簡易檢索 / 詳目顯示

研究生: 高臆茹
Kao, Yi-Ju
論文名稱: 人類PALLD基因於肌原母細胞之鑑定及表徵分析
Indentification and Characterization of human PALLD gene in myoblast
指導教授: 王浩文
Wang, Hao-Ven
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: palladin肌動蛋白為絲啟動子HSkM
外文關鍵詞: microfilament, Palladin, promoter, human skeletal muscle myoblast
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌動蛋白微絲(actin filament)為細胞骨架三大組成結構之一,參與了許多細胞活動,例如:細胞遷移、分裂和原質的流動、囊泡運輸、維持細胞結構及肌肉收縮。目前研究中已知微絲和許多微絲結合蛋白(ABP; Actin-binding protein)互相結合共同調節微絲的動態,如組裝及拆解,進而影響細胞的機械性。Palladin是微絲結合蛋白之一,也是一種鷹架蛋白,為Myotilin/Myopalladin/Palladin家族一員。人類Palladin基因稱為PALLD基因,擁有不同的起始位置及選擇性剪切(alternative splicing)的特性,使得人類palladin約有9種不同大小的異構物。目前主要研究的異購物有三種:200 kDa isoform、140 kDa isoform及90 kDa isoform,三種異構物在不同組織中的表現量級分佈情況會有所不同。本篇研究主要探討人類palladin三種異構物在骨骼肌分化過程中基因的調控、表現量的變化及palladin在分化過程蛋白的分佈。我們利用cloning的技術製作出三種異構物個片段的質體,再利用螢火蟲冷光酶系統(luciferase assay)檢測可能的啟動子活性,最後使用PROMO網站搜尋可能參與調控的轉錄因子。發現human palladin 200 kDa isoform轉錄因子調控片段位於第1個外顯子前-1644~-903片段;140 kDa isoform 位於第4個外顯子前-1010~+190片段;90 kDa isoform位於第15個外顯子前-948~-105片段。接著探討PALLD基因在人類骨骼肌(HSkM)分化過程RNA及蛋白質表現變化,我們利用了即時聚合酶連鎖反應(real-time PCR)及西方墨點法(Western blotting)兩種技術,發現90kDa isoform會隨著分化天數增加,表現量先增加在緩慢減少。最後利用免疫螢光染色法來觀察palladin在骨骼肌分化過程中表現位置分佈及與其他蛋白質交互作用的關係,由結果發現actin及α-actinin會與palladin有共區域化情況,與前人研究相符;vinculin會與palladin有部分重疊的情況;其它蛋白如desmin、dystrophin、myosin heavy chain、myosin light chain並無與palladin有共區域化現象。本篇結果得到palladin 90 kDa iosform參與人類骨骼肌分化過程,而詳細調控機制及內容,在未來還須透過更多研究來釐清,建構出更完整的機制。

    Palladin is a microfilament associated protein, which belongs to palladin/myotilin/myopalladin family. Palladin is widely expressed in both epithelial and mesenchymal tissues, including heart and the nervous system. Previous study indicated palladin is recognized three distinct isoforms, the 200kDa isoform, 140kDa isoform and 90~92 kDa isoform. These three isoforms are generated via alternative splicing and alternative start-site. Then, Palladin is reported to interact with several actin associated proteins and further impact on cell movement and adhesion. With regard to cancer, the presence of an abnormal palladin gene and the over expression of palladin protein in pancreatic or breast cancer cause cytoskeletal changes and contribute to the tumor’s strong invasive and migratory abilities. The main aim in this study is to characterize the promoter region which controls the expression of three palladin isoforms during myogenesis. First, we utilized online database promoter prediction program to search the potential promoter region of palladin, and analysis the promoter core region reporter by luciferase reporter assay and find out the putative transcription factor binding sites. The potential promoter regions located between -1589 and -903 upstream of 200 kDa isoform, and located between -1010 and +190 upstream of 140 kDa isoform, and located between -948 and -105 upstream of 90 kDa isoform. In addition, we investigated endogenous mRNA and protein expression level of three kinds of palladin by real-time PCR and Western blotting. From our results, we found 90 kDa isoform may play an important role during human skeletal myoblast differentiation. Furthermore, we utilized the immunofluoresence staining to study palladin expression pattern. We found palladin may colocalize with actin, α-actinin, nebulin, and partially overlap with vinculin during myogenesis. Taken together, we offered some important information about human PALLD gene expression during myoblasts differentiation. We hope our research will provide more information for physiological development and disease studies in the future.

    目錄 摘要................................................................................................................................ I 英文延伸摘要...............................................................................................................II 致謝...............................................................................................................................V 目錄..............................................................................................................................VI 表目錄..........................................................................................................................IX 圖目錄...........................................................................................................................X 1.前言.............................................................................................................................1 1.1細胞骨架..............................................................................................................1 1.1.1微管...............................................................................................................1 1.1.2中間絲...........................................................................................................2 1.1.3微絲...............................................................................................................2 1.2.肌動蛋白細胞骨架..............................................................................................3 1.2.1肌動蛋白異構物及其功能...........................................................................3 1.2.2肌動蛋白結合蛋白.......................................................................................4 1.2.3橫紋肌的肌動蛋白細胞骨架.......................................................................5 1.3 Palladin的發現....................................................................................................5 1.3.1 Palladin/Myotilin/Myopalladin蛋白家族.....................................................6 1.3.2人類PALLD基因及其異構物......................................................................7 1.3.3 Palladin關聯蛋白.........................................................................................7 1.3.4 Palladin表現分佈及其功能相關研究探討.................................................9 1.3.5 Palladin相關疾病.......................................................................................10 1.4研究動機與目的................................................................................................12 2.材料方法...................................................................................................................13 2.1細胞解凍與培養................................................................................................13 2.2細胞繼代培養及細胞計數................................................................................13 2.3預測人類PALLD基因之啟動子可能區域........................................................14 2.4細胞基因體DNA萃取......................................................................................14 2.5 DNA選殖質體製備...........................................................................................15 2.6人類肌原母細胞質體DNA轉染.......................................................................18 2.7螢光酶報導基因檢測........................................................................................19 2.8 RNA萃取與即時聚合酶連鎖反應...................................................................19 2.9蛋白質萃取及定量............................................................................................21 2.10西方墨點法(Western Blot) ..............................................................................22 2.11免疫螢光染色(Immunofluorescence staining).................................................24 3.結果...........................................................................................................................26 3.1人類三種 PALLD gene isoform不同啟動子片段活性測試.............................26 3.2人類三種 PALLD gene isoform不同啟動子片段轉錄因子結合位之預測.....26 3.3人類三種palladin isoforms在肌原母細胞分化過程中mRNA表現量.........28 3.4人類三種palladin isoforms在肌原母細胞分化過程中蛋白表現量................29 3.5 Palladin與肌動蛋白及其相關蛋白在人類肌原母細胞分化過程中的分 佈位置................................................................................................................29 3.6 Palladin與myosin在人類肌原母細胞分化過程中的分佈位置......................31 3.7 Palladin與Desmin在人類肌原母細胞分化過程中的分佈位置.....................32 3.8 Palladin與Dystrophin在人類肌原母細胞分化過程中的分佈位置...............33 3.9 Palladin與Vinculin在人類肌原母細胞分化過程中的分佈位置....................33 4.討論...........................................................................................................................35 4.1人類三種PALLD gene isoform不同啟動子片段活性測試及轉錄因子預測..35 4.2人類三種PALLD gene isoform在人類肌原母細胞分化過程中mRNA及蛋白 表現量................................................................................................................37 4.3人類Palladin與actin可能有共區域化現象.....................................................38 4.4人類Palladin與α-actinin可能有部分共區域化現象......................................39 4.5人類Palladin與Nebulin可能有部分共區域化現象........................................39 4.6人類Palladin與Myosin的表現分布.................................................................40 4.7 Palladin與Desmin在人類肌原母細胞分化過程中成絲狀分布於細胞膜 周圍....................................................................................................................41 4.8 Palladin與Dystrophin在人類肌原母細胞分化過程中的變化.......................41 4.9 Palladin與Vinculin在人類肌原母細胞分化過程中的變化............................42 4.10結語..................................................................................................................42 5.參考文獻...................................................................................................................44 表..................................................................................................................................52 圖..................................................................................................................................67 附錄..............................................................................................................................87 表目錄 表一、PALLD gene 200 kDa isoform啟動子區域TATA-box結合位之預測..............52 表二、PALLD gene 200 kDa isoform啟動子區域MyoD結合位之預測.................53 表三、PALLD gene 200 kDa isoform啟動子區域E47結合位之預測(一).............54 表四、PALLD gene 200 kDa isoform啟動子區域E47結合位之預測(二)..........55 表五、PALLD gene 200 kDa isoform啟動子區域Myogenin結合位之預測...........56 表六、PALLD gene 140 kDa isoform啟動子區域TATA-box結合位之預測.........57 表七、PALLD gene 140 kDa isoform啟動子區域MyoD結合位之預測..................58 表八、PALLD gene 140 kDa isoform啟動子區域E47結合位之預測(一).........59 表九、PALLD gene 140 kDa isoform啟動子區域E47結合位之預測(二)...........60 表十、PALLD gene 140 kDa isoform啟動子區域Myogenin結合位之預測..............61 表十一、PALLD gene 90 kDa isoform啟動子區域TATA-box結合位之預測.......62 表十二、PALLD gene 90 kDa isoform啟動子區域MyoD結合位之預測................63 表十三、PALLD gene 90 kDa isoform啟動子區域E47結合位之預測(一)........64 表十四、PALLD gene 90 kDa isoform啟動子區域E47結合位之預測(二).........65 表十五、PALLD gene 90 kDa isoform啟動子區域Myogenin結合位之預測............66   圖目錄 圖一、肌動蛋白在細胞上構成不同細胞骨架結構的正面及側面簡化圖................67 圖二、Palladin/Myotilin/Myopalladin蛋白家族蛋白結構示意圖............................68 圖三、人類九種palladin isoform...............................................................................69 圖四、人類Palladin經由選擇性剪切(alternative splicing)產生各個不同異構物...70 圖五、Palladin相互作用蛋白和作用位點總結圖......................................................71 圖六、PALLD基因200 kDa isoform啟動子活性測試及轉錄因子結合位之預測...72 圖七、PALLD基因140 kDa isoform啟動子活性測試及轉錄因子結合位之預測..74 圖八、PALLD基因90 kDa isoform啟動子活性測試及轉錄因子結合位之預測....76 圖九、PALLD基因隨HSkM細胞分化mRNA表現量及蛋白表現量.......................78 圖十、Palladin與actin免疫螢光染色圖.....................................................................79 圖十一、Palladin與α-actinin免疫螢光染色圖..........................................................80 圖十二、Palladin與Nebulin免疫螢光染色圖............................................................81 圖十三、Palladin與MyHC免疫螢光染色圖.............................................................82 圖十四、Palladin與MLC免疫螢光染色圖.................................................................83 圖十五、Palladin與Desmin免疫螢光染色圖..........................................................84 圖十六、Palladin與Dystrophin免疫螢光染色圖.....................................................85 圖十七、Palladin與Vinculin免疫螢光染色圖.........................................................86

    Azatov, M., Goicoechea, S. M., Otey, C. A., & Upadhyaya, A. (2016). The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts. Sci Rep, 6, 28805.
    Bang, M.-L., Mudry, R. E., McElhinny, A. S., Trombitás, K., Geach, A. J., Yamasaki, R., Labeit, S. (2001). Myopalladin, a Novel 145-Kilodalton Sarcomeric Protein with Multiple Roles in Z-Disc and I-Band Protein Assemblies. The Journal of Cell Biology, 153, 413-327.
    Bar, H., Strelkov, S. V., Sjoberg, G., Aebi, U., & Herrmann, H. (2004). The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol, 148(2), 137-152.
    Beck, M. R., Otey, C. A., & Campbell, S. L. (2011). Structural characterization of the interactions between palladin and alpha-actinin. J Mol Biol, 413(3), 712-725.
    Bloch, R. J., Capetanaki, Y., O'Neill, A., Reed, P., Williams, M. W., Resneck, W. G., Ursitti, J. A. (2002). Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin Orthop Relat Res(403 Suppl), S203-210.
    Boukhelifa, M. (2003). A critical role for palladin in astrocyte morphology and response to injury. Molecular and Cellular Neuroscience, 23(4), 661-668.
    Boukhelifa, M., Moza, M., Johansson, T., Rachlin, A., Parast, M., Huttelmaier, S., Otey, C. A. (2006). The proline-rich protein palladin is a binding partner for profilin. FEBS J, 273(1), 26-33.
    Boukhelifa, M., Parast, M. M., Bear, J. E., Gertler, F. B., & Otey, C. A. (2004). Palladin is a novel binding partner for Ena/VASP family members. Cell motility and the cytoskeleton, 58(1), 17-29.
    Boukhelifa, M., Parast, M. M., Valtschanoff, J. G., LaMantia, A. S., Meeker, R. B., & Otey, C. A. (2001). A Role for the Cytoskeleton-associated Protein Palladin in Neurite Outgrowth. Molecular Biology of the Cell, 12, 2721-2729.
    Burattini, S., Ferri, P., Battistelli, M., Curci, R., Luchetti, F., & Falcieri, E. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. European Journal of Histochemistry, 48(3), 223-234.
    Cannon, A. R., Meredith K. Owen, Guerrero, M. S., Kerber, M. L., Goicoechea, S. M., Hemstreet, K. C., Kim, H. J. (2015). Palladin Expression is a Conserved Characteristic of the Desmoplastic Tumor Microenvironment and Contributes to Altered Gene Expression. Cytoskeleton.
    Capetanaki, Y., Bloch, R. J., Kouloumenta, A., Mavroidis, M., & Psarras, S. (2007). Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res, 313(10), 2063-2076.
    Chang, E. H., Gasim, A. H., Kerber, M. L., Patel, J. B., Glaubiger, S. A., Falk, R. J., Otey, C. A. (2015). Palladin is upregulated in kidney disease and contributes to epithelial cell migration after injury. Sci Rep, 5, 7695.
    Chin, Rebecca, Y., Toker, & Alex. (2014). Akt isoform-specific signaling in breast cancer. Cell Adhesion & Migration, 5(3), 211-214.
    Chin, Y. R., & Toker, A. (2010). The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Mol Cell, 38(3), 333-344.
    Clark, K. A., McElhinny, A. S., Beckerle, M. C., & Gregorio, C. C. (2002). Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol, 18, 637-706.
    Corbi, N., Padova, M. D., Angelis, R. D., Bruno, T., Libri, V., Iezzi, S., Passananti, C. (2002). The α-like RNA polymerase II core subunit 3 (RPB3) is involved in tissue-specific transcription and muscle differentiation via interaction with the myogenic factor myogenin. The FASEB Journal.
    Costa, M. L., Escaleira, R., Cataldo, A., Oliveira, F., & Mermelstein, C. S. (2004a). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Brazilian Journal of Medical and Biological Research.
    Costa, M. L., Escaleira, R., Cataldo, A., Oliveira, F., & Mermelstein, C. S. (2004b). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Brazilian Journal of Medical and Biological Research, 37, 1819-1830.
    Dixon, R. D., Arneman, D. K., Rachlin, A. S., Sundaresan, N. R., Costello, M. J., Campbell, S. L., & Otey, C. A. (2008). Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. J Biol Chem, 283(10), 6222-6231.
    Dominguez, R., & Holmes, K. C. (2011). Actin structure and function. Annu Rev Biophys, 40, 169-186.
    Duboscq-Bidot, L., Xu, P., Charron, P., Neyroud, N., Dilanian, G., Millaire, A., Villard, E. (2008). Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc Res, 77(1), 118-125.
    Endlich, N., Schordan, E., Cohen, C. D., Kretzler, M., Lewko, B., Welsch, T., European Renal c, D. N. A. B. C. (2009). Palladin is a dynamic actin-associated protein in podocytes. Kidney Int, 75(2), 214-226.
    Ervasti, J. M. (2007). Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta, 1772(2), 108-117.
    Foroud, T., Pankratz, N., Batchman, A. P., Pauciulo, M. W., Vidal, R., Miravalle, L., Nichols, W. C. (2005). A mutation in myotilin causes spheroid body myopathy. Neurology, 65(12), 1936-1940.
    Frank, D., Kuhn, C., Katus, H. A., & Frey, N. (2006). The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl), 84(6), 446-468.
    Garcia-Palmero, I., Torres, S., Bartolome, R. A., Pelaez-Garcia, A., Larriba, M. J., Lopez-Lucendo, M., Casal, J. I. (2016). Twist1-induced activation of human fibroblasts promotes matrix stiffness by upregulating palladin and collagen alpha1(VI). Oncogene, 35(40), 5224-5236.
    Gateva, G., Tojkander, S., Koho, S., Carpen, O., & Lappalainen, P. (2014). Palladin promotes assembly of non-contractile dorsal stress fibers through VASP recruitment. J Cell Sci, 127(Pt 9), 1887-1898.
    Goicoechea, S. M., Bednarski, B., Garcia-Mata, R., Prentice-Dunn, H., Kim, H. J., & Otey, C. A. (2009). Palladin contributes to invasive motility in human breast cancer cells. Oncogene, 28(4), 587-598.
    Goicoechea, S. M., Bednarski, B., Stack, C., Cowan, D. W., Volmar, K., Thorne, L., Otey, C. A. (2010). Isoform-specific upregulation of palladin in human and murine pancreas tumors. PLoS One, 5(4), e10347.
    Goley, E. D., & Welch, M. D. (2006). The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol, 7(10), 713-726.
    Golji, J., & Mofrad, M. R. (2013). The interaction of vinculin with actin. PLoS Comput Biol, 9(4), e1002995.
    Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D., & Robinson, R. C. (2015). The evolution of compositionally and functionally distinct actin filaments. J Cell Sci, 128(11), 2009-2019.
    Gurung, R., Yadav, R., Brungardt, J. G., Orlova, A., Egelman, E. H., & Beck, M. R. (2016). Actin polymerization is stimulated by actin cross-linking protein palladin. Biochem J, 473(4), 383-396.
    Jin, L. (2011). The actin associated protein palladin in smooth muscle and in the development of diseases of the cardiovasculature and in cancer. J Muscle Res Cell Motil, 32(1), 7-17.
    Jin, L., Hastings, N. E., Blackman, B. R., & Somlyo, A. V. (2009). Mechanical properties of the extracellular matrix alter expression of smooth muscle protein LPP and its partner palladin; relationship to early atherosclerosis and vascular injury. J Muscle Res Cell Motil, 30(1-2), 41-55.
    Kel, A. E. (2003). MATCHTM: a tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Research, 31(13), 3576-3579.
    Lai, C. F., Bai, S., Uthgenannt, B. A., Halstead, L. R., McLoughlin, P., Schafer, B. W., Cheng, S. L. (2006). Four and half lim protein 2 (FHL2) stimulates osteoblast differentiation. J Bone Miner Res, 21(1), 17-28.
    Lee, M., San Martin, A., Valdivia, A., Martin-Garrido, A., & Griendling, K. K. (2016). Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. PLoS One, 11(4), e0153199.
    Lusis, A. J., Fogelman, A. M., & Fonarow, G. C. (2004). Genetic basis of atherosclerosis: part II: clinical implications. Circulation, 110(14), 2066-2071.
    Maeda, M., Asano, E., Ito, D., Ito, S., Hasegawa, Y., Hamaguchi, M., & Senga, T. (2009). Characterization of interaction between CLP36 and palladin. FEBS J, 276(10), 2775-2785.
    Marshall, P., Chartrand, N., & Worton, R. G. (2001). The mouse dystrophin enhancer is regulated by MyoD, E-box-binding factors, and by the serum response factor. J Biol Chem, 276(23), 20719-20726.
    Monaco, A. P., Neve, R. L., Colletti-Feener, C., Bertelson, C. J., Kurnit, D. M., & Kunkel, L. M. (1986). Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature, 323(6089), 646-650.
    Morishige, N., Murata, S., Nakamura, Y., Azumi, H., Shin-Gyou-Uchi, R., Oki, K. T., Sonoda, K. H. (2016). Coordinated Regulation of Palladin and alpha-Smooth Muscle Actin by Transforming Growth Factor-beta in Human Corneal Fibroblasts. Invest Ophthalmol Vis Sci, 57(7), 3360-3368.
    Mykkanen, O.-M., Gronholm, M., Ronty, M., Lalowski, M., Salmikangas, P., Suila, H., & Carpen, O. (2001). Characterization of Human Palladin, a Microfilament-associated Protein. Molecular Biology of the Cell, 12, 3060-3073.
    Nandelstadh, P. v., Gucciardo, E., Lohi, J., Li, R., Sugiyama, N., Carpen, O., & Lehti, K. (2014). Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton. Molecular Biology of the Cell.
    Nguyen, N. U., Liang, V. R., & Wang, H. V. (2014). Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells. Biochem Biophys Res Commun, 452(3), 728-733.
    Nguyen, N. U., & Wang, H. V. (2015). Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation. PLoS One, 10(4), e0124762.
    Nicoletta Corbi, Padova, M. D., Angelis, R. D., Bruno, T., Libri, V., Iezzi, S., Passananti, C. (2002). The α-like RNA polymerase II core subunit 3 (RPB3) is involved in tissue-specific transcription and muscle differentiation via interaction with the myogenic factor myogenin. The FASEB Journal.
    O’Neill, A., Williams, M. W., Resneck, W. G., Milner, D. J., Capetanaki, Y., & Bloch, R. J. (2002). Sarcolemmal Organization in Skeletal Muscle Lacking Desmin: Evidence for Cytokeratins Associated with the Membrane Skeleton at Costameres. Molecular Biology of the Cell, 13, 2347–2359.
    Otey, C. A., Dixon, R., Stack, C., & Goicoechea, S. M. (2009). Cytoplasmic Ig-domain proteins: cytoskeletal regulators with a role in human disease. Cell Motil Cytoskeleton, 66(8), 618-634.
    Otey, C. A., Rachlin, A., Moza, M., Arneman, D., & Carpen, O. (2005). The Palladin/Myotilin/Myopalladin Family of Actin‐Associated Scaffolds. International Review of Cytology, 246, 31-58.
    Parast, M. M., & Otey, C. A. (2000). Characterization of Palladin, a Novel Protein Localized to Stress Fibers and Cell Adhesions. The Journal of Cell Biology, 150, 643-655.
    Paulin, D., & Li, Z. (2004). Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res, 301(1), 1-7.
    Pogue-Geile, K. L., Chen, R., Bronner, M. P., Crnogorac-Jurcevic, T., Moyes, K. W., Dowen, S., Brentnall, T. A. (2006). Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS Med, 3(12), e516.
    Rachlin, A. S., & Otey, C. A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. J Cell Sci, 119(Pt 6), 995-1004.
    Ronty, M., Taivainen, A., Heiska, L., Otey, C., Ehler, E., Song, W. K., & Carpen, O. (2007). Palladin interacts with SH3 domains of SPIN90 and Src and is required for Src-induced cytoskeletal remodeling. Exp Cell Res, 313(12), 2575-2585.
    Ronty, M., Taivainen, A., Moza, M., Kruh, G. D., Ehler, E., & Carpen, O. (2005). Involvement of palladin and alpha-actinin in targeting of the Abl/Arg kinase adaptor ArgBP2 to the actin cytoskeleton. Exp Cell Res, 310(1), 88-98.
    Ronty, M., Taivainen, A., Moza, M., Otey, C. A., & Carpen, O. (2004). Molecular analysis of the interaction between palladin and alpha-actinin. FEBS Lett, 566(1-3), 30-34.
    Sato, D., Tsuchikawa, T., Mitsuhashi, T., Hatanaka, Y., Marukawa, K., Morooka, A., Hirano, S. (2016). Stromal Palladin Expression Is an Independent Prognostic Factor in Pancreatic Ductal Adenocarcinoma. PLoS One, 11(3), e0152523.
    Sequeira, V., Nijenkamp, L. L. A. M., Regan, J. A., & van der Velden, J. (2014). The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(2), 700-722.
    Shiffman, D., Ellis, S. G., Rowland, C. M., Malloy, M. J., Luke, M. M., Iakoubova, O. A., Kane, J. P. (2005). Identification of four gene variants associated with myocardial infarction. Am J Hum Genet, 77(4), 596-605.
    Sjoblom, B., Salmazo, A., & Djinovic-Carugo, K. (2008). Alpha-actinin structure and regulation. Cell Mol Life Sci, 65(17), 2688-2701.
    Tapscott, S. J. (2005). The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 132(12), 2685-2695.
    TAY, P. N., TAN, P., LAN, Y., LEUNG, C. H.-W., LABAN, M., TAN, T. C.,
    HOOI, S. C. (2010). Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells. International Journal of Oncology, 37(4).
    Vale, R. D. (2003). The Molecular Motor Toolbox for Intracellular Transport. Cell, 112.
    Van der Ven, P. F., Schaart, G., Jap, P. H., Sengers, R. C., Stadhouders, A. M., & Ramaekers, F. C. (1992). Differentiation of human skeletal muscle cells in culture: maturation as indicated by titin and desmin striation. Cell Tissue Res, 270(1), 189-198.
    Wang, H. V., & Moser, M. (2008). Comparative expression analysis of the murine palladin isoforms. Dev Dyn, 237(11), 3342-3351.
    Witt, C. C., Burkart, C., Labeit, D., McNabb, M., Wu, Y., Granzier, H., & Labeit, S. (2006). Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. The EMBO Journal, 25(16).
    X, M., R, E., D, F., J, N. O. M., & MM, A. (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics.
    Zhang, X., Patel, S. P., McCarthy, J. J., Rabchevsky, A. G., Goldhamer, D. J., & Esser, K. A. (2012). A non-canonical E-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle. Nucleic Acids Res, 40(8), 3419-3430.
    Zhou, W., Cui, S., Han, S., Cheng, B., Zheng, Y., & Zhang, Y. (2011). Palladin is a novel binding partner of ILKAP in eukaryotic cells. Biochem Biophys Res Commun, 411(4), 768-773.

    無法下載圖示 校內:2022-01-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE