簡易檢索 / 詳目顯示

研究生: 林楨琇
Lin, Chen-Hsiu
論文名稱: 應用於離岸風機設計之波浪參數分析
Analysis of wave parameters applied to offshore wind turbine design
指導教授: 董東璟
Doong, Dong-Jiing
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 165
中文關鍵詞: 離岸風機波浪參數惡劣海況影響時間JONSWAP波譜
外文關鍵詞: Offshore wind turbines, Metocean parameters, Impact time of Severe sea state, JONSWAP spectrum
相關次數: 點閱:74下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離岸風電工程在規劃設計時,常採用以歐洲海域資料分析所得之參數為輸入,然而台灣周遭海域之海氣象特性有別於歐洲海域,因此,本研究分析適用於台灣海峽海域之設計參數,主要針對德國聯邦海事和水文局(BSH)之設計標準: 關於專屬經濟海域內離岸結構物之結構設計的最低要求、IEC 61400-3: 風力發電機-第3部分:離岸風電之設計要求以及ISO 19901-1:石油及天然氣工業-離岸結構物的具體要求-第1部分:海氣象設計和運作注意事項,以上規範中所提及之風暴(storm)影響時間、JONSWAP波譜參數及波浪統計比值進行探究。
    本文分析位於台灣海峽北段之新竹資料浮標長期實測資料,先提出影響該海域之颱風評選條件,過去24年共有39個颱風對新竹海域海況造成影響,分析結果顯示,颱風期間海面浪高超過最大波高一半之惡劣海況影響時間平均為19.6小時,僅為BSH規範建議值之56%。本研究提出,台灣海峽海域惡劣海象除颱風影響外,還應考慮東北季風影響,東北季風期間之最大示性波高不若颱風期間為大,但該惡劣海況影響時間平均為40.6小時,為颱風期間之兩倍。本文另外針對台灣海峽北部海域之JONSWAP波譜參數進行分析,結果顯示平時海況之譜峰增強因子γ值約為1.68,惡劣海況期間約為1.39,該數值遠小於規範建議值3.3。針對波浪統計參數的比值分析發現,最大波高和示性波高比值為1.46,最大波高對應之週期和尖峰週期的比值為0.91,符合ISO19901-1規範建議範圍,而尖峰週期與示性波高之相關係數為5.8,且指數為0.42,平均週期與示性波高之相關係數為4.4且指數為0.29,兩者皆不符合Goda (2000)建議值。本文最後使用了位於台灣海峽中段彰化外海的浮標資料進行比較分析,結果顯示該海域之惡劣海象影響時間與新竹海域有所差異,顯示台灣海峽之海象變異性頗大,對於離岸風電工程之設計參數,宜採用當地或鄰近海域資料進行分析,過遠測站資料分析結果恐有高度不確定性。

    In the design of offshore wind turbines, European metocean parameters are often used to input the parameter setting. However, the metocean characteristics of Taiwanese waters are different from those of European seas. Therefore, this study discusses the storm impact time, JONSWAP spectral parameters and wave statistical ratios from the design standards, which are Bundesamt für Seeschifffahrt und Hydrographie (BSH): Standard Design, Minimum requirements concerning the constructive design of offshore structures within the Exclusive Economic Zone, IEC 61400-3: Wind turbines - Part 3 Design requirements for offshore wind turbines and ISO 19901-1: Petroleum and natural gas industries - Specific requirements for offshore structures - Part 1: Metocean design and operating considerations.
    This paper analyzes the long-term data of the Hsinchu buoy, and proposes the selection criteria for typhoons. In the past 24 years, a total of 39 typhoons have affected the sea conditions in the waters of Hsinchu. The result shows that the average impact time is 19.6 hours, which is 56% of the recommended value of BSH standard. The author considers that the influence of the northeast monsoon on severe sea state should be taken into account. The average impact time of northeast monsoon is 40.6 hours. In addition, this paper analyzes the JONSWAP spectrum in the northern seas of the Taiwan Strait. The result shows that the peak enhancement factor is about 1.68 in normal sea state and 1.39 in severe sea state. According to the ratio analysis of wave statistical parameters, it is found the ratio of the maximum wave height to the significant wave height is 1.46, and the ratio of maximum period to the peak period is 0.91. The correlation coefficient between the peak period and the significant wave height is 5.8, the power is 0.42, and the correlation coefficient between the mean period and the significant wave height is 4.4, the power is 0.29. Finally, we use the data of Changhua buoy for comparative analysis. The results show the impact time of the severe sea state in this sea area is different from that in the Hsinchu seas.

    摘要 i 目錄 viii 表目錄 x 圖目錄 xi 第一章 緒論 13 1-1 研究背景 13 1-2 文獻回顧 15 1-3 研究目的 16 1-4 研究架構 17 第二章 離岸風電設計之波浪參數需求 18 2-1 離岸風電規範 18 2-2 惡劣海象影響時間 21 2-2-1 規範建議 21 2-2-2 資料分析之方法 23 2-3 波浪統計參數比值 24 2-4 JONSWAP波譜參數 27 第三章 研究區域與資料 30 3-1 研究區域 30 3-2 實測資料及品管 31 3-3 資料統計 33 3-3-1 西南季風期間之資料統計 35 3-3-2 東北季風期間之資料統計 37 3-4 資料篩選 40 3-4-1 惡劣海象資料篩選條件 40 3-4-2波譜資料篩選條件 45 第四章 研究成果 47 4-1 惡劣海象影響時間分析結果 47 4-1-1 颱風情境 47 4-1-2 東北季風情境 58 4-2 區域化參數比值 62 4-3波譜參數分析結果 65 4-3-1 惡劣海況期間波譜 65 4-3-2 平時海況期間波譜 68 4-4 不同測站之比較 70 第五章 結論與建議 77 5-1 結論 77 5-2 建議 79 參考文獻 80 附錄1 颱風影響時間分析結果 84 附錄2 各東北季風期間重大天氣系統影響時間結果 119

    [1]俞聿修 編著、莊士賢 編校(2002),隨機波浪及其工程應用,國立成功大學近海水文中心 研究叢書。
    [2]徐偉朝、蘇曉珮(2019),離岸風電工程設計之實務挑戰,大地技師線上期刊第18期。
    [3]郭一羽、簡仲璟、溫博文(1996),淺海波浪頻譜模式之建立,中華民國第十八屆海洋工程研討會論文集,第155-166頁。
    [4]郭玉樹、許惠婷、徐宇君(2020),台灣沿岸綠金寶藏,吹動離岸風電商機,TMBA工具機與零組件雜誌第122期,第47-57頁。
    [5]張中宇、王金山、王天佑(2018),離岸風場極限波高研析─以新竹外海為例,營建知訊,第429期,第32-42頁。
    [6]國家實驗研究院國家地震工程研究中心(2018),台灣離岸風機支撐結構設計準則。
    [7]黃宗群、邱銘達、莊士賢、高家俊(2001),行徑橫切台灣之颱風的波譜模型,中華民國第二十三屆海洋工程研討會論文集,成功大學,第444-451頁。
    [8]鄧崇任、蔡原祥、翁元滔、邱世彬、柴駿甫(2017),台灣離岸風力機支撐結構設計準則研擬對策,國家地震工程中心。
    [9]廖學瑞、丁金彪、林俶寬、劉育明(2014),離岸風機基礎設計技術初探,中華技術第103期。
    [10]廖顯仁(2002),雲林海域穩定風場作用產生之浪頻譜分析,國立成功大學水利及海洋工程學系碩士論文。
    [11]劉浙仁、冀樹勇、譚志豪(2019),台灣本土離岸風機下部結構工程設計之展望,中興工程第144期,第5-13頁。
    [12]冀樹勇、王天佑、譚志豪(2014),離岸風機基礎設計實務,地工技術第142期。
    [13]簡仲璟、郭一羽(1994),近岸波浪頻譜形狀之研究,中華民國第十六屆海洋工程研討會論文集,第A193-A210頁。
    [14]Acar, S. O. (1983). Statistical analysis of wind waves at Ordu and Akuyu (Mersin) (Master's thesis, Middle East Technical University).
    [15]American Bureau of Shipping (2011). Design Standards for Offshore Wind Farms.
    [16]Bretschneider, C.L., (1959). Wave variability and wave spectra for wind generated gravity waves. Tech. Rep., U S Army Beach Erosion Board, 118.
    [17]Bundesamt Für Seeschifffahrt Und Hydrographie(BSH). (2015). Standard Design, Minimum requirements concerning the constructive design of offshore structures within the Exclusive Economic Zone(EZZ).
    [18]4C Offshore.(2013). Global Offshore Wind Speeds Ranking.
    [19]Det Norske Veritas (DNV) (2013). DNV-OS-J101, Design of Offshore Wind Turbine Structures.
    [20]Dnv, G. L. (2010). DNV-RP-C205: Environmental conditions and environmental loads. Norw ay: DetNorskeVeritas, 896.
    [21]DNVGL-ST-0437(2016). Loads and site conditions for wind turbines. DNV GL Standard.
    [22]Doong, D. J., S. H. Chen, C. C. Kao and B. C. Lee. (2007). Data quality check procedures of an operational coastal ocean monitoring network. Ocean Engineering 34, 234-246.
    [23]Feld, G., & G. Mørk (2004). A comparison of hindcast and measured wave spectra. 8th International Workshop on Wave Hindcasting and Forecasting, North Shore, Oahu, Hawaii, USA.
    [24]Germanischer Lloyd (GL) (2012). Guideline for the certification of offshore wind turbines.
    [25]Gilhousen, D. B. (1988). Quality control of meteorological data from automated marine stations. In Preprints, Fourth AMS International Conference, Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology.
    [26]Goda, Y.(1974). Investigation of the statistical properties of sea waves with field and simulation data. Rept. Port and Harbour Res. Inst., 13(1), 3-37.
    [27]Goda, Y. (2000) Random seas and design of marine structures, Word Scientific.
    [28]Hasselmann, K., et al. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch.Hydrogr. Z. Reihe A.
    [29]International Electromechanical Commission(IEC) (2015). IEC 61400-1 Ed. 3, Wind Turbines – Part 1: Design Requirements.
    [30]International Electromechanical Commission(IEC) (2009). IEC 61400-3, Wind turbines - Part 3 Design requirements for offshore wind turbines.
    [31]International Organization for Standardization (2015). ISO 19901-1:2015: Petroleum and natural gas industries – Specific requirements for offshore structures - Part 1: Metocean design and operating considerations.
    [32]Liu, Y., Chen, D., Yi, Q., & Li, S. (2017). Wind profiles and wave spectra for potential wind farms in South China Sea. Part I: Wind speed profile model. Energies, 10(1), 125.
    [33]Longuet-Higgins, M. S. (1952). On the statisticaldistribution of the height of sea waves. JMR, 11, 245-266.
    [34]Mitsuyasu, H. (1981). Directional spectra of ocean waves in generation area. Proc. Conf Directional Wave Spectra Appl., ASCE, 87-102.
    [35]Moon, I. J., & I. S. Oh. (1998). A study of the characteristics of wave spectra over the seas around Korea by using a parametric spectrum method. Acta Oceanographica Taiwanica 37(1), 31-46.
    [36]Ou, S. H. (1977). Parametric determination of wave statistics and wave spectrum of gravity waves (Doctoral dissertation, Tainan Hydraulics Laboratory of Water Resources Planning Commission-Ministry of Economic Affairs and National Cheng Kung University).
    [37]Nolte, K. G., & Hsu, F. (1972). Statistics of Ocean Wave Groups, Paper 1688. In Offshore Technology Conference, Houston, Texas.
    [38]Pierson, W.J. and Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of S.A.Kitaigorodskii. J. Geophys. Res., 69,5181-5190.
    [39]Veldkamp, H. F., & Van Der Tempel, J. (2005). Influence of wave modelling on the prediction of fatigue for offshore wind turbines. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 8(1), 49-65.
    [40]Violante-Carvalho, N., Parente, C.E., Robinson, I.S., Nunes, L.M.P. (2002). On the growth of wind generated waves in a swell dominated region in the South Atlantic. J. Offshore Mech. Arctic Engin. 124, 14-21.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE