簡易檢索 / 詳目顯示

研究生: 羅至恩
Lo, Chih-En
論文名稱: 點帶石斑魚肌肉生長抑制基因啟動子分子調控
Molecular analysis and regulation of Orange-spotted grouper (Epinephelus coioides) Myostatin promoter
指導教授: 陳宗嶽
Chen, Tzong-Yueh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 84
中文關鍵詞: 點帶石斑魚肌肉生長抑制基因石斑魚生長抑制基因啟動子雙股RNA活化型蛋白激酶
外文關鍵詞: Epinephelus coioides, Myostatin, grouper (Epinephelus coioides) mstatin promoter, Double-stranded RNA-activated protein kinase R (PKR)
相關次數: 點閱:146下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌肉生長抑制基因(myostatin),其轉譯出之蛋白為肌肉生長抑制素,屬於TGP-β superfamily的一員。在肌肉發育上,肌肉生長抑制素扮演著負向調控的角色;若是此基因失去功能,則會造成肌肉備增的現象。另一方面,本實驗室已獲得石斑魚生長抑制基因的啟動子之全長為1936 bp,具有10個由CANNTG短序列組成的E-Box,可能為肌肉生長抑制啟動子相關的調節區。將全長以及系列剔除的肌肉生長抑制啟動子接到有螢火蟲螢光蛋白的質體,送進石斑魚鰭細胞株(GF-1)和活體內觀察其功能表現,找出肌肉生長抑制啟動子重要的調控區。之後更進一步利用區域性剔除、序列刪除和點突變之方法找出活化子和抑制子的確切位置,達到控制啟動子活性的目的。從結果得知,肌肉生長抑制啟動子最主重要的活性調控區是在E6及E5 E-Box區域,特別是E6區域的HNF-3b位置、E6 E-Box位置和E5區域的c-Ets位置。在之前的研究已得知神經壞死病毒和一些basic helix-loop-helix蛋白會影響肌肉生長抑制啟動子的活性,因此利用上述的調控因子,來觀察對肌肉生長抑制啟動子活性的影響,做為改變肌肉生長抑制啟動子活性的其中一種調控方式。最後發現Myo D、PKR、Poly[I:C] 皆可調控肌肉生長抑制啟動子的活性。

    Myostatin, which belongs to TGF-ß superfamily, is the growth and differential factor-8. Myostatin is a negative regulator to restrict the growth of muscle. If Myostain does not work, we will find the penomenon of double-muscle.
    On the other way, our lab have obtained the full length (1936bp) of grouper (Epinephelus coioides) mstatin promoter . Grouper mostatin promoter include 10 putative E-Boxes which are made up of CANNTG. We thought the E-Boxes maybe are the regulated region of muscle growth. Various constructs of the grouper Myostatin promoter were transfected into the grouper cells (GF-1 cell) and electroporate to juvenile groupers for analyze the promoter activity. Further, we observed the direct location of activator and repressor on grouper Myostatin promoter for regulating the activity. According to the experimental results, the most important regulation regions of grouper Myostatin promoter activity on E6 and E5 E-Box region, especially the HNF-3b and E6 E-Box position of E6 region, c-Ets position of E5 region.
    By previous research, we have known nervous necrosis virus (NNV) and some basic helix-loop-helix proteins can affect the activity of grouper Mostatin promoter. Therefore, we use the reputational factors to observe the effect on grouper Mostatin promoter. We found that Myo D, PKR, Poly [I: C] could regulate the activity of grouper Myostatin promoter.

    中文摘要--------------------І 英文摘要--------------------II 致謝------------------------III 目錄------------------------IV 圖目錄----------------------VI 表目錄----------------------VII 附圖目錄--------------------VII 1.研究背景------------------1 1.1點帶石斑魚---------------2 1.2肌肉生長抑制素------------3 1.3肌肉生長抑制素近期研究進況-5 1.4 Myostatin啟動子功能分析及基因表現調控---6 1.5肌肉生長抑制素與石斑魚神經壞死病毒的關連探討--9 1.6肌分化調節因子(myoblast determination factor, MyoD)--10 1.7雙股RNA活化型蛋白激酶(Duble-stranded RNA-activated protein Kinase R, PKR) -----------------------------------------11 1.8研究計畫之目的-----------------------------------------12 2. 研究方法及步驟-----------------------------------------13 2.1實驗材料----------------------------------------------13 2.2實驗方法----------------------------------------------14 3. 實驗結果----------------------------------------------25 3.1 點帶石斑魚Myostatin promotere功能區域定量分析----------25 3.2 點帶石斑魚Myostatin promoter,-894~-791區域(E5 E-box區域)序 列刪除定量分析---------------------------------------------27 3.3 點帶石斑魚Myostatin promoter, 1235~-894區域(E6 E-box區域)及-894~-792區域(E5 E-box區域)點突變之定量分析----------------28 3.4 點帶石斑魚Myostatin promoter -1235~-894區域(E6 E-box區域)受肌分化調節因子(MyoD)的調控分析---------------------------29 3.5 點帶石斑魚Myostatin promoter受雙股RNA造成負向調控-------31 3.6 點帶石斑魚Myostatin promoter -1234~-895區域(E6 E-box區域)受到Poly[I:C]及2-AP調控的活性分析---------------------------33 4. 討論---------------------------------------------------36 4.1 點帶石斑魚Myostatin promoter功能及活性區分析-------------36 4.2肌分化調節因子(MyoD)對肌肉生長抑制素啟動子的調控---------41 4.3病毒與雙股RNA對石斑魚肌肉生長抑制基因啟動子的調控----------42 4.4總結--------------------------------------------------45 5. 參考文獻 ----------------------------------------------47 圖目錄 圖一、點帶石斑魚Myostatin promotere功能區域定量分析----------54 圖二、Myostatin promoter(deletion E5 region)之示意圖-----56 圖三、點帶石斑魚Myostatin promoter,-894~-791區域(E5 E-box區域)剔除定量分析-----------------------------------------------57 圖四、點帶石斑魚Myostatin promoter,-894~-791區域(E5 E-box區域) -1234~-895區域(E6 E-box區域)的轉錄因子結合位之分析以及點突變---58 圖五、點帶石斑魚Myostatin promoter, -1235~-894區域(E6 E-box區域)點突變之定量分析-----------------------------------------59 圖六、點帶石斑魚Myostatin promoter, -894~-791區域(E5 -box區域)點突變之定量分析--------------------------------------------60 圖七、石點帶石斑魚Myostatin promoter受Myo所調控之區域分析-----61 圖八、點帶石斑魚Myostatin promoter受Poly[I:C]造成負向調控----62 圖九、點帶石斑魚Myostatin promoter, -1234~-895區域(E6 E-box區域) 點突變後在Poly[I:C]與2-AP調節下的活性分析----------------63 圖十、點帶石斑魚Myostatin promoter受到dsRNA影響時的胞內反應示意圖--------------------------------------------------------65 圖十一、點帶石斑魚Myostatin promoter受到各調節因子影響時的活性 變化之示意圖-----------------------------------------------66 表目錄 表一、本論文所使用之特異性引子-------------------------------68 附圖目錄 附圖一、活體導入法-電穿孔實驗之示意圖------------------------70 附圖二、Myostatin promoter序列改變(deletion/point mutation)之方法------------------------------------------------------71 附圖三、點帶石斑魚Myostatin promoter plasmid (FL)map -------72 附圖四、點帶石斑魚Myostatin promoter plasmid (FL_ΔE5)map ---73 附圖五、點帶石斑魚Myostatin promoter plasmid (P6_ΔE5)map ---74 附圖六、點帶石斑魚Myostatin promoter plasmid (P5_ΔE5)map ---75 附圖七、點帶石斑魚Myostatin promoter plasmid (mut_E6_HNF-3b)map ------------------------------------------------------76 附圖八、點帶石斑魚Myostatin promoter plasmid (mut_E6_E-Box)map ------------------------------------------------------77 附圖九、點帶石斑魚Myostatin promoter plasmid (mut_E6_CdxA)map ----------------------------------------------------------78 附圖十、點帶石斑魚Myostatin promoter plasmid (mut_E5_c-Ets)map ------------------------------------------------------79 附圖十一、點帶石斑魚Myostatin promoter plasmid (mut_E5_E-Box)map ------------------------------------------------------80 附圖十二、點帶石斑魚Myostatin promoter plasmid (mut_E5_GATA)map ------------------------------------------------------81 附圖十三、雙股RNA引起基因表現變化之機制-----------------------82 附圖十四、雙股RNA造成肌肉生長抑制基因啟動子活性下降之可能機制圖-------------------------------------------------------83

    朱鴻鈞,全球漁業發展現況及未來趨勢分析-兼論台灣漁業發展現況,農業生技產業季刊,19:2-10 (2009)。

    楊玉婷、陳葦芋、陳政忻,全球漁業發展現況及未來趨勢分析-兼論台灣漁業發展現況,農業生技產業季刊,20:24-29 (2009)。

    魏志嶽,石斑魚肌肉生長抑制素之基因選殖與功能分析,國立成功大學生物科技研究所碩士論文,(2005)。

    簡正修,點帶石斑魚肌肉倍增基因功能分析與其基因啟動子之調節,國立成功大學生物科技研究所碩士論文,(2007)。

    陳宛兒,點帶石斑魚肌肉生長抑制基因之功能分析及分子調控,國立成功大學生物科技研究所碩士論文,(2009)。

    Abe, M., Harpel, J.G., Metz, C.N., Nunes, I., Loskutoff, D.J. , and Rifkin, D.B. An Assay for Transforming Growth Factor-β Using Cells Transfected with a Plasminogen Activator Inhibitor-1 Promoter-Luciferase Construct. Anal. Biochem. 216, 276-284 (1994)

    Acosta, J., Carpio, Y., Borroto, I., Gonzalez, O., and Estrada, M.P. Myostatin gene silenced by RNAi show a zebrafish giantphenotype. J. Biotechnol. 119, 324-331 (2005)

    Baker, K.M., Wei, G., Schaffne, A.E., and Ostrowski, M.C. Ets-2 and Components of Mammalian SWI/SNF Form a RepressorComplex That Negatively Regulates the BRCA1 Promoter. J. Biol. Chem. 278, 17876-17884 ( 2003)

    Bidder, M., Loewy, A.P., Latifi, T., Newberry, E.P., Ferguson, G., Willis, D. M., and Towler, D. A. Ets Domain Transcription Factor PE1 Suppresses Human Interstitial Collagenase Promoter Activity by Antagonizing Protein-DNA Interactions at a Critical AP1 Element. Biochemistry. 39, 8917-8928 (2000)
    Birnboim, H.C. and Doly, J. A rapid alkaline procedure for screening recombinant plasmid DNA. Nucleic Acid. Res. 7, 1513-1523 (1979)

    Chaudhary, J., Cupp, A.S., and Skinner, M.K. Role of basic-helix-loop-helix transcription factors in Sertoli cell differentiation: identification of an E-box response element in the transferrin promoter. Endocrinology. 138, 667-675 (1997)

    Chen, A.E., Ginty, D.D., and Fan, C. Protein kinase A signaling via CREB control myogenesis induced by Wnt proteins. Nature. 433,317-322 (2005)

    Chen, Y.M., Wei, C.Y., Chien, C.H., Chang H.W., Huang S.I., Yang H.L., and Chen, T.Y. Myostatin gene organization and nodavirus-influenced expression in orange-spotted grouper (Epinephelus coioides). Comp. Biochem. Physiol. D, Genome. Proteo. 2, 215-227 (2007)

    Chen, Y.M., Su, Y.L., Lin, J.H.Y., Yang, H.L., Chen, T.Y. Cloning of anorange-spotted grouper Mx cDNA and characterization of its expression inresponse to nodavirus. Fish Shellfish Immunol. 20, 58-71. (2006)

    Chen, X., Rubock, M.J., and Whitman, M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383, 69139-6 (1996)

    Chi, S.C., Lin, S.C., Su, H.M., and Hu, W.W. Temperature effect on nervous necrosis virus infection in grouper cell line and in grouper larvae. Virus Res. 63, 107-114 (1999)

    Chi S.C., Hu, W.W., and Lo, B.J. Establishment and characterization of a continuous cellline (GF-1) derived from grouper, Epinephelus coioides (Hamilton): a cellline susceptible to grouper nervous necrosis virus (GNNV). J. Fish Di.s22:173-82 ( 1999)

    Chomezynski, P., and Sacchi, N. Single-step method of RNA isolation by acid guanidi-niumthiocyanateephenolechloroformextraction. Anal. Biochem. 162, 56-9 (1987)

    Cleary, M.A., Stern, S., Tanaka, M., and Herr, W. Differential positive control by Oct-1 and Oct-2: activation of a transcriptionally silent motif through Oct-1 and VP16 corecruitment. Gene. Dev. 7, 72-83 (1993)

    Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., and Gauthier, J.M. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO. J. 17, 3091-3100 (1998)

    Du, R., Chen, Y.F., An, X.R., Yang, X.Y., Ma, Y., Zhang, L., Yuan, X.L., Chen, L.M., and Qin, J. Cloning and sequence analysis of myostatin promoter in sheep. DNA. Seq. 16, 412-417 (2005)

    Du, R., An, X.R., Chen, Y.F., and Qin, J. Some motifs were important for myostatin transcriptional regulation in sheep (Ovis aries). J. Biochem. Mol. Biol. 40, 547-553 (2007)

    Du, S.J., Gao, J., and Anyangwe, V. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 134, 123-134 (2003)

    Escobar, J., Van Alstine, W.G., Baker, D.H., and Johnson, R.W. Decreased protein accretion in pigs with viral and bacterial pneumonia is associated with increased myostatin expression in muscle. J. Nutr. 134, 3047-3053 (2004)

    Frohman, M.A., Dush, M.K., Martin, and G.R. Rapid production of full-length cDNA from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. U. S. A. 85, 8998-9002 (1988)

    Gao, J., Li, Z., and Paulin, D. A novel site, Mt, in the human desmin enhancer is necessary for maximal expression in skeletal muscle. J. Biol. Chem. 273, 6402-6409 (1998)

    Gan, L., Pan, H., and Unterman, T.G. Insulin response sequence-dependent and -independent mechanisms mediate effects of insulin on glucocorticoid-stimulated insulin-like growth factor binding protein-1 promoter activity. Endocrinology. 146, 4274-4280 (2005)

    Gonzalez-Cadavid, N.F., Taylor, W.E., Yarasheski, K., Sinha-Hikim, I., Ma, K., Ezzat, S., Shen, R., Lalani, R., Asa, S., Mamita, M., Nair, G., Arver, S., and Bhasin, S. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc. Natl. Acad. Sci. U. S. A. 95, 14938-14943 (1998)

    Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166,557-580 (1983)

    Heidt, A.B., Rojas, A., Harris, I.S., and Black, B.L. Determinants ofmyogenic specificity within MyoD are required for noncanonical E box binding. Mol. Cell. Biol. 27, 5910-5920 (2007)

    Hribal, M.L., Nakae, J., Kitamura, T., Shutte,r J.R, and Accili, D. Regulation ofinsulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J. Cell. Biol. 162, 535-541 ( 2003)

    Iwamoto, T., Kazuyuki, M., Moris, K.I., Arimoto, M., Nakai, T. and Okuno, T. Establishment of an infectious RNA transcription system for Striped jack nervous necrosis virus, the type species of the betanodaviruses. J. Gen. Virol. 82, 2653-2662 (2001)

    Kambadur, R., Sharma, M., Smith, T.P.L., and Bass, J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7, 910-916 (1997)

    Kerr, T., Roalson, E.H., and Rodgers, B.D. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol. Dev. 7, 390-400 (2005)

    Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., and Kambadur, R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J. Biol. Chem. 277, 49831-49840, (2002)

    Lassar, A.B., Buskin, J.N., Lockshon, D., Davis, R.L., Apone, S., Hauschka, S.D., and Weintraub, H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 58, 823-831 (1989)

    Lee, C.Y., Hu, S.Y., Gong, H.Y., Chen, M.H., Lu, J.K., and Wu, J.L. Suppression of myostatin with vector-based RNA interferencecauses a double-muscle effect in transgenic zebrafish. Biochem. Biophys. Res. Commun. 387,766-771 (2009)

    Lu, L., Zhou, S.Y., Chen, C., Weng, S.P., Chan, S.M., and He, J.G. Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coioides. Virology. 339, 81-100 (2005)

    Ma, K., Mallidis, C., Bhasin, S., Mahabadi, V., Artaza, J., Gonzales-Cadavid, N., Arias, J., and Salehian, B. Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am. J. Physiol. Endocrinol. Metab. 285, E363-E371 (2003)

    Mavrothalassitis, G., and Ghysdael, J., Proteins of the ETS family with transcriptional repressor activity. Oncogene. 19, 6524-6532 (2000)

    Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F., and Patarnello, T. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar. Biotechnol. 3, 223-230 (2001)

    McPherron, A.C. and Lee, S.L. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. U. S. A. 94, 12457-12461 (1997)

    Mosher, D.S., Quignon, P., Bustamante, C.D., Sutter, N.B., Mellersh, C.S., Parker, H.G., and Ostrander, E.A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS. Genet. 3, 779-786 (2007)

    Moss, B. Vaccinia virus: a tool for research and vaccine development. Science. 252 , 1662-1667 (1991).

    Pachuk, C.J., McCallus, D.E., Weiner, D.B., and Satishchandran, C. DNA vaccines--challenges in delivery. Curr. Opin. Mol. Ther. 2,188-198 (2000)

    Phillips, K. and Luisi, B. The virtuoso of versatility: POU proteins that flex to fit. J. Mol. Biol. 302, 1023-1039 (2000)

    Potthoff, M.J. and Olson, E.N. MEF2: a central regulator of diverse developmental programs. Development. 134, 4131-4140 (2007)

    Rios, R., Carneiro, I., Arce, V.M., and Devesa, J. Myostatin is an inhibitor of myogenic differentiation. Am. J. Physio.l Cell. Physiol. 282, C993-C999,( 2002)

    Saiki, R., Scharf, S., Faloona, F., Mullis, K., Horn, G., Erlich, H., and Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 230 , 1350-1354 (1985)

    Salerno, M.S., Thomas, M., Forbes, D., Watson, T., Kambadur, R., and Sharma, M. Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am. J. Physiol. Cell. Physiol. 287, C1031-C1040 (2004)

    Schuelke, M., Wagner, K.R., Stolz, L.E., HÜbner, C., Riebel, T., KÖmen,W.,
    Braun, T., James, F.T., and Lee, S.J. Myostatin mutation associated with
    gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682-2688 (2004)

    Sharma, M., Kambadur, R., Matthews, K.G., Somers, W.G., Devlin, G.P., Conaglen, J.V., Fowke, P.J., and Bass, J.J. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol. 180, 1-9 (1999)

    Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85 (1985)

    Spiller, M.P., Kambadur, R., Jeanplong, F., Thomas, M., Martyn, J.K., Bass, J.J., and Sharma, M. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol. Cell. Biol. 22, 7066-7082 (2002)

    Stinckens, A., Luyten, T., Bijttebier, J., Van den Maagdenberg, K., Dieltiens, D., Janssens, S., De Smet, S., Georges, M., and Buys, N. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim. Genet. 39, 586-596 (2008)

    Tobin, J.F., and Celeste, A.J. Myostatin, a negative regulator of musclemass: implications for muscle degenerative diseases. Curr. Opin. Pharmacol. 5, 328-332 (2005)

    Tuteja, R. DNA Vaccines: A Ray of Hope. Crit. Rev. Biochem. Mol.34, 1-24 (1999)

    Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T.K., Turner, D., Rupp, R., Hollenberg, S., Zhuang, Y., and Lassar, A. The myoD gene family: nodal point duringspecification of the muscle cell lineage. Science. 251,761-766 (1991)

    Whittemore, L.A., Song, K., Li, X., Aghajanian, J., Davies, M., Girgenrath, S., Hill, J.J., Jalenak, M., Kelley, P., Knight, A., Maylor, R., O' Hara, D., Pearson, A., Quazi, A., Ryerson, S., Tan, X.Y., Tomkinson, K.N., Veldman, G.M., Widom, A., Wright, J.F., Wudyka, S., Zhao, L., and Wolfman, N.M. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300, 965-971 (2003)

    Xing, F., Tan, X., Zhang, P.J., Ma, J., Zhang, Y., Xu, P., and Xu, Y. Characterization of amphioxus GDF8/11 gene, an archetype ofvertebrate MSTN and GDF11. Dev. Genes. Evol. 217, 549–554 (2007)

    Ye, H.Q., Chen, S.L., Sha, Z.X., and Liu, Y. Molecular cloning and expression analysis of the myostatin gene in sea perch (Lateolabrax japonicus). Mar. Biotechnol. 9, 262-272 (2007)

    Zhu, X., Topouzis, S., Liang, L.F., and Stotish, R.L. Myostatin signaling throughSmad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by anegative feedback mechanism. Cytokine. 26, 262-272 (2004)

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE