簡易檢索 / 詳目顯示

研究生: 林鴻濱
Lin, Hung-Pin
論文名稱: 以電鍍與熱機製程製備方向性鐵鈀合金之研究
Study of Preferred Orientation in FePd Alloy Prepared by Electrodeposition and Thermo-mechanical Processes
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 210
中文關鍵詞: X光繞射電子背向散射繞射鐵鈀冷軋再結晶織構顯微組織電鍍
外文關鍵詞: XRD, EBSD, FePd, Cold Rolling, Recrystallization, Microstructure, Texture, Electrodeposition
相關次數: 點閱:106下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 等原子鐵鈀合金因其具有較佳的延展性以及在c軸的高磁晶異向性,因而被視為潛力的磁紀錄和高溫磁性應用之材料。由於鐵鈀的c軸優選方位之控制在磁性應用非常重要。因此,本論文將以電鍍與熱機製程方法製備方向性鐵鈀合金。由實驗的結果顯示,電鍍鐵鈀薄膜在500°C、600°C和700°C下退火1小時分別具有<101>,<111>和<421>方向。矯頑磁力隨著退火溫度增加而減少,而平均晶粒尺寸隨著溫度增加而增加。
    此論文首先提出相關係數(correlation coefficient)來定量織構量測的相似度。實驗結果與X光繞射(X-ray diffraction, XRD)比較後顯示電子背向散射繞射(electron backscatter diffraction, EBSD)的掃描間距範圍介於1−20 µm之間時,相關係數的數值在冷軋50%以及88%後的試片上趨近於1。結果顯示可以利用20 µm掃描間距在較短的時間內測量織構。
    對於熱機製程,冷軋50%的鐵鈀合金其微觀結構主要顯示雙晶層帶以及細雙晶,變形織構為Twin Copper{552}<115>和Copper{112}<111>方位。此外,當冷軋變形量增加至90%時,觀察到的顯微組織則是以細次晶粒與剪切帶為主,並且顯示Goss{011}<100>和Brass{011}<112>等冷軋織構,並且Copper織構的強度隨著變形程度增加而減少。
    在序化溫度為530°C下退火後,冷軋50%以及90%厚度減少的鐵鈀合金完全再結晶分別發生在退火時間為400小時和16小時。冷軋50%的試片從Copper織構轉變成為(010)[1101]為主的優選方位,而90%厚度減少的試片經過完全再結晶之後其再結晶織構則是主要為(054)[22-45]方位,並且保留Goss和Brass變形織構。在退火時間為16小時,冷軋50%以及90%的試片可得到最大矯頑磁力分別為932 Oe和519 Oe,而平均晶粒大小分別為2.54 μm和1.57 μm。
    實驗結果顯示在無序化溫度為700°C下退火後,冷軋50%的鐵鈀合金完全再結晶發生在退火時間為48小時,並且具有(-1294)[401]和(558)[-1-1510] 方位。而冷軋90%的試片完全再結晶發生在退火時間為1分鐘,其再結晶織構為(6115)[2-713]方位。

    FePd alloy has been considered as applications of potential magnetic recording and high temperature magnetic materials, due to exhibiting the high magneto-crystalline anisotropy and good ductile property. Thus, controlling preferential orientation of the c-axis is very importance in magnetic applications. In this thesis; as a result, employs electrodeposition and thermo-mechanical process to induce the preferential orientation in FePd alloy. Experimental results show that electrodeposited FePd films have <101>, <111> and <421> directions after annealing 500°C, 600°C and 700°C for 1 hr, respectively. The value of coercivity (Hc) is decreased with increasing temperatures, whereas the average grain size is increased.
    This thesis firstly proposes the concept of the correlation coefficient to quantify the similarity of texture. In comparison with X-ray diffraction (XRD), the experimental results of electron backscatter diffraction (EBSD) show that the correlation coefficient is close to 1 after 50% and 88% cold rolling in the step size range of 1 µm–20 μm. The results show that it can measure texture using a large scanning step of 20 μm at short time.
    For thermo-mechanical process, microstructures of cold-rolled 50% FePd alloy mainly exhibit twin lamella band and fine twin structures, deformation textures are the Twin Copper {552}<115> and Copper {112}<111>. Additionally, the microstructures consisting of fine subgrains and shear bands are observed in the sample of 90% deformation which has the rolling textures of Goss {011}<100> and Brass {011}<112> orientations. The intensity of Copper texture is decreased as increasing cold rolling degrees.
    During annealing at ordering temperature 530oC, full recrystallization occurs in 50% and 90% cold-rolled FePd alloy for 400 hr and 16 hr, respectively. Dominant texture in cold-rolled 50% sample changes from Copper type to (010)[1101] preferred orientation. Recrystallization texture (054)[22-45] is observed in sample of 90% thickness reduction after full recrystallization, and deformation textures of Goss and Brass are maintained. After 16 hr annealing, the maximum Hc exhibits 932 Oe with average grain size (1.57 μm) for 90% cold-rolled sample, which is 519 Oe with average grain size (2.54 μm) for 50% cold-rolled specimen, respectively.
    After 700oC annealing at disordering temperature, fully recrystallization of 50% cold-rolled FePd alloy take place for 48 hr, and recrystallized textures exhibit (-1294)[401] and (558)[-1-1510] orientations. In the case of 90% cold-rolled sample, completely recrystallization occurs after 1 min annealing, and the recrystallized texture is (6115)[2-713] orientation.

    Contents 1. Introduction and Purposes...............................1 1.1 Introduction...........................................1 1.2 Purposes...............................................3 2. Literature Reviews......................................5 2.1 High Temperature Magnetic Materials....................5 2.2 Magnetic Recording Materials..........................36 2.3 Deformed Textures and Microstructures of Low SFE Materials.................................................51 2.3.1 Deformed Microstructures of FCC alloys..............53 2.3.2 Deformed Textures of FCC alloys.....................64 2.4 Recrystallized Textures and Microstructures of Low SFE Materials.................................................76 2.4.1 Recrystallized Microstructures of FCC alloys........81 2.4.2 Recrystallized Textures of FCC alloys...............88 3. Exeriments.............................................98 3.1 Fabrication of Electrodeposited FePd film.............98 3.2 Preparation of FePd bulks............................100 3.3 Cold Rolling Processes...............................100 3.4 Annealing Conditions.................................102 3.5 Analysis Methodes....................................104 3.5.1 XRD................................................104 3.5.2 EBSD...............................................104 4. Texture and Magnetic Analysis of Annealed FePd Film...108 4.1 Introduction.........................................108 4.2 Texture Analysis.....................................108 4.3 Magnetic Properties..................................111 4.4 Summaries............................................113 5. Crystallographic Texture and Microstructure Characteristics of Cold-Rolled FePd Alloy................114 5.1 Introduction.........................................114 5.2 Comparison of Deformation Texture....................118 5.3 Effect of Scanning Size on Deformation Texture.......127 5.4 Crystallographic Texture Evolution...................137 5.5 Microstructure Development...........................146 5.6 Summaries............................................154 6. Recrystallization Behavior of Cold-Rolled FePd alloy..155 6.1 Introduction.........................................155 6.2 Recrystallization Behavior in Ordered State..........156 6.3 Recrystallization Texture in Ordered State...........167 6.4 Recrystallization Behavior in Disordered State.......176 6.5 Recrystallization Texture in Disordered State........183 6.6 Magnetic Characteristic..............................191 6.7 Summaries............................................194 7. Conclusions...........................................195 References...............................................197

    References
    [1] A. Boglietti, A. Cavagnino, A. Tenconi, and S. Vaschetto. The safety critical electric machines and drives in the more electric aircraft: a Survey. In: Proc. 35th IECON IEEE Conf., Porto, (2009) 2587–2594.
    [2] B.K. Bose. Power electronics and motor drives: Recent progress and perspective. IEEE Trans. Ind. Electron., 56 (2009) 581–588.
    [3] C. Hoffman, I.G. Hansen, R.F. Beach, R.M. Plencher, R.P. Dengler, K.S. Jefferies and R.J. Frye. Advanced Secondary Power System for Transport Aircraft. Washington, DC: NASA, ser. NASA Technical Paper, May (1985) 2463.
    [4] R.T. Fingers and C.S. Rubertus. Application of High Temperature Magnetic Materials. IEEE Trans. Magnet., 36 (2000) 3373–3375.
    [5] R.S. Sundar and S.C. Deevi. Soft magnetic FeCo alloys: alloy development, processing, and properties. Int. Mater. Rev., 50 (2005) 157–192.
    [6] B.S.D.Ch.S. Varaprasad , M. Chen , Y.K. Takahashi and K. Hono. L10 -Ordered FePt-Based Perpendicular Magnetic Recording Media for Heat-Assisted Magnetic Recording. IEEE Trans. Magnet., 49 (2013) 718–722.
    [7] R.T. Fingers, J.E. Coate and R.E. Dowling. Mechanical properties of iron-cobalt alloys for power applications. In: Proc. 32nd Intersoc. Energy Conv. Eng. Conf., Honolulu, 1 (1997) 563–568.
    [8] J.H. White and C.V. Wahl. Workable magnetic compositions containing principally iron and cobalt. US Patent 1,862,559, (1932).
    [9] L. Wang, Z. Fan, A.G. Roy and D.E. Laughlin. Effect of atomic ordering on the Curie temperature of FePd L10 type alloys. J. Appl. Phys., 95 (2004) 7493–7485.
    [10] D. Weller and A. Moser. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35 (1999) 4423–4439.
    [11] T. Klemmer, D. Hoydick, H. Okumura, B. Zhang and W.A. Soffa. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scr. Metall. Mater., 33 (1995) 1793–1805.
    [12] A.R. Deshpande, J.R. Blachere and J.M.K. Wiezorek. Texture evolution in combined reaction transformed equiatomic ferromagnetic L10-ordered FePd intermetallics. Scr. Mater., 54 (2006) 955–960.
    [13] D.T. Glass-Hooper. The electric control of large aeroplanes. Flight, 8 (1916) 1118.
    [14] J.W. Bennett and D.J. Atkinson. Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA). IEEE Trans. Ind. Electron., 59 (2012) 3523–3531.
    [15] J.A. Weimer. The role of electric machines and drives in the more electric aircraft. In Proc. IEEE IEMDC, 1 (2003) 11–15.
    [16] R.I. Jones. The more electric aircraft: The past and the future?. In Proc. IEE Colloq. Elect. Mach. Syst. More Elect. Aircr., (1999) 1/1–1/4.
    [17] T. Robin. From “fly-by-Wire” to “Power-by-Wire” More Electric for Green Plane. Presentation at Pollutec, lyon, France, (2008), available on http://www.pdfgeni.com/ref/fly-by-wire-pdf.html.
    [18] G.W. Elmen. Magnetic material and appliance. US patent No 1,739,752, (1929).
    [19] T. Nishizawa, K. Ishida. Binary alloy phase diagrams. 2nd ed. OH: ASM International, 2 (1990).
    [20] I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani and B. Sundman, et al. Phase equilibria in the Fe–Co binary system. Acta Mater., 50 (2002) 379–393.
    [21] T. Sourmail. Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties. Pro. Mater. Sci., 50 (2005) 816–880.
    [22] C. M. Orrock. PhD thesis, London University, 1986.
    [23] R.V. Major and C.M. Orrock. High saturation ternary cobalt–iron based alloys. IEEE Trans. Magn., 24 (1988) 1856–1858.
    [24] D. William and J.R. Callister. Materials science and engineering an introduction. Wiley, 4th ed. (1996) 160.
    [25] W. Mao, G. Zhu and Y. Yu. Influence of order-disorder transition on recrystallization behaviors of a cold rolled FeCo alloy. Z. Metallkd., 91 (2000) 211–214.
    [26] A. Duckham, D.Z. Zhang, D. Liang, V. Luzin, R.C. Cammarata and R.L. Leheny, et al. Temperature dependent mechanical properties of ultra-fine grained FeCo–2V. Acta Mater., 51 (2003) 4083–4093.
    [27] J.N. Deng, E. Bouzy, J.J. Fundenberger, R. Lin Peng, C.S. He and D.Z. Zhang et al. Textures and Local Textures in Severely Cold-Rolled and Annealed Ultra-Fine-Grained FeCo Alloy. Mater. Sci. For., 495–497 (2005) 731–736.
    [28] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak. Binary alloy phase diagrams. Materials Park, OH: ASM International, 2 (1996).
    [29] M. Rao and W.A. Soffa. The deformation behavior of the L10 ordered FePd alloy. Scr. Mater., 36 (1997) 735–740.
    [30] A.R. Deshpande, H. Xu and J.M.K. Wiezorek. Effects of grain size on coercivity of combined-reaction-processed FePd intermetallics. Acta Mater., 52 (2004) 2903–2911.
    [31] H. Kronmuller, K.D. Durst and M. Sagawa. Analysis of the magnetic hardening mechanism in Re-FeB permanent magnets. J. Magn. Magn. Mater., 74 (1988) 291–302.
    [32] H. Kronmuller. Micromagnetic background of hard magnetic materials. In: G.J. Long and F. Grandjean (Eds.), Supermagnets, Hard Magnetic Materials, Kluwer Academic Publishers, Netherlands, 331 (1991) 461–498.
    [33] H. Kronmüller and M. Fähnle. Micromagnetism and the microstructure of ferromagnetic solids. Cambridge: Cambridge University Press, (2003) 90–144.
    [34] T.J. Klemmera, C. Liua, N. Shuklaa, X.W. Wua, D. Wellera and M. Tanase et al. Combined reactions associated with L10 ordering. J. Magn. Magn. Mater., 266 (2003) 79–87.
    [35] D.E. Laughlin, K. Srinivasan, M. Tanase, and L. Wang. Crystallographic aspects of L10 magnetic materials. Scr. Mater., 53 (2005) 383–388.
    [36] S. Iwasaki and Y. Nakamura. Analysis for Magnetization mode for High-density magnetic recording. IEEE Trans. Magn., 13 (1977) 1272–1277.
    [37] R. Wood, Y. Hsu and M. Schulta. Perpendicular magnetic recording technology. Hitachi Global Storage Technologies.
    [38] G.H.O. Daalderop, P.J. Kelly and M.F.H. Schuurmans. Magnetocrystalline anisotropy and orbital moments in transition-metal compounds. Phys. Rev. B, 44 (1991) 12054–12057.
    [39] P. Caro, A. Cebollada, D. Ravelosona, F. Briones, D. García and M. Vázquez, et al. The influence of the Pt buffer layer on the perpendicular magnetic anisotropy in epitaxial FePd (001) ordered alloys grown by sputtering. J. Appl. Phys. 81 (1997) 5050–5052.
    [40] P. Entel and M.E. Gruner. Large-scale ab initio simulations of binary transition metal clusters for storage media materials. J. Phys.: Condens. Matter., 21 (2009) 064228(7pp).
    [41] D. Pečko, K.Z. Rožman, P.J. McGuiness, B. Pihlar and S. Kobe. Temperature-driven microstructure, compositional, and magnetic changes in electrodeposited Fe-Pd thin films. J. Appl. Phys., 107 (2010) 09A712-1–09A712-3.
    [42] D.H. Wei and Y.D. Yao. Controlling microstructure and magnetization process of FePd (001) films by staged thermal modification. Appl. Phys. Lett., 95 (2009) 172503-1–172503-3.
    [43] H. Naganuma, K. Sato and Y. Hirotsu. Fabrication of oriented L10-FeCuPd and composite bcc-Fe/L10-FeCuPd nanoparticles: Alloy composition dependence of magnetic properties. J. Appl. Phys., 99 (2006) 08N706-1–08N706-3.
    [44] J.R. Skuza, C. Clavero, K. Yang, B. Wincheski and R.A. Lukaszew. Microstructural, magnetic anisotropy, and magnetic domain structure correlations in epitaxial FePd thin films with perpendicular magnetic anisotropy. IEEE Trans. Magn., 46 (2010) 1886–1889.
    [45] J.G. Kang, J.G. Ha, J.H. Koh, S.M. Koo, M. Kamiko and S. Mitani et al. Atomic ordering and magnetic properties of polycrystalline L10-FePd dot arrays. Phys. B, 405 (2010) 3149–3153.
    [46] F.M. Takata, G. Pattanaik, W.A. Soffa, P.T.A. Sumodjo and G. Zangari. Synthesis of L10 Fe–Pd films by electrodeposition and thermal annealing. Electrochem. Commun., 10 (2008) 568–571.
    [47] F.M.F. Rhen, G. Hinds, C. O’Reilly and J.M.D. Coey. Electrodeposited FePt Films. IEEE Trans. Magn., 39 (2003) 2699–2701.
    [48] S. Thongmee, J. Ding, J.Y. Lin, D.J. Blackwood, J.B. Yi and J. H. Yin. FePt films fabricated by electrodeposition. J. Appl. Phys., 101 (2007) 09K519-1–09K519-3.
    [49] Z.L. Zhao, J. Ding, J. S. Chen, J. H. Zeng and J. P. Wang. The mechanism of Ag top layer on the coercivity enhancement of FePt thin films. J. Appl. Phys., 97 (2005) 10H502-1–10H502-3.
    [50] Z.L. Zhao, J.S. Chen, J. Ding, J.B. Yi, B.H. Liu and J. P. Wang. Fabrication and microstructure of high coercivity FePt thin films at 400oC. Appl. Phys. Lett., 88 (2006) 052503-1–052503-3.
    [51] R.A. Ristau, K. Barmak, L.H. Lewis, K.R. Colley and J. K. Howard. On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films. J. Appl. Phys., 86 (1999) 4527–4533.
    [52] N. Jia, F. Roters, P. Eisenlohr, C. Kords and D. Raabe. Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass. Acta Mater., 60 (2012) 1099–1115.
    [53] L.E. Murr. Interfacial Phenomena in Metals and Alloys. Addison-Wesley, Reading, (1975) 131.
    [54] R.E. Smallman and D. Green. The dependence of rolling texture on stacking fault energy. Acta Metall. 12 (1964) 145–154.
    [55] T. Leffers and R.K. Ray. The brass-type texture and its deviation from the copper-type texture. Pro. Mater. Sci., 54 (2009) 351–396.
    [56] H. Hu, R.S. Cline and S.R. Goodman. Deformation textures of metals. In: H. Margolin, (Eds). Recrystallization, grain growth and textures. Metals Park, American Society for Metals, (1966) 295–367.
    [57] B.J. Duggan, M. Hatherly, W.B. Hutchinson and P.T. Wakefield. Deformation structures and textures in cold-rolled 70:30 brass. Metal Sci., 12 (1978) 343–351.
    [58] N. Hansen. Cold deformation microstructures. Mater. Sci. Techn., 6 (1990) 1039–1047.
    [59] C. Donadille, R. Valle, P. Dervin and R. Penelle. Development of texture and microstructure during cold-rolling and annealing of F.C.C. alloys: Example of an austenitic stainless steel. Acta Metall., 37 (1989) 1547–1571.
    [60] T. Morikawa and K. Higashida. Deformation microstructure and texture in a cold-rolled austenitic steel with low stacking-fault energy. Mater. Trans., 51 (2010) 620–624.
    [61] J. Hirsch and K. Lücke. Mechanism of deformation and development of rolling textures in polycrystalline F.C.C. metals-I. Decription of rolling texture development in homogeneous CuZn alloys. Acta Metall., 36 (1988) 2863–2882.
    [62] F.J. Humphreys and M. Hatherly. Recrystallization and Related Annealing Phenomena, 2th ed. Elsevier; 2004.
    [63] G. Wassermann. Der Einfluss mechanischer Zwillingsbildung auf die Entstehung der Walztexturen kubisch flächenzentrierter Metalle. Z. Metallk., 54 (1963) 61–65.
    [64] J. Hirsch and K. Lücke. Mechanism of deformation and development of rolling textures in polycrystalline F.C.C. metals-II. Simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metall., 36 (1988) 2883–2904.
    [65] J. Hirsch, K. Lücke and M. Hatherly. Mechanism of deformation and development of rolling textures in polycrystalline F.C.C. metals-III. The influence of slip inhomogeneities and twinning. Acta Metall., 36 (1988) 2905–2927.
    [66] S.G. Chowdhury and S.D.P.K. De. Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel. Acta Mater., 53 (2005) 3951–3959.
    [67] J. Huber and M. Hatherly. Nucleation of recrystallized grains in heavily cold-worked α-brass. Met. Sci., 13 (1979) 665–669.
    [68] S.G. Chowdhury, S. Das, B. Ravikumar and P.K. De. Twinning-induced sluggish evolution of texture during recrystallization in AISI 316L stainless steel after cold rolling. Metall. Mater. Trans. A, 37 (2006) 2349–2359.
    [69] U. Schmidt and K. Lücke. Recrystallization textures of silver, copper and α-brasses with different zinc-contents as a function of the rolling temperature. Texture Cryst. Sol., 3 (1979) 85–112.
    [70] A.A. Saleh, E.V. Pereloma and A.A. Gazder. Texture evolution of cold rolled and annealed Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP steel. Mater. Sci. Eng., 528 (2011) 4537–4549.
    [71] R.L. Fullman and J.C. Fisher: J. Appl. Phys., 1951, vol. 22, p. 1350.
    [72] J. Hirsch: Seventh Riso Intl. Symposium, edited by N. Hansen et al.1986, p. 349.
    [73] B.Y. Yoo, S.C. Hernandez, B. Koo, Y. Rheem and N.V. Myung. Electrochemically fabricated zero-valent iron, iron-nickel, and iron-palladium nanowires for environmental remediation applications. Water. Sci. Techn., 55 (2007) 149–156.
    [74] P. Juzikis, M.U. Kittel and Ch.J. Raub. Electrolytic deposition of palladium-iron alloys. Plat. Surf. Finish., 81 (1994) 59–62.
    [75] T.S. Ng. Effect of Cold Rolling on Texture and Microstructure in FePd alloys. Department of Materials Science and Engineering, National Cheng-Kung University. (2012)
    [76] G.M. Gushchin and F.N. Berseneva. Fiz. Microstructure and kinetics of ordering in quenched FePd alloys. Met. Metalloved., 63 (1987) 926–935.
    [77] N.R. Joshi and Jr.RE. Green. Continuous X-ray diffraction measurement of lattice rotation during tensile deformation of aluminium crystals. J. Mater. Sci., 15 (1980) 729–738.
    [78] A. Alankar, D.P. Field and H.M. Zbib. Explicit incorporation of cross-slip in a dislocation density-based crystal plasticity model. Philos. Mag. 92 (2012) 3084–3100.
    [79] I.L. Dillamore, E. Butler and D. Green. Crystal rotations under conditions of imposed strain and the influence of twinning and cross-slip. Met. Sci., 2 (1968) 161–167.
    [80] S.R. Goodman and H. Hu. Texture transition in austenitic stainless steels. Trans. Metall. Soc. AIME, 230 (1964) 1413–1419.
    [81] W.B. Hutchinson, B.J. Duggan and M. Hatherly. Development of deformation texture and microstructure in cold-rolled Cu-30% Zn. Metals Tech., 6 (1979) 398–403.
    [82] T. Kamijo amd K. Sekine. On the mechanism of texture transition in FCC metals. Metall. Trans., 1 (1970) 1287–1292.
    [83] T. Leffers. The origin of the FCC rolling-texture component with (111) parallel to the rolling plane. In: G. Gottstein and K. Luecke (Eds), Proceedings of the Fifth International Conference on Textures of Materials, Berlin: Springer-Verlag, (1978) 357–365.
    [84] J.A. Venables, C.J. Harland and A. Bin-Jaya. Crystal lographic orientation determination in the SEM using electron back-scattering patterns and channel plates. In: J.A. Venables (Eds.), Developments in electron microscopy and analysis. Academic Press, London, (1976) 101–104.
    [85] D.J. Dingley. On-line determination of crystal orientation and texture determination in an SEM. Proc. Royal Microsc. Soc. 19 (1984) 74–75.
    [86] D.J. Dingley. In: J.S. Kallend and G. Gottstein (Eds), Proc. 8th Int. Conf. on Textures of Materials (ICOTOM 8), The Metallurgical Society, Warrendale, PA, (1988) 189–94.
    [87] K. Mehnert, H.S. Ubhi, A.P. Day. Comparison of texture data measured by ESBD and conventional x-ray diffraction, In: J.A. Szpunar (Eds.), Proc. 12th Int. Conf. on Textures of Materials. NRC Research Press, Canada, (1999) 217–222.
    [88] J.J. Kearns. Thermal expansion and preferred orientation in zircaloy (LWBR Development Program), WAPD-TM-472, Bettis Atomic Power Lab, Pittsburgh, PA, USA (1965).
    [89] A.R. Deshpande, A. Al-Ghaferi, H.P. Xu and H. Heinrich and J.M.K. Wiezorek. Microsturcture-property evolution in cold-worked equiatomic Fe-Pd during isothermal annealing at 500oC. In: M.A. Meyers, R.O. Ritchie and M. Sarikaya, (Eds). Nano and Microstructural Design of Advanced Materials, Elsevire Science, (2003) 129–142.
    [90] D.R. Anderson, D.J. Sweeney and T.A. Williams. Statistics for business and economics, 7th ed. South-Western cengage learning, (2011).
    [91] S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants. Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater., 52 (2004) 2005–2012.
    [92] A.J. Schwartz, M. Kumar, B.L. Adams and D.P. Field. Electron Backscatter Diffraction in Materials Science, 2th ed. Springer; 2009.
    [93] R.O. Williams. Shear textures in copper, brass, aluminum, iron and, zirconium. Trans. Metall. Soc. AIME, 224 (1962) 129–139.
    [94] H. Li, F. Yin, T. Sawaguchi, K. Ogawa, X. Zhao and K. Tsuzaki. TEM observation of the restrained Goss-Brass orientation transformation in a warm-rolled Fe-28Mn-6Si-5Cr shape memory alloy. Phil. Mag. Lett., 89 (2009) 348–357.
    [95] P.L.O. Rossi and C.M. Sellars. Quantitative metallography of recrystallization. Acta Mater., 45 (1997) 137–148.
    [96] M.P. Black and R.L. Higginson. An investigation into the use of electron back scattered diffraction to measure recrystallized fraction. Scr. Mater., 41 (1999) 125–129.
    [97] E. Woldt and D.J. Jensen. Recrystallization kinetics in copper: comparison between techniques. Metall. Mater. Trans. A, 26A (1995) 1717– 1724.
    [98] J. Tarasiuk, Ph. Gerber and B. Bacroix. Estimation of recrystallized volume fraction from EBSD data. Acta Mater., 50 (2002) 1467–1477.
    [99] F. Caleyo, T. Baudin and R. Penelle. Study of the development of the cube texture in Fe-50% Ni during recrystallization and normal grain growth. Eur. Phys. J. Appl. Phys., 20 (2002) 77–89.
    [100] J.L. Bocos, E. Novillo, M.M. Petite, A. Iza-Mendia and I. Gutierrez. Aspects of orientation-dependent grain growth in extra-low carbon and interstitial-free steels during continuous annealing. Metall. Mater. Trans. A, 34A (2003) 827–839.
    [101] D. Dingley. Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J. Microsc., 213 (2004) 214–224.
    [102] M.H. Alvi, S. Cheong, H. Weiland and A.D. Rollett. Recrystallization and texture development in hot rolled 1050 aluminium. Mater. Sci. Forum, 467–470 (2004) 357–362.
    [103] A.D. Rollett, M. Alvi, A. Brahme, J. Fridy, H. Weiland, J. Suni, et al. Texture-dependent recrystallization in aluminium 1050. Mater. Forum, 28 (2004) 1173–1178.
    [104] A.N. Kolmogorov. A statistical theory for the recrystallization of metals. Isz. Akad. Nauk. SSR. Ser. Fiz., 3 (1937) 355–359.
    [105] W.A. Johnson and R. Mehl. Reaction kinetics in processes of nucleation and growth. Trans. AIME., 135 (1939) 416–441.
    [106] M. Avrami. Kinetics of phase change. II: Transformation-time relations for random distribution of nucle. J. Chem. Phys., 7 (1939) 1103–1112.
    [107] M. Avrami. Kinetics of phase change. II: Transformation-time relations for random distribution of nucle. J. Chem. Phys., 8 (1940) 212–224.
    [108] M. Avrami. Kinetics of phase change. II: Transformation-time relations for random distribution of nucle. J. Chem. Phys., 9 (1941) 177–184.
    [109] J.W. Cahn. Transformation kinetics during continuous cooling. Acta Metall., 4 (1956) 572–575.
    [110] S. Mandal, A.K. Bhaduri and V.S. Sarma. Influence of state of stress on dynamic recrystallization in a titanium-modified austenitic stainless steel. Metal. Trans. A, 43 (2012) 410–414.
    [111] D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo. The role of annealing twins during recrystallization of Cu. Acta Mater., 55 (2007) 4233–4241.
    [112] W.D. Hutchinson, F.M.C. Besag and C.V. Honess. The annealing behavior of cold worked copper-25 at.% gold. Acta Met., 21 (1973) 1685–1691.
    [113] T. Takasugi and O. Izumi. High temperature strength and ductility of polycrystalline Co3Ti. Acta Met., 33 (1985) 39–48.
    [114] A.E. Vidoz, D.P. Lazarevic and R.W. Cahn. Strain-ageing of ordering alloys, with special reference to the nickel-iron system. Acta Met., 11 (1963) 17–33.
    [115] D.W. Clegg and R.A. Buckley. The disorder→order transformation in iron-cobalt-based alloys. Met. Sci., 7 (1973) 48–54.
    [116] S.I. Wright, M.M. Nowell, D.P. Field. A review of strain analysis using electron backscatter diffraction. Microsc. Microanal., 17 (2011) 316–329.
    [117] C.S. Pande, M.A. Imam, B.B. Rath. Study of annealing twins in FCC metals and alloys. Met. Trans. A, 21A (1990) 2891–2896.
    [118] A.R. Deshpande, A. Al-Ghaferi, H. Xu, H. Heinrich, J.M.K. Wiezorek. Microstructure-property evolution in cold-worked equiatomic Fe-Pd during isothermal annealing at 500oC. Nano and Microstructural Design of Advanced Materials, (2003) 129–142.

    下載圖示 校內:2019-08-15公開
    校外:2019-08-15公開
    QR CODE