| 研究生: |
陳彥翔 Chen, Yen-Hsiang |
|---|---|
| 論文名稱: |
開發可調變寬頻或多窄頻之光子晶體遮蔽器 Development of adjustable broadband or multi-narrowband photonic crystal filters |
| 指導教授: |
陳玉彬
Chen, Yu-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 光子晶體 、平面波展開法 、自組裝法 、咖啡環效應 、表面聲波 |
| 外文關鍵詞: | photonic crystals, Plane-wave expansion method, self-assembly, coffee-ring effect, surface acoustic wave |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光子晶體為兩種介電材料以週期性排列的結構,可抑制特定波段與角度之入射光,實現低穿透率甚至零穿透。常見均一粒徑微/奈米球組成之三維光子晶體,具有單一窄頻的光子能隙,若能低成本且快速製作光子晶體,並實現多頻段或寬頻的屏蔽效果,將大幅提升應用價值與範圍。故本研究開發快速且簡易之超音波震盪自組裝法製作三維光子晶體,主要設備為恆溫超音波震盪製程系統,此設備具備操作簡單、製程快速以及穩定超音波震盪等優點,並藉由堆疊法將多組光子晶體製作於玻璃基板上,達到多窄頻的遮蔽效果;另一方面,本研究利用三維平面波展開法理論基礎,針對目標波段確認能隙相近之兩組光子晶體,並將它們製作在玻璃基板的正反兩面,實現寬頻遮蔽效果。前述兩者效果皆透過可見光顯微光譜儀量測樣本穿透率頻譜呈現,並以電子顯微鏡呈現各組光子晶體均勻性。
另外,本研究製作光子晶體需使用聚苯乙烯奈米球溶液,但溶液中含有粒子時則會發生咖啡環效應,若要擴大光子晶體的分布範圍,此效應勢必需要被克服。本研究採用固定震盪頻率之表面聲波找到可成功抑制咖啡環效應之溶液參數,並由樣本穿透率量測結果證實成功製作出三維光子晶體樣本。
There are two research objectives in this work. The first one is development of multi-narrowband or broadband photonic crystal (PC) filters. The second one is suppression of coffee-ring effect to the nano-particles within droplet. In order to achieve the objectives, this research applied the three-dimensional (3D) plane-wave expansion method to predict the photonic bandgap of PC, whose were composed of different particle sizes. Then, this research set up a self-assembly system of stable ultrasonic oscillation to fabricate 3D PCs. Finally, multi-layered PCs were fabricated using stacking method, they possess multi-narrow bandgaps. Additionally, using two species of nano-particle size whose bandgaps are very close to each other fabricated two-layers PC sample. The photonic bandgaps of the sample will be expanded from narrowband to broadband. On the other hand, this work used the surface acoustic wave with fixed frequency to try to find out the parameters of polystyrene nano-particles solution whose coffee-ring effect can be suppressed successfully.
Finally, this work successfully developed the two narrowband, three narrowband and broadband PC filters. In addition, this research also successfully found out the parameters of polystyrene nano-particles solution whose coffee-ring effect can be suppressed.
[1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, pp. 2059-2062, 1987.
[2] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, pp. 2486-2489, 1987.
[3] Y. Liu, F. Qin, Z.-Y. Wei, Q.-B. Meng, D.-Z. Zhang, and Z.-Y. Li, "10 fs ultrafast all-optical switching in polystyrene nonlinear photonic crystals," Applied Physics Letters, vol. 95, p. 131116, 2009.
[4] E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Physical Review B, vol. 72, 2005.
[5] A. Ebnali-Heidari, C. Prokop, M. Ebnali-Heidari, and C. Karnutsch, "A Proposal for Loss Engineering in Slow-Light Photonic Crystal Waveguides," Journal of Lightwave Technology, vol. 33, pp. 1905-1912, 2015.
[6] J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Physical Review Letters, vol. 85, pp. 3966-3969, 2000.
[7] Z.-J. Zhu, P.-F. Liu, and Y.-W. Tong, "Improving image quality and stability of two-dimensional photonic crystal slab by changing surface structure of the photonic crystal," Optics Communications, vol. 363, pp. 195-200, 2016.
[8] E. Rephaeli, A. Raman, and S. Fan, "Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling," Nano Lett, vol. 13, pp. 1457-61, 2013.
[9] L. Zhu, A. P. Raman, and S. Fan, "Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody," Proc Natl Acad Sci U S A, vol. 112, pp. 12282-7, 2015.
[10] X. Sheng, L. Z. Broderick, and L. C. Kimerling, "Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations," Optics Communications, vol. 314, pp. 41-47, 2014.
[11] P. B. Deotare, L. C. Kogos, I. Bulu, and M. Loncar, "Photonic Crystal Nanobeam Cavities for Tunable Filter and Router Applications," IEEE Journal of Selected Topics in Quantum electronics, vol. 19, p. 3600210, 2013.
[12] T. P. Otanicar, D. DeJarnette, Y. Hewakuruppu, and R. A. Taylor, "Filtering light with nanoparticles: a review of optically selective particles and applications," Advances in Optics and Photonics, vol. 8, p. 541, 2016.
[13] R. B. Wehrspohn, S. L. Schweizer, B. Gesemann, D. Pergande, T. M. Geppert, S. Moretton, et al., "Macroporous silicon and its application in sensing," Comptes Rendus Chimie, vol. 16, pp. 51-58, 2013.
[14] M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, "Thermal emission and absorption of radiation in finite inverted-opal photonic crystals," Physical Review A, vol. 72, p. 033821, 2005.
[15] A. K. Goyal, H. S. Dutta, and S. Pal, "Recent advances and progress in photonic crystal-based gas sensors," Journal of Physics D: Applied Physics, vol. 50, p. 203001, 2017.
[16] H. Inan, M. Poyraz, F. Inci, M. A. Lifson, M. Baday, B. T. Cunningham, et al., "Photonic crystals: emerging biosensors and their promise for point-of-care applications," Chem Soc Rev, vol. 46, pp. 366-388, 2017.
[17] K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Applied Physics Letters, vol. 75, pp. 932-934, 1999.
[18] A. Madani and S. Roshan Entezar, "Optical properties of one-dimensional photonic crystals containing graphene sheets," Physica B: Condensed Matter, vol. 431, pp. 1-5, 2013.
[19] Z. Luo, M. Chen, J. Deng, Y. Chen, and J. Liu, "Low-pass spatial filters with small angle-domain bandwidth based on one-dimensional metamaterial photonic crystals," Optik - International Journal for Light and Electron Optics, vol. 127, pp. 259-262, 2016.
[20] T. Kondo, S. Hirano, T. Yanagishita, N. T. Nguyen, P. Schmuki, and H. Masuda, "Two-dimensional photonic crystals based on anodic porous TiO2with ideally ordered hole arrangement," Applied Physics Express, vol. 9, p. 102001, 2016.
[21] P. Markoš and V. Kuzmiak, "Coupling between Fano and Bragg bands in the photonic band structure of two-dimensional metallic photonic structures," Physical Review A, vol. 94, 2016.
[22] J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, and X. Zhang, "Valley photonic crystals for control of spin and topology," Nat Mater, vol. 16, pp. 298-302, 2017.
[23] J. F. Galisteo-Lopez, M. Ibisate, R. Sapienza, L. S. Froufe-Perez, A. Blanco, and C. Lopez, "Self-assembled photonic structures," Adv Mater, vol. 23, pp. 30-69, 2011.
[24] Y. Iwayama, J. Yamanaka, Y. Takiguchi, M. Takasaka, K. Ito, T. Shinohara, et al., "Optically Tunable Gelled Photonic Crystal Covering Almost the Entire Visible Light Wavelength Region," Langmuir, vol. 19, pp. 977-980, 2003.
[25] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, et al., "A three-dimensional photonic crystal operating at infrared wavelengths," Nature, vol. 394, pp. 251-253, 1998.
[26] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science, vol. 289, pp. 604-606, 2000.
[27] W. Dai, H. Wang, M. Wang, Z. Shen, D. Li, and D. Zhou, "Diamond electromagnetic band gap structure based on Bi(Nb0.992V0.008)O4 ceramic," Journal of Materials Science: Materials in Electronics, vol. 22, pp. 422-425, 2010.
[28] N. Dutta, "Fabrication of uniform large-area polymer “woodpile” photonic crystals structures with nanometer-scale features," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 9, p. 023003, 2010.
[29] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature, vol. 404, pp. 53-56, 2000.
[30] Y. Xia, B. Gates, Y. Yin, and Y. Lu, "Monodispersed Colloidal Spheres: Old Materials with New Applications," Advanced Materials, vol. 12, pp. 693-713, 2000.
[31] B. T. Holland, C. F. Blanford, T. Do, and A. Stein, "Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites," Chemistry of Materials, vol. 11, pp. 795-805, 1999.
[32] Z.-Z. Gu, S. Hayami, S. Kubo, Q.-B. Meng, Y. Einaga, D. A. Tryk, et al., "Fabrication of Structured Porous Film by Electrophoresis," Journal of the American Chemical Society, vol. 123, pp. 175-176, 2001.
[33] M. H. Lash, M. V. Fedorchak, S. R. Little, and J. J. McCarthy, "Fabrication and characterization of non-Brownian particle-based crystals," Langmuir, vol. 31, pp. 898-905, 2015.
[34] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops " Nature, vol. 389, pp. 827-829, 1997.
[35] H. Hu and R. G. Larson, "Marangoni Effect Reverses Coffee-Ring Depositions," The Journal of Physical Chemistry B, vol. 110, pp. 7090-7094, 2006.
[36] Y. Li, Q. Yang, M. Li, and Y. Song, "Rate-dependent interface capture beyond the coffee-ring effect," Sci Rep, vol. 6, p. 24628, 2016.
[37] J. Park and J. Moon, "Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing," Langmuir, vol. 22, pp. 3506-3513, 2006.
[38] S. Maheshwari, L. Zhang, Y. Zhu, and H. C. Chang, "Coupling between precipitation and contact-line dynamics: multiring stains and stick-slip motion," Phys Rev Lett, vol. 100, p. 044503, 2008.
[39] M. C. Pirrung, "How to Make a DNA Chip," Angewandte Chemie, vol. 41, pp. 1276-1289, 2002.
[40] J. Xu, J. Xia, S. W. Hong, Z. Lin, F. Qiu, and Y. Yang, "Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge," Phys Rev Lett, vol. 96, p. 066104, 2006.
[41] B. M. Weon and J. H. Je, "Capillary force repels coffee-ring effect," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 82, p. 015305, 2010.
[42] P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, "Suppression of the coffee-ring effect by shape-dependent capillary interactions," Nature, vol. 476, pp. 308-311, 2011.
[43] H. Li, J. R. Friend, and L. Y. Yeo, "Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation," Phys Rev Lett, vol. 101, p. 084502, 2008.
[44] D. Mampallil, J. Reboud, R. Wilson, D. Wylie, D. R. Klug, and J. M. Cooper, "Acoustic suppression of the coffee-ring effect," Soft Matter, vol. 11, pp. 7207-13, 2015.
[45] J. Zhou, Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, et al., "Three-dimensional photonic band gap structure of a polymer-metal composite," Applied Physics Letters, vol. 76, p. 3337, 2000.
[46] A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander, and G. A. Ragoisha, "Electrophoretic Deposition of Latex-Based 3D Colloidal Photonic Crystals: A Technique for Rapid Production of High-Quality Opals," Chemistry of Materials, vol. 12, pp. 2721-2726, 2000.
[47] D. W. PRATHER, S. SHI, A. SHARKAWY, J. MURAKOWSKI, and G. J. SCHNEIDER, PHOTONIC CRYSTALS Theory, Applications, and Fabrication: WILEY, 2009.
[48] Microwave Equipment & Components of America, Relative permittivity of polystyrene,
Available: http://www.rfcafe.com/references/electrical/dielectric
-constants-strengths.htm
[49] 欒丕綱 and 陳啓昌, "光子晶體-從蝴蝶翅膀到奈米光子學," 五南圖書出版公司, 2nd ed., 2010.
[50] L. Rayleigh, "On Waves Propagated along the Plane Surface of an Elastic Solid," Proceedings of the London Mathematical Society, vol. s1-17, pp. 4-11, 1885.
[51] 黃仕泓 and 柯正浩, "表面聲波感測器之前瞻研究," 物理雙月刊, vol. 23, 2004.
[52] R. M. White and F. W. Voltmer, "Direct Piezoelectric Coupling to Surface Elastic Waves," Applied Physics Letters, vol. 7, pp. 314-316, 1965.
[53] K.-y. Hashimoto, Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation: Springer, 2000.
[54] D. Mishra, "Modeling of Interdigital Transducer Surface Acoustic Wave Device - Design and Simulation," 2015 Fifth International Conference on Communication Systems and Network Technologies, pp. 1327-1331, 2015.
[55] R. P. Hodgson, M. Tan, L. Yeo, and J. Friend, "Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics," Applied Physics Letters, vol. 94, p. 024102, 2009.
[56] J. Reboud, R. Wilson, Y. Zhang, M. H. Ismail, Y. Bourquin, and J. M. Cooper, "Nebulisation on a disposable array structured with phononic lattices," Lab Chip, vol. 12, pp. 1268-73, 2012.
[57] 廖力弘, "以自組光子晶體製作可調波段遮蔽器," 國立成功大學機械工程學系碩士論文, ed:國立成功大學, 2015.
[58] Thermostatic water bath, JF, G-20.
Available: http://www.coi.tw/product_detail.asp?com_ser=11507&pro_
ser=8062144
[59] Pump, IWAKI, MDG-M2T100NS.
Available: http://www.bs22129537.com.tw/product-detail-554442.html
[60] Ultrasonic oscillator, RINGTECH INSTRUMENT, DU230.
Available:http://www.ringtech.com.tw/product/showproduct.php?id=62
[61] Infrared ceramic heater, Aiicioo, Reptiles or Amphibian Infrared Heater Emitter.
Available: https://www.amazon.com/Aiicioo-Ceramic-Emitter-Reptiles
Amphibians/dp/B018I86B4Y/ref=sr_1_4?s=petsupplies&ie=UTF8&qid=1494577921&sr=1-4&keywords=250w+ceramic
[62] Oscilloscope, KEYSIGHT TECHNOLOGIES, DSOX2024A.
Available: http://www.keysight.com/en/pdx-x201837-pn-DSOX2024A
/oscilloscope-200-mhz-4-analog-channels?cc=TW&lc=cht
[63] Hight accuracy DC power supply, ITECH, IT6121B.
Available: http://www.itech.sh/en/product/dc_power_supply/IT6100B.
htm
[64] VMS, SCINCO, VMS-1S.
Available: http://www.scinco.tw/product/item_view.asp?number=468
&page=1
[65] 3000 Series NanosphereTM Size Standards, Thermo Fisher Scientific, (3200A, 3220A, 3240A, 3269A, 3300A).
Available: https://www.thermofisher.com/order/catalog/product/3020A
[66] Water purification system, Merck Millipore, Smart Synergy-Type 1.
Available: http://www.merck-lifescience.com.tw/product/smart-synergy
-type.
[67] A. Mata, A. J. Fleischman, and S. Roy, "Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems," Biomed Microdevices, vol. 7, pp. 281-293, 2005.
[68] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, "Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)," Analytical Chemistry, vol. 70, pp. 4974-4984, 1998.
[69] Sylgard-184 silicone elastomer, DOW CORNING, Product information.
Available: http://www.dowcorning.com/DataFiles/090276fe80190b08.
Pdf
[70] Sylgard-184A and Sylgard-184B, SILMORE, DOW CORNING Sylgard 184.
Available: http://www.silmore.com.tw/products_detail.php?CID=13&P
ID=96&sn=567&lang=tw
[71] Balances, Sartorius, BSA-224SCW.
Available: http://www.ivorist.com.tw/product.php?class=%E5%A4%96
%E6%A0%A1%E5%BC%8F%EF%BC%8F%E5%85%A7%E6%A0%A1%E5%BC%8F+%E5%88%86%E6%9E%90%E5%A4%A9%E5%B9%B3&brand=SARTORIUS
[72] Spin coater, apisc, SP-D1-P.
Available: http://apisc.com/Spin_Coater_SP-D1-P.htm
[73] Vacuum oven, Kingtech scientific, JOV-30.
Available: http://www.kkk.com.tw/product_detail.asp?pro_ser=6035
[74] A. Ponyavina, S. Kachan, and N. Sil’vanovich, "Statistical theory of multiple scattering of waves applied to three-dimensional layered photonic crystals," Optical Society of America, vol. 21, pp. 1866-1875, 2004.
[75] 鋁平板, 維信鋁合金有限公司, 1050.
Available: http://www.wsal.com.tw/ugC_Support1050.asp