簡易檢索 / 詳目顯示

研究生: 黃全斌
Huang, Chuan-Bin
論文名稱: 以流動性解釋美股日夜報酬相關係數之變化
Variations in Overnight Return Correlation of U.S. Stocks Explained by Liquidity
指導教授: 江明憲
Chiang, Min-Hsien
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 39
中文關鍵詞: 隔夜資訊日夜報酬相關係數流動性波動率錯誤定價
外文關鍵詞: Overnight Information, Overnight Return Correlation, Liquidity, Volatility, Mispricing
相關次數: 點閱:173下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文顯示個股的隔夜價格反轉現象,亦即股價在開盤時被高(低)估並於隨後反轉修正之現象,可被流動性所解釋。作者以個股日、夜報酬的Pearson相關係數(即「日夜報酬相關係數」)來衡量隔夜價格反轉之程度。2004至2013年間所有美國普通股的日夜報酬相關係數,被依據流動性的高低分為十組。作者發現:複合流動性量尺可以捕捉日夜報酬相關係數高達51.6%的變化範圍。其中流動性最差的該組股票具有最低的平均日夜報酬相關係數-0.367,而流動性最佳的該組平均值則非常接近零。再者,日報酬的波動率與偏度對日夜報酬相關係數僅帶來小且非單調的影響。上述結果顯示:為了更加有效的管理隔夜風險,交易策略必須將個股流動性納入考慮。針對低流動性的股票,投資人應避免在開盤時執行與隔夜報酬同方向之操作。

    This article shows that the overnight price reversal phenomenon, namely stock overpricing at daily market open followed by price reversal, of individual stocks can be effectively explained by liquidity. I measure the degree of price reversal in terms of “overnight (return) correlation,” which is the Pearson correlation coefficient of daytime and overnight returns. Overnight correlations of all U.S. common stocks from 2004 to 2013 are grouped into deciles using liquidity measures. I find the composite liquidity measure best captures the variations in overnight correlation at up to 51.6% of the overall range. The most illiquid decile of stocks bears the lowest average overnight correlation down to -0.367 while that of the most liquid decile is very close to zero. Moreover, volatility and skewness of daily returns bring only small and non-monotonic impact to overnight correlation. The above findings show that the liquidity of individual stocks must be taken into account for trading strategies in order to better manage overnight risk. In particular, investors must avoid trading illiquid stocks at market open in the same direction of overnight returns.

    Committee Approval......i Abstract......ii 中文摘要(Chinese Abstract)......iii Acknowledgement......iv Table of Contents......v List of Tables......vi I.Introduction......1 II.Basic Characteristics of Overnight Correlation......5 A.Data Sources......5 B.Variable and Sample Construction......6 C.Summary Properties......11 III.Liquidity and Overnight Return Correlation......14 A.Origin of Overnight Correlation......14 B.Empirical Evidence......16 IV.Additional Grouping Variables......19 A.Volatility and Skewness......19 B.Kumar Lottery Stocks......22 C.Long-run-based Overpricing Measures......24 V.Concluding remarks......27 Reference List......29 Appendices......31 Appendix A: Summary properties of overnight correlation – alternative parameters......31 Appendix B: Overnight correlation explained by liquidity – alternative parameters......36 Appendix C: Overnight correlation grouped by cross-sectional regression coefficients (betas)......37

    Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31-56. doi:10.1016/s1386-4181(01)00024-6

    Berkman, H., Koch, P. D., Tuttle, L., & Zhang, Y. J. (2012). Paying attention: Overnight returns and the hidden cost of buying at the open. Journal of Financial and Quantitative Analysis, 47(4), 715-741. doi:10.1017/s0022109012000270

    Chan, K. C., Fong, W. M., Kho, B. C., & Stulz, R. M. (1996). Information, trading and stock returns: Lessons from dually-listed securities. Journal of Banking & Finance, 20(7), 1161-1187. doi:10.1016/0378-4266(95)00041-0

    Chen, C. H., Yu, W. C., & Zivot, E. (2012). Predicting stock volatility using after-hours information: Evidence from the NASDAQ actively traded stocks. International Journal of Forecasting, 28(2), 366-383. doi:10.1016/j.ijforecast.2011.04.005

    Daniel, K., & Titman, S. (2006). Market reactions to tangible and intangible information. Journal of Finance, 61(4), 1605-1643. doi:10.1111/j.1540-6261.2006.00884.x

    Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. Journal of Finance, 47(2), 427-465. doi:10.2307/2329112

    Foster, F. D., & Viswanathan, S. (1993). Variations in trading volume, return volatility, and trading costs: Evidence on recent price formation models. Journal of Finance, 48(1), 187-211. doi:10.2307/2328886

    Gorodnichenko, Y., & Weber, M. (2013). Online appendix: Are sticky prices costly? Evidence from the stock market. Retrieved March 12, 2014, from http://eml.berkeley.edu/~ygorodni/GorodnichenkoWeber_stickyprices_app.pdf

    Harvey, C. R., & Siddique, A. (2000). Conditional skewness in asset pricing tests. Journal of Finance, 55(3), 1263-1295. doi:10.1111/0022-1082.00247

    Heaton, C., Milunovich, G., & Passe-De Silva, A. (2011). International commodity prices and the Australian stock market. Economic Record, 87(276), 37-44. doi:10.1111/j.1475-4932.2010.00686.x

    Kumar, A. (2009). Who gambles in the stock market? The Journal of Finance, 64(4), 1889-1933. doi:10.1111/j.1540-6261.2009.01483.x

    Liu, W. M. (2006). A liquidity-augmented capital asset pricing model. Journal of Financial Economics, 82(3), 631-671. doi:10.1016/j.jfineco.2005.10.005

    Manoukian, E. B. (1986). Modern concepts and theorems of mathematical statistics. New York: Springer-Verlag.
    Pastor, L., & Stambaugh, R. F. (2003). Liquidity risk and expected stock returns. Journal of Political Economy, 111(3), 642-685. doi:10.1086/374184

    Sadka, R. (2006). Momentum and post-earnings-announcement drift anomalies: The role of liquidity risk. Journal of Financial Economics, 80(2), 309-349. doi:10.1016/j.jfineco.2005.04.005

    Stambaugh, R., Yu, J., & Yuan, Y. (2012). Arbitrage asymmetry and the idiosyncratic volatility puzzle. Social Science Research Network Working Paper Series. doi:citeulike-article-id:13175239

    Taylor, N. (2007). A note on the importance of overnight information in risk management models. Journal of Banking & Finance, 31(1), 161-180. doi:10.1016/j.jbankfin.2006.01.004

    Taylor, N. (2008). The predictive value of temporally disaggregated volatility: Evidence from index futures markets. Journal of Forecasting, 27(8), 721-742. doi:10.1002/for.1098

    Tsai, K. T., Lih, J. S., & Ko, J. Y. (2012). The overnight effect on the Taiwan stock market. Physica A: Statistical Mechanics and Its Applications, 391(24), 6497-6505. doi:10.1016/j.physa.2012.07.010

    Tsiakas, I. (2008). Overnight information and stochastic volatility: A study of European and US stock exchanges. Journal of Banking & Finance, 32(2), 251-268. doi:10.1016/j.jbankfin.2007.03.008

    Wang, F. Z., Shieh, S. J., Havlin, S., & Stanley, H. E. (2009). Statistical analysis of the overnight and daytime return. Physical Review E, 79(5). doi:10.1103/PhysRevE.79.056109

    下載圖示
    校外:立即公開
    QR CODE