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2000. 18(1): p. 549-554.
    9. Buh, G.H., C. Tran, and J.J. Kopanski, PSPICE analysis of a scanning capacitance microscope sensor. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004. 22(1): p. 417-421.
    10. Stephenson, R., et al., Nonmonotonic behavior of the scanning capacitance microscope for large dynamic range samples. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2000. 18(1): p. 405-408.
    11. Zavyalov, V.V., J.S. McMurray, and C.C. Williams, Scanning capacitance microscope methodology for quantitative analysis of p-n junctions. Journal of Applied Physics, 1999. 85(11): p. 7774-7783.
    12. Wang, L., et al., Investigation of tip-depletion-induced fail in scanning capacitance microscopy for the determination of carrier type. Ultramicroscopy, 2017. 174: p. 46-49.
    13. Yanev, V., et al., Characterization of thickness variations of thin dielectric layers at the nanoscale using scanning capacitance microscopy. Journal of Vacuum Science & Technology B, 2011. 29(1).
    14. Gramse, G., et al., Nanoscale imaging of mobile carriers and trapped charges in delta doped silicon p-n junctions. Nature Electronics, 2020. 3(9): p. 531-+.
    15. Gramse, G., et al., Dynamic electrostatic force microscopy in liquid media. Applied Physics Letters, 2012. 101(21).
    16. Neamen, D.A., Semiconductor physics and devices : basic principles. 4th ed. 2012, New York, NY: McGraw-Hill. xxiv, 758 p.
    17. Kannan, R., et al., Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform. Advanced Structural and Chemical Imaging, 2018. 4(1): p. 1-20.
    18. 曾賢德、果尚志, 奈米電性之掃描探針量測技術. 物理雙月刊, 2003. 廿五卷(五): p. 632-648.
    19. Huang, T. 機器/統計學習:主成分分析(Principal Component Analysis, PCA). 2018; Available from: https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8-%E7%B5%B1%E8%A8%88%E5%AD%B8%E7%BF%92-%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90-principle-component-analysis-pca-58229cd26e71.
    20. Hubert, L. and P. Arabie, Comparing partitions. Journal of Classification, 1985. 2(1): p. 193-218.
    21. Schubert, E., et al., DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst., 2017. 42(3): p. Article 19.
    22. Casper, C.B., et al., Electrostatic tip effects in scanning probe microscopy of nanostructures. Nanotechnology, 2021. 32(19): p. 195710.
    23. Application Note # 152 Performing Hyperspectral Mapping with AFM DataCube Nanoelectrical Modes. 2019.
    24. Kundhikanjana, W., et al., Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope. Semiconductor Science and Technology, 2013. 28(2): p. 025010.
    25. Nelson, M., et al., Two‐Dimensional Dopant Profiling of an Integrated Circuit Using Bias‐Applied Phase‐Imaging Tapping Mode Atomic Force Microscopy. Electrochemical and solid-state letters, 1999. 2(9): p. 475.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE