| 研究生: |
李建賢 Lee, Chien-Hsien |
|---|---|
| 論文名稱: |
樑的非線性靜態分析 Nonlinear Static Analysis of Beam |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 非線性 、Adomian method 、移位函數 、靜態 |
| 外文關鍵詞: | Adomian method, shifting function, nonlinear, static |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文在於探討非線性邊界樑與非線彈性基礎樑之靜態問題。本文利用移位函數求解非線性邊界問題。以及運用Adomian Decomposition Method直接求解非線性彈性基礎樑,本文所提出的方法,不需要經過任何簡化的步驟即可對強非線性系統求解,並能得到精度相當高的近似解析解,且可探討非線性參數對系統的影響。
The study discuss the static analysis of beam with nonlinear boundary conditions and nonlinear foundation. In this paper, shifting function is used to solve nonlinear boundary problem, and Adomian Decomposition method is directly applied to nonlinear foundation problem. Without any assumption and simplifying for strong nonlinear system, one can obtain approximate analytic solutions with good precision, and can investigate the influence of nonlinear parameters on system by the present method.
[1] M. Sathyamoorthy, J. F. Ellebracht , “Effect of nonlinear constitutive equation on vibrations of beams,” Meccanica , Vol.21, pp. 159-163, 1986.
[2] G. A. Abu-Farsakh, S. A. Barakat, N. R. AI-Zoubi, “Effect of material nonlinearity in unidirectional composites on the behavior of beam structures,” Int. J. of Solids Structures, Vol. 37, pp. 2673-2694, 2000.
[3] Y. Feng, C. W. Bert, “Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam,” Nonlinear Dynamics, Vol. 3, pp. 13-18 , 1992.
[4] H. DU, M. K. LIM , K. M. LIEW, “A nonlinear finite element model for dynamics of flexible manipulators,” Mech. Math. Theory, Vol. 31, No. 8 pp. 1109-1119, 1996.
[5] M. I. Qaisi, “A power series solution for the nonlinear vibration of beams,” Journal of Sound and Vibration, Vol. 199, No. 4, pp. 587-594, 1997.
[6] R. F. Fung , S. C. Huang, “Dynamic modeling and vibration analysis of the atomic force microscope,” Transactions of ASME, Journal of Vibration and Acoustics, Vol. 123, pp. 502-509, 2001.
[7] K. Wolf, O. Gottlieb, “Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated a piezoelectric layer,” Journal of Applied Physical,Vol. 91, No. 7, pp. 4701-4709, 2001.
[8] 林昆蔚, “非接觸式原子力顯微鏡探針振動分析”, 國立成功大學機械工程學系碩士論文, 2003
[9] 陳炳勳, “原子力顯微鏡V型微懸臂樑的分析”, 國立成功大學機械工程學系碩士論文, 2004
[10] S. M. Lin, C. T. Liauh, W. R. Wang, S. H. Ho, “Analytic solutions of the first three frequency shifts of AFM non-uniform probe subjected to the Lennard–Jones force,” Ultramicroscope, Vol. 106 , pp. 508-515, 2006.
[11] U. Rabe, E. Kester, W. Arnold, “Probing linear and nonlinear Tip-Sample interaction forces by atomic force acoustic microscope,” Surface and Interface Analysis,Vol. 27 , pp. 386-391, 1999.
[12] J. A. Turner, “Non-linear vibrations of a beam with cantilever-Hertzian contact boundary conditions,” Journal of Sound and Vibration, Vol. 275, pp. 177-191, 2004.
[13] J. H. Kuang and C. J. Chen, “Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method,” J. Micromech. Microeng., Vol. 14, pp. 647-655, 2004.
[14] J. H. Kuang, C. J. Chen, “Adomian decomposition method used for solving nonlinear pull-in behavior in electrostatic micro-actuator,” Mathematical and Computer Modeling, Vol. 41, pp. 1479-1491, 2005.
[15] N. Distefano, R. Todeschini, “A quasilinearization approach to the solution of elastic beams on nonlinear foundations,” Int. J. Solids Structures, Vol. 11, pp. 89-97, 1975.
[16] F. W. Beaufait , P. W. Hoadley, “Analysis of elastic beams on nonlinear foundations,” Computers & Structures, Vol. 12, pp. 669-676, 1980.
[17] D. Z. Yankelevsky, M. Eisenberger and M. A. Adin, “Analysis of beams on nonlinear Winkler foundation,” Computers & Structures, Vol.31, No. 2, pp. 287-292, 1989.
[18] H. Matsuda, T. Sakiyama, “Analysis of beams on non-homogeneous elastic foundation,” Computers & Structures, Vol. 25, pp. 941-946, 1987.
[19] G. V. Rao, N. R. Naidu, “Free vibration and stability behavior of uniform beams and columns with nonlinear elastic end rotational restraints,” Journal of sound and vibration, Vol. 176 pp.130-135, 1994.
[20] T. F. Ma, J. D. Silva, “Iterative solutions for a beam equation with nonlinear boundary conditions of third order,” Applied Mathematics and Computation, Vol. 159,pp. 11-18, 2003.
[21] W. K. Lee and M. H. Teo, “Two-mode interaction of a beam with a nonlinear boundary condition,” Transactions of ASME, Journal of vibration and Acoustics, Vol. 121, pp. 84-88, 1999.
[22] M. Tabaddor, ‘‘Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam,’’ International Journal of Solids and Structures, Vol. 37, pp. 4915-4931, 2000.
[23] S. P. Sharma and S. Dasgupta, “The beaming problem of axially constrained beams on nonlinear elastic foundations,” Int. J. Solids Structures, Vol. 11, pp. 853-859, 1975.
[24] Y. H. Kuo and S. Y. Lee, “Defection of nonuniform beams resting on a nonlinear elastic foundation,” Computers & Structures, Vol. 51, No. 5, pp. 513-519, 1994.
[25] A. H. Nayfeh, “Perturbation methods”, John Wiley, New York, 1973.
[26] C. Massalas, “Fundamental frequency of vibration of a beam on a nonlinear elastic foundation,” Journal of Sound and Vibration, Vol. 54, No. 4, pp. 613-615, 1977.
[27] C. Massalas, Comment on the “Fundamental frequency of vibration of a beam on a nonlinear elastic foundation,” Journal of Sound and Vibration, Vol. 58, No. 3, pp. 455-458, 1978.
[28] V. Birman, “On the effect of nonlinear elastic foundation on free vibration of beams,” Journal of Applied Mechanics, Vol. 53, pp. 471-473, 1986.
[29] A. H. Nayfeh, W. lacarbonara, “On the discretizaton of distributed-parameter systems with quadratic and cubic nonlinearities,” Nonlinear Dynamics, Vol. 13, pp. 203-220, 1997.
[30] A. Maccari, “The asymptotic perturbation method for nonlinear continuous systems,” Nonlinear Dynamics, Vol. 19, pp. 1-18, 1999.
[31] N. R. Naidu and G. V. Rao, “Free vibration and stability behaviour of uniform beams and columns on nonlinear elastic foundation,” Computers & Structures, Vol. 58, No. 6, pp. 1213-1215, 1996.
[32] M. I. Qaisi, “Non-linear normal modes of a continuous system,” Journal of Sound and Vibration, Vol. 209, No. 4, pp. 561-569, 1998.
[33] M. I. Qaisi, “Normal modes of a continuous system with quadratic and cubic non-linearities,” Journal of Sound and Vibration, Vol. 265, pp. 329-335, 2003.
[34] F. Pellicano, F. Mastroddi, “Nonlinear dynamics of a beam on elastic foundation,” Vol. 14, pp. 335-355, 1997.
[35] I. Coşkun, H. Engin, “Non-linear vibrations of a beam on an elastic foundation,” Journal of Sound and Vibration, Vol. 223, No. 3, pp. 335-354, 1999.
[36] I. Coşkun, “Non-linear vibrations of a beam resting on a tensionless Winkler foundation,” Journal of Sound and Vibration, Vol. 236, No. 3, pp. 401-411, 2000.
[37] Z. Celep, A. Malaika, M. Abu-Hussein, “Forced vibrations of a beam on a tensionless foundation,” Journal of Sound and Vibration, Vol.128,pp. 235-246, 1989.
[38] M. H. Kargarnovin, D. Younessian, D. J. Thompson, C. J. C. Jones, ‘‘Response of beams on nonlinear viscoelastic foundations to harmonic moving loads,’’ Computers and Structures, Vol. 83, pp. 1865-1877, 2005.
[39] C. K. Rao, S. Mirza, “A note on vibrations of generally restrained beams,” Journal of Sound and Vibration, Vol. 130, pp. 453-465, 1989.
[40] H. K. Kim, M. S. Kim, “Vibration of beams with generally restrained boundary conditions using Fourier series,” Journal of Sound and Vibration, Vol. 245, No. 5, pp. 771-784, 2001.
[41] G. Adomian, “Solving Frontier Problems of Physics: The Decomposition Method,” Kluwer, Boston, MA, 1994.
[42] R. Baker, D.G. Zeitoun, “Application of Adomian’s decomposition procedure to the analysis of a beam on random winkler support,” International Journal of Solids and Structures, Vol. 26, Issue 2, pp. 217-235, 1990.
[43] M. Tatari, M. Dehghan, “The use of the Adomian decomposition method for solving multipoint boundary value problem,” Physica Scripta, Vol. 73, pp. 672-676, 2006.
[44] M. Taman, “Adomian decomposition method for solving a cantilever beam of varying orientation with tip mass,” ASME Journal of Computational and nonlinear dynamics, Vol. 2, pp. 52-57, 2007.
[45] S. Y. Lee, H. Y. Ke, "Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints," Int. J. Computer & Structures, Vol. 34, No. 3, pp. 421-429, 1990.
[46] S. Y. Lee, Y. H. Kuo, "Exact solutions for the analysis of general elastically restrained nonuniform beams," ASME Journal of Applied Mechanics, Vol. 59,pp. S205-S212, 1992.
[47] S. Y. Lee, S. M. Lin, "Dynamic analysis of nonuniform beams with time-dependent elastic boundary conditions," ASME Journal of Applied Mechanics, Vol. 63, No. 2, pp. 474-478, 1996.
[48] S. Y. Lee, W. R. Wang, T. Y. Chen, "A general approach on the mechanical analysis of nonuniform beams with non-homogeneous elastic boundary conditions," ASME Journal of Vibration and Acoustics, Vol. 120, pp. 164-169, 1998.
[49] E. Babolian, J. Biazar, A. R. Vahidi, “Solution of a system of nonlinear equations by Adomian decomposition method,” Applied Mathematics and Computation, Vol. 150, pp. 847-854, 2004.
[50] X. G. Luo, “A two-step Adomian decomposition method,” Applied Mathematics and Computation, Vol.170, pp. 570-583, 2005.
[51] J. Biazar, A. R. Amirtaimoori, “An analytic approximation to the solution of heat equation by Adomian decomposition method and restrictions of the method,” Applied Mathematics and Computation, Vol. 171, pp. 738-745, 2005.
[52] M. M. Hosseini, “Adomian decomposition method with Chebyshev polynomials,” Applied Mathematics and Computation, Vol. 175, pp. 1685-1693, 2006.
[53] A. M. Wazwaz, “A comparison between Adomian decomposition method and Taylor series method in the series solution,” Applied Mathematics and Computation, Vol. 97, pp. 97-44, 1998.
[54] A. M. Wazwaz, “A reliable modification of Adomian decomposition method,” Applied Mathematics and Computation, Vol. 102, pp. 77-86, 1999.
[55] A. M. Wazwaz, “Approximate solutions to boundary value problems of higher order by the modified decomposition method,” Computation and Mathematics with Applications, Vol. 40, pp. 677-691, 2000.
[56] A. M. Wazwaz, “A new modification of the Adomian decomposition method for linear and nonlinear operators,” Applied Mathematics and Computation, Vol. 122, pp. 393-405, 2001.
[57] A. M. Wazwaz, “A new method for solving singular initial value problems in the second-order ordinary differential equations,” Applied Mathematics and Computation, Vol. 128, pp. 45-57, 2002.
[58] A. M. Wazwaz, “The Numerical solution of Special fourth-order boundary value problems by the modified decomposition method,” International journal of computer Mathematics, Vol. 79, No. 3, pp. 345-356, 2002.
[59] A. M. Wazwaz, “The modified decomposition method for analytic treatment of differential equations,” Applied Mathematics and Computation, Vol. 173, pp. 165-176, 2006.
[60] 邱青煌, “Adomian分解法應用在非線性散熱片之熱傳及熱應力之分析”, 國立成功大學機械工程學系碩士論文, 2001
[61] Y. Cherruault, G. Saccomandi, B. Some, “New results for convergence of adomian’s method applied to integral equations,” Math. Comput. Modelling, Vol. 16, No. 2, pp. 85-93, 1992.
[62] K. Abbaoui, Y. Cherruault, “Convergence of Adomian’s method applied to differential equations,” Computer and Mathematics with Applications, Vol. 28, Issue 5, pp. 103-109, 1994.
[63] D. Kaya, I. E. Inan, “A convergence analysis of the ADM and an application,” Applied Mathematics and Computation, Vol. 161, pp. 1015-1025, 2005.
[64] M. M. Hosseini, H. Nasabzadeh, “on the convergence of Adomian decomposition method,” Applied Mathematics and Computation, Vol. 182, pp. 536-543, 2006.
[65] D. Z. Yankelevsky, Moshe Eisenberger, “Analysis of a beam column on elastic foundation,” Comput. Struct., Vol. 23, pp. 351-356, 1986.