簡易檢索 / 詳目顯示

研究生: 李建賢
Lee, Chien-Hsien
論文名稱: 樑的非線性靜態分析
Nonlinear Static Analysis of Beam
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 97
中文關鍵詞: 非線性Adomian method移位函數靜態
外文關鍵詞: Adomian method, shifting function, nonlinear, static
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文在於探討非線性邊界樑與非線彈性基礎樑之靜態問題。本文利用移位函數求解非線性邊界問題。以及運用Adomian Decomposition Method直接求解非線性彈性基礎樑,本文所提出的方法,不需要經過任何簡化的步驟即可對強非線性系統求解,並能得到精度相當高的近似解析解,且可探討非線性參數對系統的影響。

    The study discuss the static analysis of beam with nonlinear boundary conditions and nonlinear foundation. In this paper, shifting function is used to solve nonlinear boundary problem, and Adomian Decomposition method is directly applied to nonlinear foundation problem. Without any assumption and simplifying for strong nonlinear system, one can obtain approximate analytic solutions with good precision, and can investigate the influence of nonlinear parameters on system by the present method.

    目 錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1非線性邊界文獻回顧 4 1.2.2非線性彈性基礎文獻回顧 5 1.3 研究動機與目的 7 1.4 論文架構 8 第二章 Adomian Decomposition Method 10 2.1分解法基本步驟 11 2.2分解法理論 11 2.3邊界值問題 16 2.3.1線性邊界值問題 16 2.3.2非線性邊界值問題 19 2.4 Adomian多項式之推導 24 2.5 Modified Adomian分解法 27 第三章 均勻Bernoulli-Euler樑物理模式的建立 30 3.1統御方程式及邊界條件 30 3.2無因次化統御方程式及邊界條件 36 3.2.1非線性邊界系統 36 3.2.2非線性彈性基礎系統 38 第四章 均勻樑具非線性邊界之求解 40 4.1變數變換法 40 4.2求解流程 45 4.2.1廣義移位函數和轉移函數 45 4.2.2移位函數的計算 48 4.2.3轉移函數的計算 51 4.2.4 系統解的計算 53 4.3簡化之統御方程式求解 54 第五章 均勻樑具非線性彈性基礎之求解 60 5.1解法流程 60 5.2物理意義 63 第六章 數值分析與討論 65 6.1非線性邊界系統分析 65 6.2非線性彈性基礎系統分析 71 6.3數值討論 75 第七章 結論 87 參考文獻 88 自述 97 表目錄 表6-1: 範例二之數值結果 78 表6-2: 範例三之數值結果 79 表6-3: 範例四之數值結果 80 表6-4: 範例五之數值結果 81 表6-5a: 不同K3值對無非線性項(K3 = 0)撓度差值比較表 82 表6-5b: 不同K3值對非線性項(K3 = 0.5)的撓度差值變化率 82 表6-6: 範例六之數值結果 83 表6-5: 不同K3值對非線性項(K3 = 0.5)的撓度差值變化率 84 圖目錄 圖1-1: 微型探針與樣品表面之關係 1 圖1-2(a): 微制動器示意圖 2 圖1-2(b): 微制動器示意圖 2 圖1-3: 彈性基礎樑示意圖 3 圖1-4: 彈簧之負載與位移關係圖 3 圖1-5: 樑端點彈性拘束示意圖 7 圖3-1 : 樑的微小截面在彈性基礎上之示意圖 30 圖3-2: 彈簧作用合力與分佈力合力示意圖 32 圖3-3 : 均勻樑非線性邊界系統示意圖 35 圖3-4 : 均勻樑非線性彈性基礎系統示意圖 35 圖5-1 : 均勻樑承受等效的橫向分布力示意圖 64 圖6-1 : 非線性彈性基礎,兩端彈性拘束,K3 對撓度的影響 85 圖6-2 : 非線性彈性基礎,左端絞支承,右端彈性拘束,K3對撓度的影響 86

    [1] M. Sathyamoorthy, J. F. Ellebracht , “Effect of nonlinear constitutive equation on vibrations of beams,” Meccanica , Vol.21, pp. 159-163, 1986.
    [2] G. A. Abu-Farsakh, S. A. Barakat, N. R. AI-Zoubi, “Effect of material nonlinearity in unidirectional composites on the behavior of beam structures,” Int. J. of Solids Structures, Vol. 37, pp. 2673-2694, 2000.
    [3] Y. Feng, C. W. Bert, “Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam,” Nonlinear Dynamics, Vol. 3, pp. 13-18 , 1992.
    [4] H. DU, M. K. LIM , K. M. LIEW, “A nonlinear finite element model for dynamics of flexible manipulators,” Mech. Math. Theory, Vol. 31, No. 8 pp. 1109-1119, 1996.
    [5] M. I. Qaisi, “A power series solution for the nonlinear vibration of beams,” Journal of Sound and Vibration, Vol. 199, No. 4, pp. 587-594, 1997.
    [6] R. F. Fung , S. C. Huang, “Dynamic modeling and vibration analysis of the atomic force microscope,” Transactions of ASME, Journal of Vibration and Acoustics, Vol. 123, pp. 502-509, 2001.
    [7] K. Wolf, O. Gottlieb, “Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated a piezoelectric layer,” Journal of Applied Physical,Vol. 91, No. 7, pp. 4701-4709, 2001.
    [8] 林昆蔚, “非接觸式原子力顯微鏡探針振動分析”, 國立成功大學機械工程學系碩士論文, 2003
    [9] 陳炳勳, “原子力顯微鏡V型微懸臂樑的分析”, 國立成功大學機械工程學系碩士論文, 2004
    [10] S. M. Lin, C. T. Liauh, W. R. Wang, S. H. Ho, “Analytic solutions of the first three frequency shifts of AFM non-uniform probe subjected to the Lennard–Jones force,” Ultramicroscope, Vol. 106 , pp. 508-515, 2006.
    [11] U. Rabe, E. Kester, W. Arnold, “Probing linear and nonlinear Tip-Sample interaction forces by atomic force acoustic microscope,” Surface and Interface Analysis,Vol. 27 , pp. 386-391, 1999.
    [12] J. A. Turner, “Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions,” Journal of Sound and Vibration, Vol. 275, pp. 177-191, 2004.
    [13] J. H. Kuang and C. J. Chen, “Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method,” J. Micromech. Microeng., Vol. 14, pp. 647-655, 2004.
    [14] J. H. Kuang, C. J. Chen, “Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuator,” Mathematical and Computer Modeling, Vol. 41, pp. 1479-1491, 2005.
    [15] N. Distefano, R. Todeschini, “A quasilinearization approach to the solution of elastic beams on nonlinear foundations,” Int. J. Solids Structures, Vol. 11, pp. 89-97, 1975.
    [16] F. W. Beaufait , P. W. Hoadley, “Analysis of elastic beams on nonlinear foundations,” Computers & Structures, Vol. 12, pp. 669-676, 1980.
    [17] D. Z. Yankelevsky, M. Eisenberger and M. A. Adin, “Analysis of beams on nonlinear Winkler foundation,” Computers & Structures, Vol.31, No. 2, pp. 287-292, 1989.
    [18] H. Matsuda, T. Sakiyama, “Analysis of beams on non-homogeneous elastic foundation,” Computers & Structures, Vol. 25, pp. 941-946, 1987.
    [19] G. V. Rao, N. R. Naidu, “Free vibration and stability behavior of uniform beams and columns with nonlinear elastic end rotational restraints,” Journal of sound and vibration, Vol. 176 pp.130-135, 1994.
    [20] T. F. Ma, J. D. Silva, “Iterative solutions for a beam equation with nonlinear boundary conditions of third order,” Applied Mathematics and Computation, Vol. 159,pp. 11-18, 2003.
    [21] W. K. Lee and M. H. Teo, “Two-mode interaction of a beam with a nonlinear boundary condition,” Transactions of ASME, Journal of vibration and Acoustics, Vol. 121, pp. 84-88, 1999.
    [22] M. Tabaddor, ‘‘Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam,’’ International Journal of Solids and Structures, Vol. 37, pp. 4915-4931, 2000.
    [23] S. P. Sharma and S. Dasgupta, “The beaming problem of axially constrained beams on nonlinear elastic foundations,” Int. J. Solids Structures, Vol. 11, pp. 853-859, 1975.
    [24] Y. H. Kuo and S. Y. Lee, “Defection of nonuniform beams resting on a nonlinear elastic foundation,” Computers & Structures, Vol. 51, No. 5, pp. 513-519, 1994.
    [25] A. H. Nayfeh, “Perturbation methods”, John Wiley, New York, 1973.
    [26] C. Massalas, “Fundamental frequency of vibration of a beam on a nonlinear elastic foundation,” Journal of Sound and Vibration, Vol. 54, No. 4, pp. 613-615, 1977.
    [27] C. Massalas, Comment on the “Fundamental frequency of vibration of a beam on a nonlinear elastic foundation,” Journal of Sound and Vibration, Vol. 58, No. 3, pp. 455-458, 1978.
    [28] V. Birman, “On the effect of nonlinear elastic foundation on free vibration of beams,” Journal of Applied Mechanics, Vol. 53, pp. 471-473, 1986.
    [29] A. H. Nayfeh, W. lacarbonara, “On the discretizaton of distributed-parameter systems with quadratic and cubic nonlinearities,” Nonlinear Dynamics, Vol. 13, pp. 203-220, 1997.
    [30] A. Maccari, “The asymptotic perturbation method for nonlinear continuous systems,” Nonlinear Dynamics, Vol. 19, pp. 1-18, 1999.
    [31] N. R. Naidu and G. V. Rao, “Free vibration and stability behaviour of uniform beams and columns on nonlinear elastic foundation,” Computers & Structures, Vol. 58, No. 6, pp. 1213-1215, 1996.
    [32] M. I. Qaisi, “Non-linear normal modes of a continuous system,” Journal of Sound and Vibration, Vol. 209, No. 4, pp. 561-569, 1998.
    [33] M. I. Qaisi, “Normal modes of a continuous system with quadratic and cubic non-linearities,” Journal of Sound and Vibration, Vol. 265, pp. 329-335, 2003.
    [34] F. Pellicano, F. Mastroddi, “Nonlinear dynamics of a beam on elastic foundation,” Vol. 14, pp. 335-355, 1997.
    [35] I. Coşkun, H. Engin, “Non-linear vibrations of a beam on an elastic foundation,” Journal of Sound and Vibration, Vol. 223, No. 3, pp. 335-354, 1999.
    [36] I. Coşkun, “Non-linear vibrations of a beam resting on a tensionless Winkler foundation,” Journal of Sound and Vibration, Vol. 236, No. 3, pp. 401-411, 2000.
    [37] Z. Celep, A. Malaika, M. Abu-Hussein, “Forced vibrations of a beam on a tensionless foundation,” Journal of Sound and Vibration, Vol.128,pp. 235-246, 1989.
    [38] M. H. Kargarnovin, D. Younessian, D. J. Thompson, C. J. C. Jones, ‘‘Response of beams on nonlinear viscoelastic foundations to harmonic moving loads,’’ Computers and Structures, Vol. 83, pp. 1865-1877, 2005.
    [39] C. K. Rao, S. Mirza, “A note on vibrations of generally restrained beams,” Journal of Sound and Vibration, Vol. 130, pp. 453-465, 1989.
    [40] H. K. Kim, M. S. Kim, “Vibration of beams with generally restrained boundary conditions using Fourier series,” Journal of Sound and Vibration, Vol. 245, No. 5, pp. 771-784, 2001.
    [41] G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Kluwer, Boston, MA, 1994.
    [42] R. Baker, D.G. Zeitoun, “Application of Adomian’s decomposition procedure to the analysis of a beam on random winkler support,” International Journal of Solids and Structures, Vol. 26, Issue 2, pp. 217-235, 1990.
    [43] M. Tatari, M. Dehghan, “The use of the Adomian decomposition method for solving multipoint boundary value problem,” Physica Scripta, Vol. 73, pp. 672-676, 2006.
    [44] M. Taman, “Adomian decomposition method for solving a cantilever beam of varying orientation with tip mass,” ASME Journal of Computational and nonlinear dynamics, Vol. 2, pp. 52-57, 2007.
    [45] S. Y. Lee, H. Y. Ke, "Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints," Int. J. Computer & Structures, Vol. 34, No. 3, pp. 421-429, 1990.
    [46] S. Y. Lee, Y. H. Kuo, "Exact solutions for the analysis of general elastically restrained nonuniform beams," ASME Journal of Applied Mechanics, Vol. 59,pp. S205-S212, 1992.
    [47] S. Y. Lee, S. M. Lin, "Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions," ASME Journal of Applied Mechanics, Vol. 63, No. 2, pp. 474-478, 1996.
    [48] S. Y. Lee, W. R. Wang, T. Y. Chen, "A general approach on the mechanical analysis of nonuniform beams with non-homogeneous elastic boundary conditions," ASME Journal of Vibration and Acoustics, Vol. 120, pp. 164-169, 1998.
    [49] E. Babolian, J. Biazar, A. R. Vahidi, “Solution of a system of nonlinear equations by Adomian decomposition method,” Applied Mathematics and Computation, Vol. 150, pp. 847-854, 2004.
    [50] X. G. Luo, “A two-step Adomian decomposition method,” Applied Mathematics and Computation, Vol.170, pp. 570-583, 2005.
    [51] J. Biazar, A. R. Amirtaimoori, “An analytic approximation to the solution of heat equation by Adomian decomposition method and restrictions of the method,” Applied Mathematics and Computation, Vol. 171, pp. 738-745, 2005.
    [52] M. M. Hosseini, “Adomian decomposition method with Chebyshev polynomials,” Applied Mathematics and Computation, Vol. 175, pp. 1685-1693, 2006.
    [53] A. M. Wazwaz, “A comparison between Adomian decomposition method and Taylor series method in the series solution,” Applied Mathematics and Computation, Vol. 97, pp. 97-44, 1998.
    [54] A. M. Wazwaz, “A reliable modification of Adomian decomposition method,” Applied Mathematics and Computation, Vol. 102, pp. 77-86, 1999.
    [55] A. M. Wazwaz, “Approximate solutions to boundary value problems of higher order by the modified decomposition method,” Computation and Mathematics with Applications, Vol. 40, pp. 677-691, 2000.
    [56] A. M. Wazwaz, “A new modification of the Adomian decomposition method for linear and nonlinear operators,” Applied Mathematics and Computation, Vol. 122, pp. 393-405, 2001.
    [57] A. M. Wazwaz, “A new method for solving singular initial value problems in the second-order ordinary differential equations,” Applied Mathematics and Computation, Vol. 128, pp. 45-57, 2002.
    [58] A. M. Wazwaz, “The Numerical solution of Special fourth-order boundary value problems by the modified decomposition method,” International journal of computer Mathematics, Vol. 79, No. 3, pp. 345-356, 2002.
    [59] A. M. Wazwaz, “The modified decomposition method for analytic treatment of differential equations,” Applied Mathematics and Computation, Vol. 173, pp. 165-176, 2006.
    [60] 邱青煌, “Adomian分解法應用在非線性散熱片之熱傳及熱應力之分析”, 國立成功大學機械工程學系碩士論文, 2001
    [61] Y. Cherruault, G. Saccomandi, B. Some, “New results for convergence of adomian’s method applied to integral equations,” Math. Comput. Modelling, Vol. 16, No. 2, pp. 85-93, 1992.
    [62] K. Abbaoui, Y. Cherruault, “Convergence of Adomian’s method applied to differential equations,” Computer and Mathematics with Applications, Vol. 28, Issue 5, pp. 103-109, 1994.
    [63] D. Kaya, I. E. Inan, “A convergence analysis of the ADM and an application,” Applied Mathematics and Computation, Vol. 161, pp. 1015-1025, 2005.
    [64] M. M. Hosseini, H. Nasabzadeh, “on the convergence of Adomian decomposition method,” Applied Mathematics and Computation, Vol. 182, pp. 536-543, 2006.
    [65] D. Z. Yankelevsky, Moshe Eisenberger, “Analysis of a beam column on elastic foundation,” Comput. Struct., Vol. 23, pp. 351-356, 1986.

    下載圖示 校內:2008-07-31公開
    校外:2010-07-31公開
    QR CODE