| 研究生: |
謝鈺芬 Hsieh, Yu-Fen |
|---|---|
| 論文名稱: |
探討大型車輛對弱勢用路人交通事故傷亡嚴重度及行車視野輔助系統之成效分析 Exploring the Severity of Vulnerable Road Users among Heavy Vehicle-related Accidents and the Effects of Driving Vision Assistant System |
| 指導教授: |
魏健宏
Wei, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 大型車輛事故 、弱勢用路人 、行車視野輔助系統 、潛在類別分析 、逐步羅吉特迴歸 |
| 外文關鍵詞: | Heavy Vehicle-related Accident, Vulnerable Road Users, Driving Vision Assistant System, Latent Class Analysis , Stepwise Logistic Regression |
| 相關次數: | 點閱:66 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
依據2018年至2023年的交通事故死傷資料統計,大型車輛事故共造成2,314人死亡,其中約有7成為弱勢用路人(機車、慢車及行人),凸顯大型車輛於道路上行駛對弱勢用路人所產生的巨大威脅,因此政府與交通專家紛紛致力解決此問題。
本研究先回顧國內外大型車輛與弱勢用路人事故特性相關文獻,整理大型車輛管制措施及推動行車視野輔助系統等安全提升配備政策。再整理我國道路交通事故資料庫中大型車輛及弱勢用路人之傷亡資料,將大型車輛事故資料分類成全部大型車輛、大客車類及大貨車類,弱勢用路人分為機車類、慢車類及行人。為通盤概覽大型車輛與弱勢用路人間交通事故特性,本研究先以卡方檢定及逐步羅吉特迴歸,分析影響弱勢用路人事故致死風險的關鍵因子。另為發覺其他未被觀察到的事故潛在關係、降低組內的異質性,先透過潛在類別分析將事故資料分類,再使用逐步羅吉特迴歸方法鑑別肇事因子。
為合理評估推動行車視野輔助系統對大型車輛及弱勢用路人事故嚴重度之影響情形,本研究將推動大型車輛配備行車視野輔助系統的立法歷程,分為推廣、檢驗及執法三個政策階段,進行逐步羅吉特迴歸,細究該政策在各階段死亡事故的影響因子變化;另將肇事因素與行車視野輔助系統有相關之事故獨立取樣,使用變異數分析的費雪最小顯著差異檢定,分析不同政策時期事故的平均月件數、死亡人數及致死率,結果發現在政策開始實施罰則後,大型車輛及弱勢用路人雙車事故模型中,與行車視野輔助系統有關事故致死人數已達每年可降低31.28%。本研究結果可作為推動行車視野輔助系統政策及擬定大型車輛行車安全政策參考。
According to Taiwan's traffic accident dataset, heavy vehicles-related accidents resulted in a total of 2,314 fatalities from 2018 to 2023, and vulnerable road users account for approximately 70% of the total fatalities. This highlights the serious threat posed by heavy vehicles to vulnerable road users on the road.
This study utilized injury and fatality accident data. Heavy vehicles are composed of buses and heavy trucks (tractor, tractor trailer), while vulnerable road users included motorcyclists, cyclists, and pedestrians. To comprehensively overview the characteristics of accidents between heavy vehicles and vulnerable road users, this study first employed chi-square test and stepwise logistic regression to explore the key factors result in the death of vulnerable road users in heavy vehicles-related accidents. Additionally, to identify unobserved potential relationships in accidents and reduce intragroup heterogeneity, latent class analysis is used to classify accident data, and then applied the stepwise logistic regression model for each segment to identify contributing factors.
To explore the effects of equipping heavy vehicles with driving vision assistant system on the severity of accidents involving vulnerable road users, this study divides the legislative process of equipping heavy vehicles with assistant systems into three policy stages: promotion, inspection, and enforcement. Stepwise logistic regression is applied to examine the changes in key factors causing fatal accidents among these policy stages. Furthermore, accidents related to driving vision assistant systems were independently sampled for analysis by using Fisher’s least significant difference test. The results indicate that from the promotion stage to the enforcement stage, the fatalities of accidents involving heavy vehicles and vulnerable road users in double vehicles crash model related to driving vision assistant systems has been reduced by 31.28% per year. The findings of this study can serve as a reference for promoting driving vision assistant system policies and formulating driving safety policies for heavy vehicles.
【中文文獻】
道路交通管理處罰條例 (修正於2023),交通部。
道路交通安全規則 (修正於2024),交通部。
車輛型式安全審驗管理辦法 (修正於2024),交通部。
車輛安全檢測基準 (非現行法規),交通部。
道路交通事故處理規範 (修正於2023),內政部警政署。
余桂霖 (2012),多元迴歸分析,五南圖書出版股份有限公司。
李雅芳、林大傑、劉欣憲、周文生、林祥生、許慶龍、馬好聰、單志恆、曹偉玲、張怡君、蔡錦億、蘇俊傑、葉舜慈、王華嚴、林豐吉、鄭亦峰、郭家妤、馬玉軒、李依蓁、張開國 (2020),「大型車輛裝設車輛安全設備推動計畫」成效追蹤評估計畫,交通部運輸研究所。
邱皓政、林碧芳 (2022),統計學:原理與應用 (第4版),五南圖書出版股份有限公司。
邱皓政 (2023),潛在異質性分析:潛在結構模式與進階應用,五南圖書出版股份有限公司。
陳景祥 (2010),R 軟體:應用統計方法(修訂版),台灣東華書局股份有限公司。
陳正昌、林曉芳 (2020),R統計軟體與多變量分析,五南圖書出版股份有限公司。
張紹勳、林秀娟 (2018),羅吉特迴歸分析及離散選擇模型:應用SPSS,五南圖書出版股份有限公司。
賈俊平 (2017),統計學基於R的應用,五南圖書出版股份有限公司。
謝智謀、林維君 (譯) (2000),統計學 (原作者:Perry R,Hinton),旭昇圖書有限公司。
王銘亨、魏健宏 (2016),先進車輛安全配備預期效益分析-以大貨車盲點偵測器為例,交通學報,第十六卷第二期,頁179-196。
沈鈺玹 (2020)。大型重型機車行駛於高架段及橋下平面路段之事故特性比較。﹝碩士論文。中央警察大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/nwfdkp。
林偉凝 (2015)。停經後婦女健康服務使用之潛在類別分析。﹝碩士論文。國立臺北護理健康大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/33zze3。
姜翰良 (2023)。以潛在類別分析探討骨科手術後噁心嘔吐頭暈之特性及因子。﹝碩士論文。國立中山大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/st3df4。
張淨盈 (2023)。以空間方法分析自行車事故風險。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/ytcka7。
曾詩雅 (2022)。探討主動運輸使用者在交岔路口的肇事嚴重程度。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/44qat2。
黃碧芬 (2010)。自行車事故特性之研究—以台中市為例。﹝碩士論文。逢甲大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/xvetwf。
董宜婷 (2016)。桃園市高齡者交通事故特性分析。﹝碩士論文。中央警察大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/74b5aj。
楊思瑜 (2003)。小型車事故特性分析及嚴重程度預測模式之研究─以桃竹苗地區為例。﹝碩士論文。逢甲大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/qufx4u。
蔡秉祐 (2020)。號誌化路口轉彎車輛對機車及行人事故嚴重程度之研究。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/fh57n8。
劉盈君 (2008)。大專院校學生死亡交通事故類型與影響因子分析之研究。﹝碩士論文。國立交通大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/w7vkn5。
錢炯翰 (2020)。以潛在類別分析法探討Instagram中的社交梳理類型及其限時動態遊戲濾鏡使用策略。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2r4az8。
盧宣宇 (2018)。應用隨機森林演算法於花蓮地區交通事故嚴重度主要影響因子研究。﹝碩士論文。國立東華大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/f3sqn6。
謝鈺芬、魏健宏、王銘亨(2023)。大型車輛事故特性與行車視野輔助系統立法影響分析。112 年道路交通安全與執法研討會。https://ts.cpu.edu.tw/var/file/20/1020/attach/48/pta_24991_1419742_98510.pdf。
謝鈺芬、王銘亨、魏健宏 (2024)。應用潛在類別分析方法探討影響大型車輛對弱勢用路人交通事故傷害嚴重度之關鍵因素。中華民國運輸學會2024年年會暨學術論文國際研討會論文集-第四冊。https://cit.org.tw/2024/include/index.php?Page=D-5-7。
【中文網路文獻】
黃荷婷、陳盈仁 (2014),「左邊沒人、右邊沒人」 公車首推轉彎「指差確認」,TVBS新聞網,網站:https://news.tvbs.com.tw/life/553126。
內政部,戶口統計資料分析,https://www.moi.gov.tw/News_Content.aspx?n=2&s=312388
內政部戶政司全球資訊網 (2024) ,人口數按年齡及婚姻狀況 (96) ,https://www.ris.gov.tw/app/portal/346
行政院性別平等會重要性別統計資料庫(2024),領有駕駛執照人數,https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_Query.aspx?sn=KRTBBErXDuLQxzY9EpLj6g%40%40&statsn=LYPoJD9Q6x85ktHnvtM9HA%40%40&d=m9ww9odNZAz2Rc5Ooj%24wIQ%40%40&n=369002
交通部公路局統計查詢網 (2024) ,機動車輛登記數,https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&
交通部 (2023) ,第14期院頒「道路交通秩序與交通安全改進方案」,https://168.motc.gov.tw/related
交通部公路局 (2024),公路局新推出「大型車輛路口停讓及行車視野確認」宣導影片 期許共同提升路口行車安全,https://www.thb.gov.tw/News_Content_table.aspx?n=12181&s=257669
國家發展委員會 (2022),都市及區域發展統計彙編,https://www.ndc.gov.tw/nc_77_4402
道安總動員平台 (2024) ,道安儀表板,https://roadsafety.tw/
【外文文獻】
Anderson, J., & Hernandez, S. (2017). Roadway Classifications And the Accident Injury Severities of Heavy-vehicle Drivers. Analytic Methods in Accident Research, 15, 17–28. https://doi.org/10.1016/j.amar.2017.04.002
Ahmed, M. M., Franke, R., Ksaibati, K., & Shinstine, D. S. (2018). Effects of Truck Traffic on Crash Injury Severity on Rural Highways in Wyoming Using Bayesian Binary Logit Models. Accident Analysis and Prevention, 117, 106–113. https://doi.org/10.1016/j.aap.2018.04.011
Adanu, E. K., Lidbe, A., Tedla, E., & Jones, S. (2021). Injury-severity Analysis of Lane Change Crashes Involving Commercial Motor Vehicles on Interstate Highways. Journal of Safety Research, 76, 30–35. https://doi.org/10.1016/j.jsr.2020.11.001
Aflaki, K., Vigod, S., & Ray, J. G. (2022). Part I: A Friendly Introduction to Latent Class Analysis. Journal of Clinical Epidemiology, 147, 168–170. https://doi.org/10.1016/j.jclinepi.2022.05.008
Aflaki, K., Vigod, S., & Ray, J. G. (2023). Part II: A Step-by-step Guide to Latent Class Analysis. Journal of Clinical Epidemiology, 159, 348–351. https://doi.org/10.1016/j.jclinepi.2023.05.025
Blackman, R. A., & Haworth, N. L. (2013). Comparison of Moped, Scooter and Motorcycle Crash Risk and Crash Severity. Accident Analysis and Prevention, 57, 1–9. https://doi.org/10.1016/j.aap.2013.03.026
Balakrishnan, S., Moridpour, S., & Tay, R. (2019). Sociodemographic Influences on Injury Severity in Truck-Vulnerable Road User Crashes. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 5 (4). https://doi.org/10.1061/AJRUA6.0001023
Chen, C. T., & Chen, Y. S. (2009). Real-time Approaching Vehicle Detection in Blind-spot area. 2009 12th International IEEE Conference on Intelligent Transportation Systems, 1–6. https://doi.org/10.1109/ITSC.2009.5309876
Cheng, Y. K., Wong, K. H., Tao, C. H., Tam, C. N., Tam, Y. Y., & Tsang, C. N. (2016). Front Blind Spot Crashes in Hong Kong. Forensic Science International, 266, 102–108. https://doi.org/10.1016/j.forsciint.2016.05.013
Chang, F., Xu, P., Zhou, H., Chan, A. H. S., & Huang, H. (2019). Investigating Injury Severities of Motorcycle Riders: A Two-step Method Integrating Latent Class Cluster Analysis and Random Parameters Logit Model. Accident Analysis and Prevention, 131, 316–326. https://doi.org/10.1016/j.aap.2019.07.012
Depaire, B., Wets, G., & Vanhoof, K. (2008). Traffic Accident Segmentation by Means of Latent Class Clustering. Accident Analysis and Prevention, 40(4), 1257–1266. https://doi.org/10.1016/j.aap.2008.01.007
Esmaili, A., Aghabayk, K., & Shiwakoti, N. (2023). Latent Class Cluster Analysis and Mixed Logit Model to Investigate Pedestrian Crash Injury Severity. Sustainability (Basel, Switzerland), 15(1), 185-. https://doi.org/10.3390/su15010185
Harper, C. D., Hendrickson, C. T., & Samaras, C. (2016). Cost and Benefit Estimates of Partially-automated Vehicle Collision Avoidance Technologies. Accident Analysis and Prevention, 95(Pt A), 104–115. https://doi.org/10.1016/j.aap.2016.06.017
Jansen, R. J., & Varotto, S. F. (2022). Caught in the Blind Spot of a Truck: A Choice Model on Driver Glance Behavior towards Cyclists at Intersections. Accident Analysis and Prevention, 174, 106759–106759. https://doi.org/10.1016/j.aap.2022.106759
Kircher, K., & Ahlström, C. (2020). Truck Drivers’ Interaction with Cyclists in Right-turn situations. Accident Analysis and Prevention, 142, 105515–105515. https://doi.org/10.1016/j.aap.2020.105515
Kashani, A. T., Zandi, K., & Okabe, A. (2023). Investigation of Factors Associated with Heavy Vehicle Crashes in Iran (Tehran–Qazvin Freeway). Sustainability (Basel, Switzerland), 15(13), 10497-. https://doi.org/10.3390/su151310497
Kim, S. H. (2023). How heterogeneity has been examined in transportation safety analysis: A review of latent class modeling applications. Analytic Methods in Accident Research, 40, 100292-. https://doi.org/10.1016/j.amar.2023.100292
Kim, S. H., & Mokhtarian, P. L. (2023). Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions. Transportation Research. Part B: Methodological, 172, 134–173. https://doi.org/10.1016/j.trb.2023.03.001
König, T., Paula, D., Quaschner, S., & Schweiger, H.-G. (2024). Influence of Blind Spot Assistance Systems in Heavy Commercial Vehicles on Accident Reconstruction. Sensors (Basel, Switzerland), 24(5), 1517-. https://doi.org/10.3390/s24051517
Li, Z., Wu, Q., Ci, Y., Chen, C., Chen, X., & Zhang, G. (2019). Using Latent Class Analysis and Mixed Logit Model to Explore Risk Factors on Driver Injury Severity in Single-vehicle Crashes. Accident Analysis and Prevention, 129, 230–240. https://doi.org/10.1016/j.aap.2019.04.001
Lin, H.-A., Chan, C.-W., Wiratama, B. S., Chen, P.-L., Wang, M.-H., Chao, C.-J., Saleh, W., Huang, H.-C., & Pai, C.-W. (2022). Evaluating the Effect of Drunk Driving on Fatal Injuries among Vulnerable Road Users in Taiwan: A Population-based Study. BMC Public Health, 22(1), 1–2059. https://doi.org/10.1186/s12889-022-14402-3
Li, J., Zhang, W., Zhu, D., Feng, Z., He, Z., Yue, Q., & Huang, Z. (2023). Evaluation of Driver Demand for In-vehicle Information: An Integrated Method Combining Clustering and Multivariate Ordered Probit Model. Journal of Safety Research, 85, 222–233. https://doi.org/10.1016/j.jsr.2023.02.006
Luan, S., Jiang, Z., qu, D., Yang, X., & Meng, F. (2024). Investigating Risk Factors Associated with Injury Severity in Highway Crashes: A Hybrid Approach Integrating Two-step Cluster Analysis and Latent Class Ordered Regression Model with Covariates. Accident Analysis and Prevention, 208, 107805-. https://doi.org/10.1016/j.aap.2024.107805
Magidson, J., & Vermunt, J. (2002). Latent Class Models for Clustering: A Comparison with K-means. Canadian Journal of Marketing Research, 20(1), 36-43. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6add265688cde63766bed6b920c4546e7c11ab99
Nylund-Gibson, K., & Choi, A. Y. (2018). Ten Frequently Asked Questions About Latent Class Analysis. Translational Issues in Psychological Science, 4(4), 440–461. https://doi.org/10.1037/tps0000176
Radun, I., Parkkari, I., Radun, J., Kaistinen, J., Kecklund, G., Olivier, J., Tervo, T., & Theorell, T. (2019). Suicide by Crashing Into a Heavy Vehicle: Focus on Professional Drivers Using in-depth Crash Data. Traffic Injury Prevention, 20(6), 575–580. https://doi.org/10.1080/15389588.2019.1633466
Shaheed, M. S., & Gkritza, K. (2014). A Latent Class Analysis of Single-vehicle Motorcycle Crash Severity Outcomes. Analytic Methods in Accident Research, 2, 30–38. https://doi.org/10.1016/j.amar.2014.03.002
Souders, D. J., Best, R., & Charness, N. (2017). Valuation of Active Blind Spot Detection Systems by Younger and Older Adults. Accident Analysis and Prevention, 106, 505–514. https://doi.org/10.1016/j.aap.2016.08.020
Sun, M., Sun, X., & Shan, D. (2019). Pedestrian Crash Analysis with Latent Class Clustering Method. Accident Analysis and Prevention, 124, 50–57. https://doi.org/10.1016/j.aap.2018.12.016
Scheier, L. M., & Komarc, M. (2020). Are E-cigarette Users a Unique Group of Smokers? Latent Class Analysis of the National Youth Tobacco Survey. Journal of Drug Education, 49(3-4), 87-114. https://doi.org/10.1177/004723792098048
Sinha, P., Calfee, C. S., & Delucchi, K. L. (2021). Practitioner’s Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls. Critical Care Medicine, 49(1), e63–e79. https://doi.org/10.1097/CCM.0000000000004710
Salehian, A., Aghabayk, K., Seyfi, M., & Shiwakoti, N. (2023). Comparative Analysis of Pedestrian Crash Severity at United Kingdom Rural Road Intersections and Non-Intersections Using Latent Class Clustering and Ordered Probit Model. Accident Analysis and Prevention, 192, 107231–107231. https://doi.org/10.1016/j.aap.2023.107231
Tomasch, E., & Smit, S. (2023). Naturalistic Driving Study on the Impact of an Aftermarket Blind Spot Monitoring System on the Driver’s Behaviour of Heavy Goods Vehicles and Buses on Reducing Conflicts with Pedestrians and Cyclists. Accident Analysis and Prevention, 192, 107242–107242. https://doi.org/10.1016/j.aap.2023.107242
Wurpts, I. C., & Geiser, C. (2014). Is Adding More Indicators to a Latent Class Analysis Beneficial or Detrimental? Results of a Monte-Carlo Study. Frontiers in Psychology, 5, 920–920. https://doi.org/10.3389/fpsyg.2014.00920
Wu, C.-Y., Hu, H.-Y., Li, C.-P., Chou, Y.-J., & Chang, Y.-T. (2018). Comorbidity Profiles of Psoriasis in Taiwan: A latent Class Analysis. PloS One, 13(2), e0192537–e0192537. https://doi.org/10.1371/journal.pone.0192537
Weller, B. E., Bowen, N. K., & Faubert, S. J. (2020). Latent Class Analysis: A Guide to Best Practice. Journal of Black Psychology, 46(4), 287-311. https://doi.org/10.1177/0095798420930932
Wang, J., Parajuli, S., Cherry, C. R., McDonald, N. C., & Lyons, T. (2022). Vulnerable Road User Safety and Freight Vehicles: A case study in North Carolina and Tennessee. Transportation Research Interdisciplinary Perspectives, 15, 100650-. https://doi.org/10.1016/j.trip.2022.100650
Yu, R., Wang, X., & Abdel-Aty, M. (2017). A Hybrid Latent Class Analysis Modeling Approach to Analyze Urban Expressway Crash Risk. Accident Analysis and Prevention, 101, 37–43. https://doi.org/10.1016/j.aap.2017.02.002
Yuan, Y., Yang, M., Guo, Y., Rasouli, S., Gan, Z., & Ren, Y. (2021). Risk Factors Associated with Truck-involved Fatal Crash Severity: Analyzing Their Impact for Different Groups of Truck Drivers. Journal of Safety Research, 76, 154–165. https://doi.org/10.1016/j.jsr.2020.12.012
【外文網路文獻】
European Commission (2024),ITS & Vulnerable Road Users,https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/road/action-plan-and-directive/implementation-its-action-plan/its-vulnerable-road-users_en
Government of South Australia (2024),Driving Heavy Vehicles Safely, https://www.sa.gov.au/topics/driving-and-transport/heavy-vehicles/driving-heavy-vehicles-safely
Ministry of Land, Infrastructure, Transport and Tourism (2019),Introducing International Standards for Side Collision Warning Systems, https://www.mlit.go.jp/report/press/jidosha08_hh_003510.html
National Heavy Vehicle Regulator (2024),Heavy Vehicle National Law and Regulations,https://www.nhvr.gov.au/law-policies/heavy-vehicle-national-law-and-regulations
National Road Safety Strategy (2024),Fact Sheet: Vulnerable Road Users,https://www.roadsafety.gov.au/nrss/fact-sheets/vulnerable-road-users
National Safety Council (2024),Road to Zero Safety Priority Statement Vulnerable Road Users,https://cloud.safe.nsc.org/road-to-zero-safety-priority-statements-vulnerable-road-users
R-Project,Post-Hoc Tests,https://search.r-project.org/CRAN/refmans/DescTools/html/PostHocTest.html
Transport for NSW (2022),Fresnel Lens Trial Research,https://www.transport.nsw.gov.au/roadsafety/road-users/drivers/heavy-vehicles
Transport for London (2024),Direct Vision Standard and HGV Safety Permit Scheme,https://tfl.gov.uk/info-for/deliveries-in-london/delivering-safely/direct-vision-in-heavy-goods-vehicles?intcmp=41259
United Nations Economic Commission for Europe (2022),UNECE Adopts Two New Regulations to Improve the Safety of Vulnerable Road Users, https://unece.org/media/transport/Road-Safety/press/373454
World Health Organization (2018),Global Status Report on Road Safety 2018,https://www.who.int/docs/default-source/searo/india/health-topic-pdf/global-status-report-on-road-safety-2018.pdf?sfvrsn=1de25920_2
World Health Organization (2022),Road Traffic Injuries,https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries
World Health Organization (2024),Protecting Vulnerable Road Users,https://www.who.int/china/activities/protecting-vulnerable-road-users