研究生: |
許書維 Hsu, Shu-Wei |
---|---|
論文名稱: |
聚(3-己烷基噻吩) /碳六十衍生物為主動層之異質接面結構有機太陽能電池特性研究 Studies of organic solar cells using poly(3-hexylthiophene) /fullerene derivative bulk heterojunction |
指導教授: |
鄭弘隆
Cheng, Horng-Long |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 有機太陽能電池 、塊材異質接面結構 、三元混和 、聚甲基丙烯酸甲酯 、聚芴 、有效共軛鏈長 、吸收光譜 、拉曼光譜 |
外文關鍵詞: | Organic solar cells, Bulk heterojunction structure, Ternary blend, Polymethylmethacrylate, Polyfluorene–Green, Effective Conjugation length, Absorption spectroscopy, Raman spectroscopy |
相關次數: | 點閱:112 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在探討藉由改變主動層內三元高分子的混合比例對塊材異質接面結構有機太陽能電池的電特性之影響,其中以p型的聚(3-己烷基噻吩)(poly(3-hexylthiophene), P3HT)和n型的碳六十衍生物([6,6]-phenyl-C61-butyric acid methyl ester, PCBM)作為主動層的基本材料,並且與特定的高分子進行摻和。依所摻和的材料分類,可將實驗分為兩個部分,第一部分是摻和絕緣高分子的聚甲基丙烯酸甲酯 (Polymethylmethacrylate, PMMA),第二部分則是摻和螢光高分子的聚芴(Polyfluorene–Green, PF-G)。實驗中除了對主動層薄膜進行吸收光譜、拉曼光譜、X光繞射光譜、光致螢光光譜和原子力顯微鏡的分析外,太陽能電池元件也在AM1.5G且100 mW/cm2的模擬太陽光照射下進行電特性的量測。希望藉由摻和材料的加入,使主動層的結構形態改變,進而研究主動層結構形態與太陽能電池電特性之間的關係。
在第一部分中,我們製作不同混合比例的P3HT:PCBM:PMMA主動層薄膜與有機太陽能電池元件。由吸收光譜與拉曼光譜的分析結果可知,將PMMA混入P3HT:PCBM薄膜後,P3HT鏈之有效共軛鏈長的長短分佈較具一致性,使主動層的薄膜均勻性獲得提升;X光繞射光譜則指出PMMA對P3HT結晶區域並無重大影響,而在P3HT:PCBM主動層薄膜內摻和重量百分比為2.4 %的PMMA能使元件的光電轉換效率上升1.5倍。
在第二部分中,我們選用共軛高分子PF-G做為摻和材料,且研究摻和PF-G對P3HT:PCBM主動層薄膜結構的影響和由此影響所產生的太陽能電池電特性變化。P3HT:PCBM薄膜在加入PF-G後,P3HT鏈之有效共軛鏈長的長短分佈變的較為均勻,且從X光繞射光譜的結構分析可知PMMA對P3HT結晶區域並無重大影響,但PF-G的摻和會改善PCBM、PF-G和 P3HT非結晶區域的混和程度。螢光光譜指出,當主動層內的PF-G重量百分比在14%以上,則可在PF-G與P3HT間成功的產生能量轉移。最終我們沒能觀察到P3HT:PCBM:PF-G薄膜的混和比例和太陽能電池電特性的直接關係,元件電性並沒有隨著PF-G摻和比例的不同而有規律性的變化。
This study investigates the ways in which the change in the composition of ternary polymer blends affects the photovoltaic properties of bulk-heterojunction-type organic solar cells (OSCs). The ternary polymer blended active layers were prepared from a p-type poly(3-hexylthiophene) (P3HT) and an n-type fullerene derivative (i.e., [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)), which were mixed with the specific polymers. The study can be divided into the following two parts: 1) the blending polymer or the insulating polymer, i.e., polymethylmethacrylate (PMMA), and 2) a fluorescent polymer, i.e., polyfluorene-green (PF-G). The active layers were investigated using absorption spectroscopy, Raman spectroscopy, x-ray diffraction (XRD), photoluminescence spectroscopy, and atomic force microscopy. The electrical parameters of the OSC devices were measured under simulated sunlight with an AM 1.5G filter at 100 mW/cm2. We studied the correlation between the morphology of the active layers and the photovoltaic properties of the solar cells.
In part 1, we fabricated P3HT:PCBM:PMMA thin films with various compositions for the active layer of OSC devices. The absorption and Raman spectral data reveal the fact that introducing the PMMA into the P3HT:PCBM blends results in a narrower distribution of effective conjugation length (Leff) for the P3HT chains, thereby improving the degree of film homogeneity. Structural analysis using XRD suggests that the incorporation of PMM does not alter the crystalline domain of P3HT in the blends. The power conversion efficiency of the OSC device was enhanced by a factor of 1.5 by adding 2.4 wt% PMMA into the P3HT:PCBM active layer.
In part 2, we studied the effects of adding the conjugated polymer PF-G on the structure of the P3HT:PCBM films and the resulting relevant photovoltaic properties in the OSC devices. When the PF-G was incorporated into the P3HT:PCBM blended films, the distribution of the Leff of the P3HT chains were more uniform, and no significant changes were observed in the P3HT crystalline region according to the structural analysis. However, the addition of PF-G into the P3HT:PCBM blends could improve the compatibility of the P3HT amorphous chains, PCBM, and PF-G. We observed a considerable energy transfer process between P3HT and PF-G upon the addition of over 14 wt% of PF-G into the P3HT:PCBM blends. Finally, we did not observe a direct relationship between the compositions of the P3HT:PCBM:PF-G blends and the photovoltaic properties of the OSC devices.
[1] D. Wohrle and D. Meissner, “Organic solar cells” Adv. Mater. 3, p.130, 1991.
[2] G. Dennler, M. C. Scharber and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells” Adv. Mater. 21, p.1323, 2009.
[3] L. M. Chen, Z. Hong, G. Li and Y. Yang, “Recent progress in polymer solar cells: Manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells” Adv. Mater. 21, p.1434, 2009.
[4] S. Gunes, H. Neugebauer and N. S. Sariciftci, “Conjugated polymer-based organic solar cells” Chem. Rev. 107, p.1324, 2007.
[5] C. N. Hoth, S. A. Choulis, P. Schilinsky and C. J. Brabec, “High photovoltaic performance of inkjet printed polymer:fullerene blends” Adv. Mater. 19, p.3973, 2007.
[6] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, p.183, 1986.
[7] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene” Science. 258, p.1474, 1992.
[8] G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, “Polymer photovoltaic cells: Enhanced efficiencies via a network of a internal
donor-acceptor heterojunctions” Science. 270, p.1789, 1995.
[9] S. E. Shaheen, C. J. Brabec and N. S. Sariciftci,“2.5% efficient
organic plastic solar cells” Appl. Phys. Lett. 78, p.841, 2001.
[10] F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cell” Adv. Funct. Mater. 13, p.85, 2003.
[11] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nat. Mater. 4, p.864, 2005.
[12] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%” Nat. Photonics 3, p.297, 2009.
[13] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu amd G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency” Nat. Photonics 3, p.649, 2009.
[14] M. Knupfer, “exciton binding energies in organic semiconductor”
Appl. Phys. A. 77, p.623, 2003.
[15] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf,
A. J. Heeger, C. J. Brabec,“Design Rules for Donors in Bulk
Heterojunction Solar Cells - Towards 10 % Energy-Conversion
Efficiency” Adv. Mater. 6, p.789, 2006.
[16] J. J. Wortman and J. R. Hauser “Effect of mechanical stress on p-n
junction device characteristics. II. Generation-Recombination
current” J. Appl. Phys. 37, p.3527, 1966.
[17] H. K. Kuiken and C. Opdorp, “Evaluation of diffusion length and
surface-recombination velocity from a planar-collector-geometry
electron-beam-induced current scan” J. Appl. Phys. 57, p.2077,
1985.
[18] R. A. Sinton and A. Cuevas, “Contactless determination of
current-voltage characteristics and minority-carrier lifetimes in
semiconductors from quasi-steady-state photoconductance data”
J. Appl. Phys. 69, p.2510, 1996.
[19] Global Warming Art,
(http://www.globalwarmingart.com/images/4/4c/Solar_Spectrum.png)
[20] My wonderful world blog,
(http://blog.mywonderfulworld.org/2008/12/climate-chronicles-poznan-conference-secretary-chu-and-a-climate-controlled-beach.html)
[21] R. Bechara, N. Leclerc, P. Lévêque, F. Richard, T. Heiser and G.
Hadziioannou, “Efficiency enhancement of polymer photovoltaic
devices using thieno-thiophene based copolymers as nucleating
agents for polythiophene crystallization,” Appl. Phys. Lett. 93,
013306, p.183, 2008.
[22] K. C. Kim, J. H. Park and O O. Park. “New approach for nanoscale
morphology of polymer solar cells” Solar Energy Materials &
Solar Cells. 92, p. 1188, 2008.
[23] Y. A.M. Ismaii, T. Soga and T. Jimbo, “Improvement in light
harvesting and performance of P3HT:PCBM solar cell by using
9,10-diphenylanthracene” Solar Energy Materials & Solar Cells.
93, p. 1582, 2009.
[24] J. J. Dittmer, E. A. Marseglia and R. H. Friend, “Electron Trapping
in Dye/Polymer Blend Photovoltaic Cells” Adv. Mater. 12, p.1270,
2000.
[25] 張明峰,高度立體規則度聚(3-己烷基噻吩)及其掺合系統之固態
結構與載子傳輸性質研究,國立成功大學碩士論文,2006。
[26] F. C. Spanoa, ” Modeling disorder in polymer aggregates: The
optical spectroscopy of regioregular poly(3-hexylthiophene) thin
films” J. Chem. Phys.122, p.234701, 2005.
[27] F. C. Spanoa, “Absorption in regio-regular poly(3-hexyl)thiophene
thin films: Fermi resonances, interband coupling and disorder”
Chem. Phys. 325, p.22, 2006.
[28] J. Clark, J. F. Chang, F. C. Spano, R. H. Friend and C. Silva,
“Determining exciton bandwidth and film microstructure in
polythiophene films using linear absorption spectroscopy” Appl.
Phys. Lett. 94, p.163306, 2009.
[29] Y. Gao and J. K. Grey, “Resonance Chemical Imaging of
Polythiophene/Fullerene Photovoltaic Thin Films: Mapping
Morphology-Dependent Aggregated and Unaggregated CdC
Species” J. Am. Chem. Soc. 131, p.9654. 2009.
[30] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant and I. Baltog, “SERS spectra of poly(3-hexylthiophene) in oxidized and unoxidized states” J. Raman. Spectrosc. 29, p.825, 1998.
[31] X. Yang, J. K. J. V. Duren, M. T. Rispens, J. C. Hummelen, R. A. J. Janssen, M. A. J. Michels and J. Loos, “Crystalline organization of a methanofullerene as use for plastic solar-cell applications” Adv. Mater. 16, p.802, 2004.
[32] H. L. Cheng, J. W. Lin, M. F. Jang, F. C. Wu, W. Y. Chou, M. H.
Chang, and C. H. Chao, " Long-Term Operations of Polymeric
Thin-Film Transistors: Electric Field-Induced Intrachain Order and
Charge Transport Enhancements of Conjugated
Poly(3-hexylthiophene)” Macromolecules, 42, p.8251, 2009
[33] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally
stable,efficient polymer solar cells with nanoscale control of the
interpenetrating network morpholog” Adv. Funct. Mater. 15,
p.1617, 2005.
[34] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R.
Durrant,D. D. C. Bradley, M. Giles, I. Mcculloch, C. -S. Ha and M.
Ree, “A strong regioregularity effect in self-organizing conjugated
polymer films and high-efficiency polythiophenefullerene solar
cells” Nat. Mater. 5, p.197, 2006.
[35] T. Erb, U. Zhokhavets, H. Hoppe, G. Gobsch, M. Al-Ibrahim, O. Ambacher, “Absorption and crystallinity of poly(3-hexylthiophene)/ fullerene blends in dependence on annealing temperature” Thin Solid Film 511-512, p.483, 2006.
[36] H. Sirringhaus , P. J. Brown , R. H. Friend , M. M. Nielsen , K. Bechgaard , B. M. W. Langeveld-Voss , A. J. H. Spiering , R. A. J. Janssen , E. W. Meijer, P. Herwing and D. M. de Leeuw, “Two- dimensional charge transport in self-organized, high-mobility conjugated polymers” Nature 401, p.685, 1999.
[37] R. Österbacka, C. P. An, X. M. Jiang and Z. V. Vardeny, “Two-
dimensional electronic excitations in self-assembled conjugated
polymer nanocrystals” Science 287, p.839, 2000.
[38] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland,
O.Flornes, C. Fagermo, T. M. Seeberg, L. A. Pettersson, O.
Inganäs,R. Feidenhans’l and S. Ferrer, “Structural anisotropy of
poly(alkylthiophene) films” Macromolecules 33, p.3120, 2000.
[39] S. Sista, M. H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li and
Y. Yang, ”Highly efficient tandem poltmer photovoltaic cells” Adv.
Mater. 22, p.380, 2009.
[40] M. Koppe, H. J. Egelhaaf, G. Dennler, M. C. Scharber, C. J. Brabec,
P. Schilinsky, and C. N. Hoth, “Near IR Sensitization of Organic
Bulk Heterojunction Solar Cells: Towards Optimization of the
Spectral Response of Organic Solar Cells” Adv. Funct. Mater. 20,
p.338, 2010.
[41] 黃英洲,聚(3-己烷基噻吩) /碳六十衍生物為主動層之高分子太
陽能電池特性研究,國立成功大學碩士論文,2009。
[42] H. Yu, S. Lycett, C. Roberts and R. Murray, “Time resolved study
of self-assembled InAs quantum dots” Appl. Phys. Lett. 69,
p.4087,1996.
[43] P. E. Shaw, A. Ruseckas and I. D. W. Samuel, “Exciton diffusion
measurements in poly(3-hexylthiophene)” Adv. Mater. 20, p.3516,
2008.