簡易檢索 / 詳目顯示

研究生: 李昰諭
Lee, Shyh-Yu
論文名稱: 黎曼流形上的半調和函數和熱方程式
Subharmonic Functions and The Heat Equation on Riemannian Manifolds
指導教授: 林君恒
Lam, Kwan-Hang
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 66
中文關鍵詞: 半調和函數黎曼流形熱方程式
外文關鍵詞: Heat equation, Subharmonic function, Riemannian manifold
相關次數: 點閱:128下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們先介紹研究調和函數的基本工具梯度估計和 Harnack 不等式。接下來應用龐加萊和均值不等式來研究調和函數和半調和函數在黎曼流形的性質。在第三章我們證明 L^{1} 函數在拉普拉斯方程式和熱方程式上的解具有唯一性。最後,我們假設黎曼流形具有非負的瑞奇曲率和 maximal volume growth , 然後討論格林函數的行為和估計 heat kernel 。

    We introduce Gradient Estimate and Harnack Inequality , that are essential to the study of harmonic functions . Next we apply Poincare and mean value inequality to study some properties of
    harmonic and subharmonic functions on Riemannian manifold . In Chapter 3 , we show the uniqueness properties for L^{1} solutions of the Laplace equation and the heat kernel equation .
    Finally , assume that manifold M with nonnegative Ricci curvature and maximal volume growth , then we discuss the behavior of the Green function and estimate the heat kernel .

    1 Gradient Estimate and Harnack Inequality 1 1.1 Introduction . . . . . . . . . . . . 1 1.2 Gradient estimate . . . . . . . . . . . . 3 1.3 Harnack inequality . . . . . . . . . . . . 9 2 Harmonic and Subharmonic Functions on Riemannian Manifolds 16 2.1 Poincare and mean value inequality . . . . . . . . . . . . 16 2.2 L^{p} harmonic and subharmonic functions . . . . . . . . . . . . 23 3 The Heat Equation on Riemannian Manifolds 35 3.1 The heat equation . . . . . . . . . . . . 35 3.2 Large time asymptotic behavior of the heat kernel . . . . . . . . . . . . 44 3.3 Stability of the heat equation with bounded initial data . . . . . . . . . . . . 49 4 Sharp Bounds for The Green's Function and The Heat Kernel 52 4.1 Asymptotic behavior of the green's function. . . . . . . . . . . . . 52 4.2 Heat kernel eestimates . . . . . . . . . . . . 57

    [1] R. Bishop and R. Crittenden , Geometry of manifolds ,
    Academic Press , New York, 1964 .
    [2] J. Cheeger , M. Gromov and M. Taylor , Finite propagation
    speed , kernel estimates for functions of the Laplace operator , and
    the geometry of complete Riemannian manifolds , J. Differenrial
    Geometry 17(1983) , 15-53 .
    [3] S. Y. Cheng , P. Li and S. T. Yau On the upper estimate of the
    heat kernel of a complete Riemannian manifold , Amer. J. Math.
    103(1981) , 1021-1063 .
    [4] S. Y. Cheng and S. T. Yau , Differential equations on
    Riemannian manifolds and their geometric applications , Comm. Pure
    Appl. Maht, 28 (1975) , 333-354 .
    [5] T. H. Colding and W. P. Minicozzi II , Large scale behavior of
    kernels of Schrodinger operators , preprint .
    [6] H. Donnelly , Uniqueness of positive solutions of the heat
    equation , preprint .
    [7] R. E. Greene and H. Wu , Function theory on manifolds which
    possess a pole , Springer-Verlag Lecture Notes in Mathematics ,
    699 , Berlin , 1979 .
    [8] P. Li , Harmonic functions and applications to complete
    manifolds , Lecture Notes , preprint .
    [9] P. Li , Lecture notes on geometric analysis , Lecture Notes
    , preprint .
    [10] P. Li , Large time behavior of the heat equation on complete
    manifolds with nonnegative Ricci curvature , Ann. of Math.
    124(1986) , 1-21 .
    [11] P. Li , Uniqueness of L^{1} solutions for the laplace
    equation and the heat equation on riemannian manifolds , J.
    Differential Geometry 20(1984) , 447-457 .
    [12] L. Karp and P. Li , The heat equation on complete Riemmannian
    manifolds , preprint.
    [13] P. Li and R. Schoen , L^ {p} and mean value properties of
    subharmonic functions on Riemannian manifolds , Acta Math.
    153(1984) , 279-301 .
    [14] P. Li , L. F. Tam and J. Wang , Sharp bounds for the green's
    function and the heat kernel , MRL. 4(1997) , 589-602 .
    [15] P. Li. and S. T. Yau , On the parabolic kernel of the
    Schrodinger operator , Acta Math. 156(1986) , 153-201 .
    [16] V. C. Repnikov and S. D. Eidelman , Necessary and sufficient
    conditions for establishing a solution to the Cauchy problem ,
    Soviet Math. Dokl. 7(1966) , 388-391.
    [17] V. C. Repnikov and S. D. Eidelman , A new proof of the theorem
    on the stabilization of the solution of the Cauchy problem for the
    heat equation , Math. USSR Sbornik. 2 , 1 (1967) ,
    135-139 .
    [18] R. Strichartz , Analysis of the Laplacian on a complete
    Riemannian manifold , J. Funct. Anal. , 52(1983) , 48-79.
    [19] R. Schoen and S. T. Yau , Lectures on differential geometry , International Press , Boston , 1994 .
    [20] N. Varopoulos , The Poisson kernel on positively curved
    manifolds , J. Funct. Anal. 44(1981) , 359-380 .
    [21] H. Wu , On the volume of a noncompact manifold , Duke Math.
    J. , 49(1982) , 71-78.
    [22] S. T. Yau , Some function-theoretic properties of complete
    Riemannian manifolds and their applications to geometry , Indiana
    Univ. Math. J. , 25(1974) , 659-670 .

    下載圖示 校內:立即公開
    校外:2009-07-06公開
    QR CODE