簡易檢索 / 詳目顯示

研究生: 曾憲正
Tseng, Hsien-Cheng
論文名稱: 發展高效率自動化TCAD技術於模擬微波及光電HBT之研究
A Study on the Development of High-Efficiency Automated TCAD Techniques for Modeling Microwave and Optoelectronic HBTs
指導教授: 周榮華
Chou, J. H.
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 121
中文關鍵詞: 製程技術電腦輔助微波光電異質接面雙極電晶體基因演算法晶片系統
外文關鍵詞: circuit simulation, device modeling, HBTs, microwave, optoelectronic, SoC, TCAD
相關次數: 點閱:97下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文之主要研究重點在於發展高效率自動化製程技術電腦輔助設計(TCAD)技術以模擬微波及光電異質接面雙極電晶體(HBT)。隨著以異質接面雙極電晶體作為基本元件之射頻 (RF) 及光電 (optoelectronic)積體電路的普及化,晶片系統設計採用先進製程技術電腦輔助設計方法亦持續不斷的向前推進;對於現代積體電路設計者而言,發展出一套高效率元件模擬方法以自動萃取小信號等效電路模型參數之迫切性與日俱增。
      本研究所提出的方法可精確的決定包括:外質電感以及本、外質電容在內的所有電路元件參數,並將此一創新技術成功的應用於數種不同的異質接面雙極電晶體元件結構之分析與特性探討。此一高效率自動化技術可解決許多傳統參數萃取方法所遭遇的問題,包括:額外測試結構之使用、特定基極電流下進行之順向偏壓測量、以及經驗導向之元件參數最佳化過程。值得一提的是,對於混合π等效電路元件之參數萃取完全以有系統、高效率的方式進行,包括:完全解析方法及以基因演算法 (genetic algorithm)為基礎的全域最佳化技術,其中所推導出的阻抗及導納公式乃將測量所得的微波s參數當作已知數據。為了進一步探討電路元件參數於不同偏壓狀況下的變化趨勢,異質接面雙極電晶體元件乃工作於廣泛之集極電流密度範圍,以評估其對於外質與本質電路參數所造成的影響。整個參數萃取過程中,整組具有物理意義的小信號模型參數依序地被萃取出來。為驗證本研究所提出的各種模型之有效性及精確度,曾將其應用於集極在上、pnp型砷化鋁鎵─砷化鎵異質接面雙極電晶體,射極在上、npn型硒化鋅─鍺異質接面雙極電晶體,以及矽─鍺異質接面雙極電晶體元件參數萃取。不論是直接測量、解析推導、數值模擬所得之s參數結果於整個工作頻率範圍內均達到相當一致的合理結果。由此符合理論預期之本、外質元件參數變化趨勢,顯示本論文所提出的先進等效電路模型將可被嵌入自動化的電路模擬器,以便應用於微波及光電積體電路之模擬設計。
      本論文之組織編排方式說明如下:
    第一章─整體研究內容簡介。
    第二章─當代各國研究單位發表之元件模擬及參數萃方法詳細比較說明。
    第三章─對於與研究相關的異質接面雙極電晶體之元件物理、結構、工作原理作精要敘述。
    第四章─描述應用於異質接面雙極電晶體元件分析之小信號混合π等效電路模型,涵蓋低頻導納及高頻阻抗矩陣公式推導過程。
    第五章─詳細闡明完全解析參數萃取步驟應用於集極在上型HBT之過程。
    第六章─呈現完全解析參數萃取獲致之結果,並以定性定量方式評估之。
    第七章─提出以基因演算法配合一般化的解析等效電路元件參數矩陣公式之全域數值最佳化模擬技術,將其應用於微波及光電HBT。
    第八章─作出結論,並提出對於未來持續研究工作之展望。

      As system-on-chip (SoC) designs using technology computer-aided-design (TCAD) techniques constantly advance with the popularization of RF integrated-circuits (RFICs) and optoelectronic-integrated-circuits (OEICs) applications, based on heterojunction bipolar transistors (HBTs), the efficient device-modeling methodology for automatic extraction of small-signal equivalent-circuit parameters is increasingly crucial for modern IC designers.
      In this study, all of the circuit elements, including extrinsic inductances as well as intrinsic and extrinsic capacitances, are determined unambiguously and the innovative techniques have been successfully applied to analysis/characterize several HBT structures. The efficient techniques are capable of resolving some problems encountered among conventional extracting methods that are the use of additional test structures, forward-biased measurements at specific bias conditions, and empirical optimization process. Above all, the hybrid-π equivalent-circuit elements are extracted in a systematic and efficient way, including pure analytic method and genetic-algorithm (GA)-based generalized optimization technique, from impedance and admittance formulation on the basis of measured S-parameters.
      To investigate the bias dependence, the extrinsic and intrinsic circuit elements are evaluated under a variety of biasing conditions. The model parameters are sequentially derived during the extraction process yielding a full set of physically meaningful values. The validity of the proposed model has been explored on pnp collector-up AlGaAs-InGaAs HBTs, npn emitter-up ZnSe-Ge HBTs, and SiGe HBTs. Good coincidence among directly-measured, analytically-derived, and numerically-simulated S-parameters is observed across the entire frequency range of operation. Consistent extracted trends indicate that the advanced equivalent-circuit model is suitable to be implemented in automated circuit simulators with application to microwave and optoelectronic circuit simulations.

    CONTENTS ABSTRACT i CONTENTS iii LIST OF TABLES vi LIST OF FIGURES vii NOMENCLATURE x CHAPTER 1 INTRODUCTION 1 1.1 Overview of HBT Small-Signal Modeling 2 1.2 Evolution of TCAD 4 2 MODELING APPROACHES 7 2.1 Compact Transistor Modeling 7 2.2 Numerical Optimization Techniques 9 2.3 Analytical Modeling Methods 10 2.4 Efficient Modeling Methodology 11 3 HBT DEVICE PHYSICS 12 3.1 General Operation Principles 12 3.2 Emitter-Up Versus Collector-Up HBTs 13 3.3 Operation of Microwave HBTs 14 3.4 Operation of Optoelectronic HBTs 16 4 DETAILED MODEL ANALYSIS 18 4.1 Hybrid-π Equivalent Circuit 20 4.2 Two-Port Z-Matrix Formulation 21 4.3 Low-Frequency Y-Matrix Formulation 21 5 PURE ANALYTIC EXTRACTION 23 5.1 Extraction Scheme Description 23 5.2 Step-by-Step Procedures 24 5.2.1 Exact Z-Matrix Derivation. 25 5.2.2 Low-Frequency Y-Matrix Derivation 26 5.2.3 Parasitic Parameter Derivation 27 6 ANALYTIC EXTRACTION RESULTS 29 6.1 Microwave Performance Evaluation 29 6.1.1 On-Wafer Characterization. 30 6.1.2 S-Parameters 31 6.1.3 Smith Charts 32 6.2 Results and Discussion 32 6.2.1 Extraction Results 33 6.2.2 Discussion 35 7 GENERALIZED OPTIMIZATION TECHNIQUE 37 7.1 Distributed Base Effects 38 7.2 Generalized HBT Model 39 7.2.1 Generalized Modeling Equations 39 7.2.2 Genetic Algorithm Optimization 40 7.3 Extraction Results and Verification 42 7.3.1 Pnp AlGaAs-InGaAs Collector-Up HBTs 43 7.3.2 Npn ZnSe-Ge Emitter-Up HBTs 44 8 CONCLUSIONS 8.1 Summary 45 8.2 Suggestions for Future Work 46 REFERENCES 48 TABLES 66 FIGURES 69 PUBLICATION LIST

    REFERENCES

    [1] D. A. Teeter and W. R. Curtice, “Comparison of hybrid pi and tee HBT circuit topologies and their relationship to large signal modeling,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 375-378.
    [2] A. Matsuzawa, “RF-SoC―expectations and required conditions,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 245-253, Jan. 2002.
    [3] I. Ishii, H. Nosaka, M. Ida, K. Kurishima, T. Enoki, T. Shibata, and E. Sano, “High-input-sensitivity, low-power 43 Gb/s decision circuit using InP/InGaAs DHBTs,” Electron. Lett., vol.38, no. 12, pp. 557-558, June 2002.
    [4] D. R. Pehlke and D. Pavlidis, “Evaluation of the factors determining HBT high-frequency performance by direct analysis of S-parameter data,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2367-2373, Dec. 1992.
    [5] U. Schaper and B. Holzapfl, “Analytical parameter extraction of the HBT equivalent circuit with T-like topology from measured S-parameters,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 493-498, Mar. 1995.
    [6] B. Li, S. Prasad, L. –W. Yang, and S. C. Wang, “A semi-analytical parameter-extraction procedure for HBT equivalent circuit, ” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 1427-1435, Oct. 1998.
    [7] M. Sotoodeh, L. Sozzi, A. Vinay, A. Khalid, Z. Hu, A. Rezazadeh, and R. Mennozzi, “Stepping toward standard methods of small-signal parameter extraction for HBTs”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1139-1151, June 2000.
    [8] Y. Suh, E. Seok, J. H. Shin, B. Kim, D. Heo, A. Raghavan, and J. Laskar, “Direct extraction method for internal equivalent circuit parameters of HBT small-signal hybrid-p model,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 1401-1404.
    [9] T. –S. Horng, J. –M. Wu, and H. –H. Huang, “An extrinsic-inductance independent approach for direct extraction of HBT intrinsic circuit parameters,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 1761-1764.
    [10] S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “Direct parameter-extraction method for HBT small-signal model,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 529-536, Feb. 2002.
    [11] D. Costa, W. U. Liu, and J. S. Harris, “Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit,” IEEE Trans. Electron Devices, vol. 38, pp. 2018-2024, Sept. 1991.
    [12] S. Lee and A. Gopinath, “Parameter extraction technique for HBT equivalent circuit using cutoff mode measurement,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 574-577, Mar. 1992.
    [13] S. Lee, B. R. Ryum, and S. W. Kang, “A new parameter extraction technique for small-signal equivalent circuit of polysilicon emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 233-238, Feb. 1994.
    [14] S. J. Spiegel, D. Ritter, R. A. Hamm, A. Feygenson, and P. R. Smith, “Extraction of the InP/GaInAs heterojunction bipolar transistor small-signal equivalent circuit,” IEEE Trans. Electron Devices, vol. 42, pp. 1059-1064, June 1995.
    [15] C. J. Wei and J. C. M. Hwang, “Direct extraction of equivalent circuit parameters for heterojunction bipolar transistor,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2035-2040, Sept. 1995.
    [16] Y. Gobert, P. J. Tasker, and K. H. Bachem, “A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistor,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 149-153, Jan. 1997.
    [17] R. Mennozzi, M. Borgarino, and A. Marty, “HBT small-signal model extraction using a genetic algorithm,” in Tech. Dig. IEEE GaAs IC Symp., 1998, pp. 157-160.
    [18] E. Wasige, B. Sheinman, V. Sidorov, S. Cohen, and D. Ritter, “An analytic expression for the HBT extrinsic base-collector capacitance derived from S-parameter measurements,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 733-736.
    [19] H. Ghaddab, F. M. Ghannouchi, F. Choubani, and A. Bouallegue, “Small-signal modeling of HBT’s using a hybrid optimization/statistical technique,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 292-298, Mar. 1998.
    [20] A. Ouslimani, J. Gaubert, H. Hafdallah, A. Birafane, P. Pouvil, and H. Leier, “Direct extraction of linear HBT-model parameters using nine analytical expression blocks,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 218-221, Jan. 2002.
    [21] M. W. Dvorak and C. R. Bolognesi, “On the accuracy of direct extraction of the heterojunction-bipolar-transistor equivalent-circuit model parameters Cp, CBC, and RE,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1640-1648, June 2003.
    [22] Q. Liang, J. D. Cressler, G. Niu, Y. Lu, G. Freeman, D. C. Ahlgren, R. M. Malladi, K. Newton, and D. L. Harame, “A simple four-port parasitic deembedding methodology for high-frequency scattering parameter and noise characterization of SiGe HBTs,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2165-2174, Nov. 2003.
    [23] Y. A. Hussein and S. M. El-Ghazaly, “Modeling and optimization of microwave devices and circuits using genetic algorithms,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 329-336, Jan. 2004.
    [24] R. W. Dutton and A. J. Strojwas, “Perspectives on technology and technology-driven CAD,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 1544-1560, Dec. 2000.
    [25] Distributed Center for Advanced Electronics Simulation [Online]. Available: http://www.ceg.uiuc.edu/descartes.htm
    [26] Advant Inc. [Online] Available: http://www.advantinc.com
    [27] Silvaco Int. [Online] Available: http://www.silvaco.com
    [28] Sematech Inc. [Online] Available: http://www.sematech.org
    [29] H. C. de Graaff and F. M. Klaassen, “Compact models,” in Compact Transistor Modeling for Circuit Design. New York, NY: Springer-Verlag Wien, 1990.
    [30] V. Marash and R. W. Dutton, “Methodology for submicron device model development,” IEEE Trans. Computer-Aided Design, vol. 7, pp. 299-306, Feb. 1988.
    [31] R. O. Grondin, S. M. El-Ghazaly, and S. Goodnick, “A review of global modeling of charge transport in semiconductors and full-wave electromagnetics,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 817-829, June 1999.
    [32] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning. New York: Wiley, 1989.
    [33] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers. New Jersey: World Sci., 1999.
    [34] P. Ciampolini, L. Roselli, G. Stopponi, and R. Sorrentino, “Global modeling strategies for the analysis of high-frequency integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 950-955, June 1999.
    [35] Y. Gao, “Genetic algorithm-based parameter-extraction for power GaAs MESFET,” in Proc. The 5th Int. Cont. Telcom. (TELSIKS 2001), 2001, pp. 317-318.
    [36] K. Bertilsson and H. E. Nilsson, “The power of using automatic automatic device optimization, based on iterative device simulations, in design of high-performance devices,” Solid-State Electron., vol. 48, pp. 1721-1725, Oct.-Nov. 2004.
    [37] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. New York, NY: Addison-Wesley, 1992.
    [38] H. Kroemer, “Theory of wide-gap emitter for transistor,” Proc. IRE, vol. 45, pp. 1535-1537, Nov. 1957.
    [39] H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proc. IEEE, vol. 70, pp. 13-25, Jan. 1982.
    [40] M. Shur, Physics of Semiconductor Devices. Englewood Cliffs, NJ: Prentice Hall, 1990.
    [41] W. P. Dumke, J.M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron., vol. 15, pp. 1339-1343, 1972.
    [42] F. Ali and A. Gupta, HEMTs and HBTs: Devices, Fabrication, and Circuits. Boston, MA: Artech House, 1991.
    [43] Y. Miyamoto, J. M. Rios, A. G. Dentai, and S. Chandrasekhar, “Reduction of base-collector capacitance by undercutting the collector and subcollector in GaInAs/InP DHBTs,” IEEE Electron Device Lett., vol. 17, pp. 97-99, Mar. 1996.
    [44] W. L. Chen, H. F. Chau, M. Tutt, M. C. Ho, T. S. Kim, and T. Henerson, “High-speed InGaP/GaAs HBTs using a simple collector undercut technique to reduce base-collector capacitance,” IEEE Electron Device Lett., vol. 18, pp. 355-357, July 1997.
    [45] H. Kroemer, “Quasi-electric and quasi-magnetic fields in non-uniform semiconductors,” RCA Rev. vol. 18, pp. 332-342, 1957.
    [46] M. F. Chang, Current Trends in Heterojunction Bipolar Transistors. New Jersey: World Sci., 1996.
    [47] J. C. Campbell, A. G. Dentai, C. A. Burrus Jr., and J. F. Ferguson, “InP/InGaAs heterojunction phototransistors,” IEEE Quantum Electron. vol. 17, pp. 264-269, Feb. 1981.
    [48] D. Fritzsche, E. Kuphal, and R. Aulbach, “Fast response InP/InGaAsP heterojunction phototransistors,” Electron Lett., vol. 17, pp. 178-180, Mar. 1981.
    [49] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, R. A. Hamm, and G. J. Qua, “High-speed monolithic p-I-n/HBT and HPT/HBT photoreceivers implemented with simple phototransistor structure,” IEEE Photon. Technol. Lett., vol. 5, pp. 1316-1318, Nov. 1993.
    [50] H. Kamitsuna, Y. Matsuoka, S. Yamahata, and N. Shigekawa, “Ultrahigh-speed InP/InGaAs DHPTs for OEMMICs,” IEEE Trans. Microwave Theory Tech. Vol. 49, pp. 1921-1925, Oct. 2001.
    [51] M. Muller, S. Withitsoonthrorn, M. Riet, J. –L. Benchimol, and C. Gonzalez, “Millimeter-wave InP/InGaAs photo-HBT and its application to optoelectronic integrated circuits,” IEICE Trans. Electron., vol. E86-C, pp. 1299-1310, July 2003.
    [52] M. Ida, K. Kurishima, H. Nakajima, N. Watanbe, and S. Yamahata, “Undoped-emitter InP/InGaAs HBTs for high-speed and low-power applications,” in Int. Electron Devices Meeting Tech. Dig., Dec. 2000, pp. 854-856.
    [53] H. Cho and D. E. Burk, “A three-step method for the de-embedding technique for on-wafer high-frequency characteristics,” IEEE Trans. Electron Devices, vol. 38, pp. 1371-1375, June 1991.
    [54] R. Mahmoudi and J. L. Tauritz, “A five-port de-embedding method for floating two-port networks,” IEEE Trans. Instrum. Meas., vol. 47, pp. 482-488, Apr. 1998.
    [55] T. –S. Horng, J. –M. Wu, and H. –H. Huang, “An extrinsic-inductance independent approach for direct extraction of HBT intrinsic circuit parameters,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2300-2305, Dec. 2001.
    [56] H. C. Tseng and J. H. Chou, “An analytical approach for direct extraction of collector-up HBT-model parameters including extrinsic inductances,” in Proc. 11th Int. Symp. Nano Dev. Tech. (SNDT 2004), 2004, pp. 454-457.
    [57] H. C. Tseng and Y. Z. Ye, “High-performance, graded-base AlGaAs/InGaAs collector-up heterojunction bipolar transistors using a novel selective area regrowth process,” IEEE Electron Device Lett., vol. 20, pp. 271-273, June 1999.
    [58] S. A. Wartenberg, RF Measurements of Die and Packages. Boston, MA: Artech House, 2002.
    [59] S. Bousnina, C. Falt, P. Mandeville, A. B. Kouki, and F. M. Ghannouchi, “An accurate on-wafer deembedding technique with application to HBT devices characterization,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 420-424, Feb. 2002.
    [60] S. J. Prasad, “A method of measuring base and emitter resistances of AlGaAs/GaAs HBTs,” in Proc. IEEE Bipolar Circuits and Technology Meet., 1992, pp. 204-207.
    [61] I. E. Getreu, Modeling the Bipolar Transistor. Amsterdam: Elsevier, 1978.
    [62] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151-1159, July 1988.
    [63] M. M. Radmanesh, Radio Frequency and Microwave Electronics Illustrated, Upper Saddle River, NJ: Prentice Hall, 2001.
    [64] P. H. Smith, “Transmission-line calculator,” Electronic, vol. 12, pp. 29-31, Jan. 1939.
    [65] H. C. Tseng and J. H. Chou, “An improved hybrid-pi equivalent circuit for direct extraction of small-signal HBT parameters with emphasis on extrinsic inductances,” presented at the IEEE Bipolar/BiCMOS Circuits and Technology Meet. (BCTM 2004), 2004.
    [66] H. C. Tseng and J. H. Chou, “An efficient analytical approach for extracting the emitter inductance of collector-up HBTs ,” IEEE Trans. Electron Devices, vol. 51, pp. 1200-1202, July 2004.
    [67] K. Kurishima, “An analytical expression of fmax for HBT’s,” IEEE Trans. Electron Devices, vol. 43, pp. 2074-2079, Feb. 1996.
    [68] A. P. Laser and D. L. Pulfrey, “Reconciliation of methods for estimating fmax for microwave heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 38, pp. 1685-1692, 1991.
    [69] M. Vaidyanathan and D. L. Pulfrey, “Extrapolated fmax of heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 46, pp. 301-309, 1999.
    [70] Q. Lee et al, “Submicron transferred-substrate heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 20, pp. 396-398, Aug. 1999.
    [71] M. J. W. Rodwell et al, “Submicron scaling of HBTs,” IEEE Trans. Electron Devices, vol. 48, pp. 2606-2624, Nov. 2001.
    [72] Y. Bester and D. Ritter, “Reduction of the base collector capacitance in InP/GaInAs heterojunction bipolar transistors due to electron velocity modulation,” IEEE Trans. Electron Devices, vol. 46, pp. 628-633, Apr. 1999.
    [73] S. A. Maas and D. Tait, “Parameter-extraction method for heterojunction bipolar transistors,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 502-504, Dec. 1992.
    [74] A. Kameyama, A. Massengale, C. Dai, and J. S. Harris, “Analysis of device parameters for pnp-type AlGaAs/GaAs HBT’s including high-injection using new direct parameter extraction,” IEEE Trans. Electron Devices, vol. 44, pp. 1-10, Jan. 1997.
    [75] M. Hattendorf, D. Scott, Q. Yang, and M. Feng, “Method to determine intrinsic and extrinsic base-collector capacitance of HBTs directly from bias-dependent S-parameter data,” IEEE Electron Device Lett., vol. 22, pp. 116-118, Mar. 2001.
    [76] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. New York: Wiley, 1997.
    [77] K. C. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits. Norwood, MA: Artech House, 1981.
    [78] S. Ko, K. Koh, H. –M. Park, and S. Hong, “A nonquasi-static table-based small-signal model of heterojunction bipolar transistor,” IEEE Trans. Electron Devices, vol. 49, pp. 1681-1686, Oct. 2002.
    [79] P. J. van Wijnen et al, “A new straightforward calibration and correction procedure for “on wafer” high-frequency S-parameter measurements (45 MHz-18 GHz),”in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 1987, pp. 70-73.
    [80] A. Fraser et al, “GHz on-silicon-wafer probing calibration methods,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 1988, pp. 154-157.
    [81] M. C. A. M. Koolen et al, “An improved de-embedding technique fo on-wafer high-frequency characterization,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Sept. 1991, pp. 188-191.
    [82] H. C. Tseng and J. H. Chou, “A pure analytic method for direct extraction of collector-up HBTs small-signal parameters,” IEEE Trans. Electron Devices, vol. 51, pp. 1972-1977, Dec. 2004.
    [83] J. S. Yuan, SiGe, GaAs, and InP heterojunction bipolar transistors. New York: Wiley, 1999.
    [84] H. C. Tseng, J. L. Shen, and R. C. Hsieh, “DC and ac characteristics of ZnSe/Ge/GaAs and ZnSe/InGaAs/GaAs lattice-matched heterojunction bipolar transistors grown by metal-organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 33, pp. L1759-L1761, 1994.
    [85] M. W. Cho et al, “Non-alloyed Au/p-ZnSe/p-BeTe ohmic contact layers for ZnSe-based blue-green laser diodes,” Electron Lett., vol. 35 , pp. 1740-1742, Sept. 1999.
    [86] H. Jeong and J. G. Fossum, “A charge-based large-signal bipolar transistor model for device and circuit simulation,” IEEE Trans. Electron Devices, vol. 36, pp. 124-131, Jan. 1989.
    [87] R. A. Pucel et al, “A general noise de-embedding procedure for packaged two-port linear active devices,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2013-2024, Nov. 1992.
    [88] W. Liu, Fundamentals of III-V Devices: HBT’s, MESFET’s, and HFETs/HEMT’s. New York: Wiley, 1999.
    [89] E. P. Vandamme et al, “Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test structures,” IEEE Trans. Electron Devices, vol. 48, pp. 737-742, Apr. 2001.
    [90] F. Lenk and M. Rudolph, “New extraction algorithm for GaAs-HBT’s with low intrinsic base resistance,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 725-728.
    [91] G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd ed. New York: McGraw-Hill, 1993.
    [92] J. M. M. Rios, L. M. Lunardi, S. Chandrasekhar, and Y. Miyamoto, “A self-consistent method for complete small-signal parameter extraction of InP-based heterojunction bipolar transistors (HBT’s),” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 39-45, Jan. 1997.
    [93] B. Li and S. Prasad, “Basic expressions and approximations in small-signal parameter extraction for HBTs,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 534-539, May 1999.
    [94] P. Asbeck, F. Chang, K. –C. Wang, G. Sullivan, and D. Cheung, “GaAs-based heterojunction bipolar transistors for very high performance electronic circuits,” Proc. IEEE, vol. 81, pp. 1709-1726, Dec. 1993.
    [95] B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett., vol. 20, no. 16, pp. 1716-1718, 1995.
    [96] S. Withington, “THz technology for astronomy,” in IEE Colloq. Terahertz Technology, 1995, pp. 10/1-10/3.
    [97] R. G. Nitsche, R. U. Titz, and E. M. Biebl, “A low-noise 2.5 THz heterodyne receiver with tunable reflector antenna for atmospheric OH-spectroscopy,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 1727-1730.
    [98] P. K. Hughes, J. Y. Choe, and J. Zolper, “Advanced multifunctional RF system (AMRFS),” in Government Microcircuits Application Conf. (GOMAC) Tech. Dig., 2000, pp. 194-197.
    [99] B. H. Deng et al, “THz techniques in plasma diagnostics,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 1587-1590.
    [100] J. –S. Rieh et al, “SiGe heterojunction bipolar transistors and circuits toward terahertz communication applications,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 2390-2408, Oct. 2004.
    [101] K. Lu, P. A. Perry, and T. J. Brazil, “A new large-signal AlGaAs/GaAs HBT model including self-heating effects, with corresponding parameter-extraction procedure,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1433-1445, July 1995.
    [102] M. S. Shirokov et al, “Large-signal modeling and characterization of high-current effects in InGaP/GaAs HBTs,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1084-1094, Apr. 2002.
    [103] A. Raghavan, B. Banerjee, S. Venkataraman, and J. Laskar, “Direct extraction of InGaP/GaAs HBT large signal model,” in IEEE GaAs IC Symp. Tech. Dig., 2002, pp. 225-228.
    [104] A. Cerdeira, M. Estrada, B. Iniguez, J. Pallares, and L. F. Marsal, “Modeling and parameter extraction procedure for nanoncrystalline TFTs,” Solid-State Electron., vol. 48, pp. 103-109, Jan. 2004.
    [105] R. M. Reano, J. F. Whiraker, and L. P. B. Katehi, “Nonlinear thermo-optic model for the characterization of optical self-heating in electro-optic semiconductors,” IEEE Quantum Electron., vol.40, pp. 1195-1202, Sept. 2004.
    [106] S. Selberherr, Analysis and Simulation of Semiconductor Devices. New York: Springer-Verlag, 1984.
    [107] R. Desai and R. Patil, “SALO: Combing simulated and local optimization for efficient global optimization,” in Proc. 9th Florida AI Res. Symp., 1996, pp. 233-237.
    [108] T. Binder, C. Heitzinger, and S. Selberherr, “A study on global and local optimization techniques for TCAD analysis tasks,” IEEE Trans. Computer-Aided Design, vol. 23, pp. 814-822, June 2004.

    下載圖示 校內:2006-01-28公開
    校外:2006-01-28公開
    QR CODE