簡易檢索 / 詳目顯示

研究生: 李家蒲
Lee, Jia-Pu
論文名稱: 快速微流體螢光檢測平台應用於血液中鈉離子檢測
Rapid microfluidic chip-based fluorescence platform for detection of sodium ion in whole blood sample
指導教授: 傅龍明
Fu, Lung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 慢性腎臟病微流體晶片鈉離子螢光鈉綠
外文關鍵詞: Chronic Kidney Disease, Microfluidic Chip, Sodium Ion, Fluorescence, Sodium Green
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球的疾病排名中,慢性腎臟病 (Chronic Kidney Disease, CKD)患者的成長極為快速,對於各個國家而言都是一個巨大的潛在性公共衛生問題。而CKD患者到了後期通常需要進行血液透析,對於國家的健康保險體制來說耗費龐大的資源,不僅造成資源分配不均問題,更是國家的一大負擔。會造成這樣的情況產生,是因為CKD初期並無明顯症狀,因此許多患者因無病識感而忽略其嚴重性,最終導致病情惡化。慢性腎臟病之併發症中,鈉離子佔據身體中大部分的陽離子,其失調所造成的風險最為常見的。因為它會造成病患昏迷、休克,若能縮短檢測時間就可以及早發現病情,透過調整飲食、盡早就醫保障病患健康。
    在本研究中,使用”Sodium Green”此螢光感測器對鈉離子的專一性之螢光法,開發微流體晶片搭配微型化檢測平台,應用於鈉離子的濃度檢測。在晶片系統的試劑區填入試劑,藉由微流體晶片中的蛇形管進行混合,使其均勻反映後,由螢光強度值推導出鈉離子濃度。所提出的方法有效使用於鈉離子樣品檢測,濃度區間為10~200 mM。實驗結果顯示,使用所開發的微流體晶片系統檢測平台,鈉離子檢測的線性度R2近似為0.99,並且與國立成功大學醫院內科部腎臟科合作簽署IRB (Institutional Review Board)採集真實病患檢體進行檢測。微流體晶片系統檢測結果與成大醫院檢測數值做比較,兩者的相關係數為0.97。由此結果得出本文提出的系統為血液中鈉離子的檢測提供了低成本、製程簡單並且可靠的方法。

    In the global disease rankings, the number of patients with Chronic Kidney Disease (CKD) continues to rise. This is because the patient lacks relevant knowledge of the disease and neglects the severity of the disease, which ultimately leads to the deterioration of the disease. In the complications of chronic kidney disease, sodium ions account for most of the cations in the body, and the risk caused by its imbalance is the most common. It may cause the patient to coma and shock. It is hoped that by shortening the testing time, the disease can be detected as soon as possible, and the medical treatment can be seen as soon as possible to protect the health of the patients.
    In this study, the "Sodium Green" fluorescent sensor, which is specific to sodium ions, is used to develop a microfluidic chip with a miniaturized detection platform to detect the concentration of sodium ions.
    The reagent and the sample are mixed through the serpentine tube in the microfluidic chip to completely react and fill the reagent area of the chip system, and then the sodium ion concentration is derived from the fluorescence intensity value. The proposed method is effectively used in the detection of sodium ion samples with a concentration range of 10~200 mM.
    Experimental results show that using the developed microfluidic wafer system detection platform, the linearity R2 of sodium ion detection is about 0.99, and it cooperates with National Cheng Kung University Hospital to collect real patient specimens for blind testing. Comparing the test results of the microfluidic wafer system with those of Chengda Hospital, the correlation coefficient between the two is 0.97. From this result, the system proposed in this paper provides a low-cost, simple and reliable method for the detection of sodium ions in the blood.
    Keywords: Chronic Kidney Disease, Microfluidic Chip, Sodium Ion, Fluorescence, Sodium Green

    摘要 I ABSTRACT II 誌謝 IX 目錄 X 表目錄 XIV 圖目錄 XV 縮寫說明 XVIII 第一章 緒論 1 1.1 前言 1 1.2 慢性腎臟病 2 1.2.1 腎臟 2 1.2.2 慢性腎臟病(CKD) 5 1.2.3 慢性腎臟病的危害 7 1.3 電解質 8 1.3.1 電解質介紹 8 1.3.2 電解質種類 9 1.3.3 人體的電解質吸收與排泄 11 1.4 研究動機與目的 12 第二章 文獻回顧 13 2.1 微流體簡介 13 2.2 微流體晶片 14 2.2.1 聚二甲基矽氧烷(PDMS) 14 2.2.2 聚甲基丙烯酸甲酯(PMMA) 15 2.2.3 紙基 16 2.3 鈉離子 16 2.3.1 鈉離子的調節 16 2.3.2 鈉離子的功能 17 2.3.3 鈉離子失調的危害 17 2.4 金屬離子檢測方法 18 2.4.1 比色法 19 2.4.2 螢光法 21 2.4.3 電化學法 23 2.5 比爾-朗伯定律 25 第三章 實驗與方法 27 3.1 材料與設備 27 3.1.1 晶片基材 27 3.1.2 儀器與設備 28 3.2 藥品種類 29 3.2.1 HEPES 29 3.2.2 Tris 29 3.2.3 Sodium Green 29 3.3 藥品配置 31 3.3.1 緩衝溶液(pH 7.4) 31 3.3.2 鈉綠螢光試劑 32 3.3.3 電解質 32 3.4 實驗規劃 33 3.5 CO2雷射製作微流道 34 3.6 檢測系統介紹 36 3.6.1 機台規劃 36 3.6.2 零件介紹 36 3.6.3 載台介紹 39 3.6.4 機台介紹 41 3.7 微流體檢測晶片 41 3.7.1 溶液配置 41 3.7.2 微流體晶片製程 42 3.7.3 整合型微流體晶片設計 45 第四章 結果與討論 47 4.1 鈉離子傳統螢光檢測法 47 4.1.1 鈉離子與螢光試劑強度關係 48 4.1.2 反應時間與螢光強度的關係 50 4.1.3 試劑的選擇性驗證 51 4.1.4 光源接收面寬度與螢光強度值關聯性 52 4.2 微流體系統檢驗 54 4.2.1 光纖固定於平台的高度穩定性改善 54 4.2.2 試劑濃度與螢光強度的關聯性 56 4.2.3 燈源強度與螢光強度關係 57 4.2.4 微流體晶片與螢光試劑再現性 58 4.3 實際病患檢體 60 4.3.1 微流體晶片檢測系統用於臨床檢驗樣本之結果 60 第五章 結論與未來發展 62 5.1 結論 62 5.2 未來發展 63 參考文獻 64 附錄 68

    [1] G. G. Garcia, P. Harden, J. Chapman, and C. World Kidney Day Steering, "The global role of kidney transplantation," Kidney Blood Press Res, vol. 35, no. 5, pp. 299-304, 2012, doi: 10.1159/000337044.
    [2] B. L. Neuen, S. J. Chadban, A. R. Demaio, D. W. Johnson, and V. Perkovic, "Chronic kidney disease and the global NCDs agenda," BMJ Glob Health, vol. 2, no. 2, p. e000380, 2017, doi: 10.1136/bmjgh-2017-000380.
    [3] A. F. De Vecchi, M. Dratwa, and M. Wiedemann, "Healthcare systems and end-stage renal disease (ESRD) therapies—an international review: costs and reimbursement/funding of ESRD therapies," Nephrology Dialysis Transplantation, vol. 14, no. suppl_6, pp. 31-41, 1999.
    [4] H. Wang, M. Naghavi, C. Allen, R. M. Barber, Z. A. Bhutta, A. Carter, D. C. Casey, F. J. Charlson, A. Z. Chen, M. M. Coates et al., "Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015," The Lancet, vol. 388, no. 10053, pp. 1459-1544, 2016, doi: 10.1016/s0140-6736(16)31012-1.
    [5] S. J. Hwang, J. C. Tsai, and H. C. Chen, "Epidemiology, impact and preventive care of chronic kidney disease in Taiwan," Nephrology (Carlton), vol. 15 Suppl 2, pp. 3-9, Jun 2010, doi: 10.1111/j.1440-1797.2010.01304.x.
    [6] D. R. Finco, "Kidney function," in Clinical biochemistry of domestic animals: Elsevier, 1997, pp. 441-484.
    [7] A. S. Levey, J. Coresh, E. Balk, A. T. Kausz, A. Levin, M. W. Steffes, R. J. Hogg, R. D. Perrone, J. Lau, and G. Eknoyan, "National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification," Annals of Internal Medicine, vol. 139, no. 2, pp. 137-147, 2003.
    [8] D. W. Cockcroft and H. Gault, "Prediction of creatinine clearance from serum creatinine," Nephron, vol. 16, no. 1, pp. 31-41, 1976.
    [9] A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, "A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation," Annals of Internal Medicine, vol. 130, no. 6, pp. 461-470, 1999.
    [10] L. A. Stevens, J. Coresh, T. Greene, and A. S. Levey, "Assessing kidney function—measured and estimated glomerular filtration rate," New England Journal of Medicine, vol. 354, no. 23, pp. 2473-2483, 2006.
    [11] A. S. Levey and J. Coresh, "Chronic kidney disease," The Lancet, vol. 379, no. 9811, pp. 165-180, 2012, doi: 10.1016/s0140-6736(11)60178-5.
    [12] A. C. Webster, E. V. Nagler, R. L. Morton, and P. Masson, "Chronic Kidney Disease," The Lancet, vol. 389, no. 10075, pp. 1238-1252, 2017, doi: 10.1016/s0140-6736(16)32064-5.
    [13] C.-C. Hsu, S.-J. Hwang, C.-P. Wen, H.-Y. Chang, T. Chen, R.-S. Shiu, S.-S. Horng, Y.-K. Chang, and W.-C. Yang, "High prevalence and low awareness of CKD in Taiwan: a study on the relationship between serum creatinine and awareness from a nationally representative survey," American Journal of Kidney Diseases, vol. 48, no. 5, pp. 727-738, 2006.
    [14] A. Sigel, H. Sigel, and R. K. Sigel, Interrelations between essential metal ions and human diseases. Springer, 2013.
    [15] A. J. Viera and N. Wouk, "Potassium disorders: hypokalemia and hyperkalemia," American Family Physician, vol. 92, no. 6, pp. 487-495, 2015.
    [16] W. Jahnen-Dechent and M. Ketteler, "Magnesium basics," Clinical kidney journal, vol. 5, no. Suppl 1, pp. i3-i14, Feb 2012, doi: 10.1093/ndtplus/sfr163.
    [17] I. Shrimanker and S. Bhattarai, "Electrolytes.[Updated 2020 Sep 12]," StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2020.
    [18] M. W. Losey, R. J. Jackman, S. L. Firebaugh, M. A. Schmidt, and K. F. Jensen, "Design and fabrication of microfluidic devices for multiphase mixing and reaction," Journal of Microelectromechanical Systems, vol. 11, no. 6, pp. 709-717, 2002, doi: 10.1109/jmems.2002.803416.
    [19] M. Bao and W. Wang, "Future of microelectromechanical systems (MEMS)," Sensors and Actuators A: Physical, vol. 56, no. 1-2, pp. 135-141, 1996.
    [20] J. Bryzek, "Impact of MEMS technology on society," Sensors and Actuators A: Physical, vol. 56, no. 1-2, pp. 1-9, 1996.
    [21] S. C. Terry, A gas chromatography system fabricated on a silicon wafer using integrated circuit technology. Stanford University, 1975.
    [22] D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, no. 12, pp. 2623-2636, 2002.
    [23] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, no. 7101, pp. 368-73, Jul 27 2006, doi: 10.1038/nature05058.
    [24] T. Fujii, "PDMS-based microfluidic devices for biomedical applications," Microelectronic Engineering, vol. 61, pp. 907-914, 2002.
    [25] H. Gu, M. H. G. Duits, and F. Mugele, "Interfacial tension measurements with microfluidic tapered channels," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 389, no. 1-3, pp. 38-42, 2011, doi: 10.1016/j.colsurfa.2011.08.054.
    [26] X. Ren, M. Bachman, C. Sims, G. Li, and N. Allbritton, "Electroosmotic properties of microfluidic channels composed of poly (dimethylsiloxane)," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 762, no. 2, pp. 117-125, 2001.
    [27] Y. Zhu and K. Petkovic-Duran, "Capillary flow in microchannels," Microfluidics and Nanofluidics, vol. 8, no. 2, pp. 275-282, 2009, doi: 10.1007/s10404-009-0516-4.
    [28] C. D. Marco, S. M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, and R. Osellame, "Surface properties of femtosecond laser ablated PMMA," ACS Applied Materials & Interfaces, vol. 2, no. 8, pp. 2377-84, Aug 2010, doi: 10.1021/am100393e.
    [29] A. T. James and A. J. Martin, "Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid," Biochemical Journal, vol. 50, no. 5, p. 679, 1952.
    [30] J. Comer, "Semiquantitative specific test paper for glucose in urine," Analytical Chemistry, vol. 28, no. 11, pp. 1748-1750, 1956.
    [31] S. Grinstein and A. Rothstein, "Mechanisms of regulation of the Na+/H+ exchanger," The Journal of Membrane Biology, vol. 90, no. 1, pp. 1-12, 1986.
    [32] J. Titze, A. Dahlmann, K. Lerchl, C. Kopp, N. Rakova, A. Schroder, and F. C. Luft, "Spooky sodium balance," Kidney International, vol. 85, no. 4, pp. 759-67, Apr 2014, doi: 10.1038/ki.2013.367.
    [33] S. Kumar and T. Berl, "Sodium," The Lancet, vol. 352, no. 9123, pp. 220-228, 1998, doi: 10.1016/s0140-6736(97)12169-9.
    [34] M. Heer, F. Baisch, J. Kropp, R. Gerzer, and C. Drummer, "High dietary sodium chloride consumption may not induce body fluid retention in humans," American Journal of Physiology-Renal Physiology, vol. 278, no. 4, pp. F585-F595, 2000.
    [35] J. C. Skou, "The influence of some cations on an adenosine triphosphatase from peripheral nerves," Biochimica et Biophysica Acta, vol. 23, pp. 394-401, 1957.
    [36] N. Wilck, A. Balogh, L. Marko, H. Bartolomaeus, and D. N. Muller, "The role of sodium in modulating immune cell function," Nature Reviews Nephrology, vol. 15, no. 9, pp. 546-558, Sep 2019, doi: 10.1038/s41581-019-0167-y.
    [37] J. Jantsch, V. Schatz, D. Friedrich, A. Schröder, C. Kopp, I. Siegert, A. Maronna, D. Wendelborn, P. Linz, and K. J. Binger, "Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense," Cell Metabolism, vol. 21, no. 3, pp. 493-501, 2015.
    [38] R. M. Reynolds, P. L. Padfield, and J. R. Seckl, "Disorders of sodium balance," Bmj, vol. 332, no. 7543, pp. 702-705, 2006.
    [39] F. Shemirani, M. Baghdadi, M. Ramezani, and M. R. Jamali, "Determination of ultra trace amounts of bismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS) after cloud point extraction," Analytica Chimica Acta, vol. 534, no. 1, pp. 163-169, 2005, doi: 10.1016/j.aca.2004.06.036.
    [40] W. Daniyal, S. Saleviter, and Y. W. Fen, "Development of surface plasmon resonance spectroscopy for metal ion detection," Sensors and Materials, vol. 30, no. 9, pp. 2023-2038, 2018.
    [41] J. Rebocho, M. L. Carvalho, A. F. Marques, F. R. Ferreira, and D. R. Chettle, "Lead post-mortem intake in human bones of ancient populations by (109)Cd-based X-ray fluorescence and EDXRF," Talanta, vol. 70, no. 5, pp. 957-61, Dec 15 2006, doi: 10.1016/j.talanta.2006.05.062.
    [42] B. Kaur, N. Kaur, and S. Kumar, "Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016," Coordination Chemistry Reviews, vol. 358, pp. 13-69, 2018, doi: 10.1016/j.ccr.2017.12.002.
    [43] N. Kaur and S. Kumar, "Colorimetric metal ion sensors," Tetrahedron, vol. 67, no. 48, pp. 9233-9264, 2011, doi: 10.1016/j.tet.2011.09.003.
    [44] S. Li, C. Zhang, S. Wang, Q. Liu, H. Feng, X. Ma, and J. Guo, "Electrochemical microfluidics techniques for heavy metal ion detection," Analyst, vol. 143, no. 18, pp. 4230-4246, 2018.
    [45] J. Wang, "Electrochemical detection for microscale analytical systems: a review," Talanta, vol. 56, no. 2, pp. 223-231, 2002.
    [46] T.-F. Hong, W.-J. Ju, M.-C. Wu, C.-H. Tai, C.-H. Tsai, and L.-M. Fu, "Rapid prototyping of PMMA microfluidic chips utilizing a CO 2 laser," Microfluidics and Nanofluidics, vol. 9, no. 6, pp. 1125-1133, 2010.

    無法下載圖示 校內:2026-09-16公開
    校外:2026-09-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE