簡易檢索 / 詳目顯示

研究生: 鄭毓綺
Cheng, Yu-Chi
論文名稱: 覆晶封裝毛細底部填膠製程的準確預測
Accurate Prediction of Capillary Underfill Process for Flip-Chip Packages
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 138
中文關鍵詞: 覆晶封裝毛細底部填膠點膠重量點膠時間分配溢膠網格
外文關鍵詞: Flip-chip packaging, Capillary underfill, Dispensing weight, Dispensing interval time, Overflow, Mesh size
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電子產業的蓬勃發展,對3C產品的需求不斷攀升。目前,半導體元件已普遍朝向短小、輕薄的趨勢發展,而在這樣的趨勢下,覆晶封裝技術(Flip-Chip Packaging)成為主流,此種封裝型態將晶片連接到銲錫凸塊(Solder Bump),並將晶片翻轉過來使凸塊與基板連接,縮短了信號傳輸的距離,增加了晶圓I/O密度和散熱性能及縮減封裝體積等優點,然而,現今的覆晶球閘陣列產品朝向細間距和高密度的方向發展,這使得使用底部填膠(Underfill resin)來增加封裝體的可靠度的封裝技術難度顯著提升,帶來一系列問題,包括爬膠、溢膠、包封以及充填不完全等挑戰,進而直接影響產品的品質,降低生產良率。
    本研究著重在毛細底部填膠(Capillary Underfill, CUF)封裝製程之分析,儘管現今半導體產業可以採用模流軟體進行CUF分析,但由於涉及的控制參數眾多,例如網格尺寸、點膠重量、點膠時間等,這些參數對模擬準確度有很大的影響,模擬結果常有時間與流動波前無法與實驗結果相符且只能大概定性分析,不能準確定量分析,所以CUF的研究與分析模擬對工程師來說仍是一個重大挑戰。同時,也很少有文獻針對大晶片封裝體(Bumps 數量較多)的案例進行模擬及實驗。
    在本研究中,為了找出影響CUF充填流動模擬準確性的關鍵因素,特別針對點膠實驗、點膠路徑、點膠重量、點膠分配時間及大晶片封裝體的案例進行研究。從模擬結果中發現網格尺寸非常重要,所以本論文由理論分析推倒證實網格尺寸與間隙高度、接觸角和凸塊間距有關。也發現點膠的重量會對CUF充填有很大的影響,將相同重量的底部填膠分為多筆進行點膠,隨著點膠次數的增加,單筆重量的減少,不僅使殘餘底部填充樹脂的擴散範圍減小,解決了側面溢出的問題,而且還能忠實呈現了更均勻的流動波前,防止包封的產生,且模擬結果與實驗結果非常一致。然而兩筆點膠路徑時間的分配也會影響充填結果,兩筆膠料間隔時間太短,會導致膠料無法充分流入模型中,造成左右兩側的溢膠產生,間隔時間太長,則會導致包封的產生,在本研究中發現等到第一筆膠料幾乎流入模具中再進行第二筆點膠,有助於解決溢膠及包封的問題,但同時也增加了填充時間。此外,本論文也對大晶片封裝體進行研究,從結果發現模擬與實驗結果也極一致。
    綜合上述本研究可歸納出要實現準確的底部填膠模擬需要以下要素:1. 良好的流動模擬軟體 2. 精確測量的材料特性 3. 良好且精細的網格4. 適當的點膠重量 5. 正確的點膠分配時間。 如果上述問題能夠得到妥善處理,就能實現準確的底部填膠模擬。

    In the capillary underfill packaging process, resin with specific characteristics such as low viscosity, high flowability, fast curing, and high reliability is utilized to fill the gaps between the substrate and the die. This underfill resin reinforces the connections between metal bumps and the substrate, extending the lifespan and enhancing the reliability of FCBGA (Flip-Chip Ball Grid Array) packages. Despite the availability of flow simulation tools, the development of the underfill process remains a significant challenge for engineers due to the multitude of control parameters involved.
    This study aims to identify the key factors influencing the accuracy of underfill flow simulations and explore potential solutions to these challenges. In this study, it is found that necessary ingredients for accurate underfill simulation need to include the following items: 1. Good flow simulation software 2. Accurately measured material properties 3. Good and fine mesh 4. Right amount of dispensed resin 5. Right timing for resin dispensing. The accuracy of the simulation is particularly affected by factors such as overflowing, resin climbing, non-uniform flow, and voids formation, which are influenced by the amount and timing of resin dispensing.
    By addressing these factors, this study demonstrates that accurate underfill simulation can be achieved, providing valuable insights into microscale flip-chip underfill physics. This research lays the groundwork for the development of validated models applicable to next-generation high-density flip-chip products.

    摘要i Extended Abstractiii 誌謝xlv 目錄xlvii 表目錄l 圖目錄li 符號說明liv 1. 第一章 緒論1 1.1 前言1 1.2 IC封裝製程2 1.3 文獻回顧5 1.3.1 底部填膠性質及模型5 1.3.2 覆晶封裝體模型結構對製程之影響6 1.3.3 點膠路徑類型與時間、重量分配對製程之影響8 1.4 研究動機與目的10 2. 第二章 理論背景與材料實驗量測12 2.1 毛細底部填膠製程12 2.2 模流充填理論13 2.2.1 統御方程式13 2.2.2 模擬網格數計算15 2.3 材料量測實驗17 2.3.1 流變儀實驗[34]18 2.3.2 DSC實驗18 2.3.3 接觸角及表面張力量測實驗18 2.4 底部填膠材料模型21 2.4.1 黏度模型[11]21 2.4.2 反應動力模型[13]24 3. 第三章 模流分析27 3.1 模流分析流程27 3.2 幾何結構28 3.3 網格模型29 3.4 材料性質設定31 3.5 邊界條件32 3.6 製程分析設定35 3.6.1 點膠模組35 3.6.2 點膠路徑及製程參數設定36 4. 第四章 結果與討論37 4.1 點膠實驗37 4.1.1 實驗設備與治具37 4.1.2 點膠製程設定39 4.1.3 網格尺寸大小43 4.1.4 點膠實驗與模擬結果45 4.2 點膠距離48 4.3 點膠重量分配55 4.4 點膠間隔時間分配60 4.5 大晶片封裝體的模擬與實驗驗證66 5. 第五章 結論與未來展望69 5.1 結論69 5.2 未來展望71 參考文獻72 索引76

    [1] 張智傑, 底部填膠材料之體積收縮行為描述, 碩士論文, 工程科學系, 國立成功大學, 2008.
    [2] 何嘉益, 液態封裝材料體積收縮行為之研究, 碩士論文, 國立成功大學, 工程科學系, 2009.
    [3] S.-S. Deng, C.-Y. Ho, H.-H. Lee, S.-J. Hwang, and D.-Y. Hwang, "Volume Shrinkage Characterization of Underfill Materials," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 1, pp. 76-82, 2011.
    [4] F. C. Ng, M. H. Zawawi, L. H. Tung, A. Abas, and M. Z. Abdullah, "Symmetrical Unit-Cell Numerical Approach for Flip-Chip Underfill Flow Simulation," CFD Letters, vol. 12, no. 8, pp. 55-63, 2020.
    [5] Y. Liu, C. Xu, R. Ma, B. Shi, M. Su, Q. Wang, and L. Cao, "Simulation and Analysis for Capillarity Underfill Process in High Density FCBGA Packaging," Proceedings of the IEEE 9th Electronics System-Integration Technology Conference (ESTC), pp. 23-27, 2022.
    [6] M. K. Schwiebert and W. H. Leong, "Underfill Flow as Viscous Flow Between Parallel Plates Driven by Capillary Action," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 19, no. 2, 1996.
    [7] S.-W. Lin and W.-B. Young, "Study on Bump Arrangement to Accelerate the Underfill Flow in Flip-Chip Packaging," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 1, pp. 40-45, 2013.
    [8] K. Wang, Yan Wang, and Wenhui Zhu, "Investigation of Characteristics of the Capillary-Driven Underfill Flow," Proceedings of the 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, pp. 1070-1074, 2018.
    [9] Y. Li, C. Zhong, X. Peng, C. Li, R. Jiang, J. Lu, and R. Sun, "Capillary Flow Analysis of Underfill in Flip-Chip Package," Proceedings of the 23rd International Conference on Electronic Packaging Technology (ICEPT), pp. 1-5, 2022.
    [10] F. C. Ng, M. Y. T. Ali, A. Abas, C. Y. Khor, Z. Samsudin, and M. Z. Abdullah, "A Novel Analytical Filling Time Chart for Design Optimization of Flip-Chip Underfill Encapsulation Process," The International Journal of Advanced Manufacturing Technology, vol. 105, no. 7-8, pp. 3521-3530, 2019.
    [11] J. M. Castro and C. W. Macosko, "Studies of Mold Filling and Curing in the Reaction Injection Molding Process," AIChE Journal, vol. 28, no. 2, pp. 250-260, 1982.
    [12] J. M. Castro and C. W. Macosko, "Kinetics and Rheology of Typical Polyurethane Reaction Injection Molding Systems," Society of Plastics Engineers, vol. 28, pp. 434-438, 1982.
    [13] M. R. Kamal and S. Sourour, "Kinetics and Thermal Characterization of Thermoset Cure," Polymer Engineering & Science, vol. 13, pp. 59-64, 1973.
    [14] M. R. Kamal and M. E. Ryan, "The Behavior of Thermosetting Compounds in Injection Molding Cavities," Polymer Engineering & Science, vol. 20, no. 13, pp. 859-867, 1980.
    [15] 陳俞凱, 覆晶封裝結構之底膠充填行為之研究, 碩士論文, 工程科學系, 國立成功大學, 2013.
    [16] F. C. Ng, L. H. Tung, M. H. Zawawi, M. A. F. M. Mukhtar, M. A. Abas, and M. Z. Abdullah, "Effect of contact angle on meniscus evolution and contact line jump of underfill fluid flow in flip-chip encapsulation," CFD Letters, vol. 12, no. 6, pp. 28-38, 2020.
    [17] A. Abas, Z. Gan, M. Ishak, M. Abdullah, and S. F. Khor, "Lattice Boltzmann Method of Different BGA Orientations on I-type Dispensing Method," PloS one, vol. 11, no. 7, p. e0159357, 2016.
    [18] C. Y. Khor, M. Z. Abdullah, and M. Abdul Mujeebu, "Influence of Gap Height in Flip Chip Underfill Process With Non-Newtonian Flow Between Two Parallel Plates," Journal of Electronic Packaging, vol. 134, no. 1, 2012.
    [19] F. C. Ng, A. Abas, and M. Z. Abdullah, "Finite Volume Method Study on Contact Line Jump Phenomena and Dynamic Contact Angle of Underfill Flow in Flip-Chip of Various Bump Pitches," IOP Conf. Series: Materials Science and Engineering, vol. 530, 2018.
    [20] F. C. Ng, A. Abas, M. Z. Abdullah, M. H. H. Ishak, and G. Y. Chong, "Scaling Effect on Velocity Profiles in Capillary Underfill Flow," IOP Conf. Series: Materials Science and Engineering, vol. 203, 2017.
    [21] C. Marushima, T. Aoki, K. Nakamura, R. Miyazawa, A. Horibe, I. de Sousa, K. Sikka, and T. Hisada, "Dimensional Parameters Controlling Capillary Underfill Flow for Void-Free Encapsulation of a Direct Bonded Heterogeneous Integration (DBHi) Si-bridge Package," Proceedings of the IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, pp. 586-590, 2022.
    [22] S.-W. Peng and W.-B. Young, "Application of the Underfill Model to Bump Arrangement and Dispensing Process Design," IEEE Transactions on Electronics Packaging Manufacturing, vol. 33, no. 2, pp. 122-128, 2010.
    [23] M.-F. Shih and W.-B. Young, "Experimental Study of Filling Behaviors in the Underfill Encapsulation of a Flip-Chip," Microelectronics Reliability, vol. 49, no. 12, pp. 1555-1562, 2009.
    [24] D.-L. Chen, H.-J. Chang, T.-Y. Chen, Y.-H. Hu, T.-B. Chen, C.-H. Pan, Y.-S. Yang, and S.-J. Hwang, "A Study of Underfill Dispensing Patterns in Flip-Chip Packaging," Proceedings of the International Conference on Electronics Packaging (ICEP), pp. 115-116, 2023.
    [25] 洪晧晳, 覆晶球閘陣列結構對毛細底部填膠流動之影響, 碩士論文, 機械工程研究所, 國立成功大學, 2023.
    [26] K. J. Wang, R. Balachandran, and A. N. Rashid Wagiman, "Underfill Flow Void Solutions Through Process and Materials Interaction," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 12, pp. 1999-2003, 2014.
    [27] C.-Y. Huang, L.-C. Shen, T.-H. Wu, and C. Greene, "Application of Multi-Quality Parameter Design in the Optimization of Underfilling Process–a case study of a vehicle electronic module," Soldering & Surface Mount Technology, vol. 33, no. 2, pp. 128-138, 2021.
    [28] E. Wu, B. Wang, S. Zhang, Y. Su, and X. Chen, "Microscale Underfill Dynamics and Void Formation of High-Density Flip-Chip Packaging: Experiments and simulations," Physics of Fluids, vol. 36, no. 3, 2024.
    [29] A. Abas, H. M.S, M. H. H. Ishak, N. A.S, M. Z. Abdullah, and F. Che Ani, "Effect of ILU Dispensing Types for Different Solder Bump Arrangements on CUF Encapsulation Process," Microelectronic Engineering, vol. 163, pp. 83-97, 2016.
    [30] H. R. Gwon, H. J. Lee, J.-M. Kim, Y. E. Shin, and S. H. Lee, "Dynamic Behavior of Capillary-Driven Encapsulation Flow Characteristics for Different Injection Types in Flip-Chip Packaging," Journal of Mechanical Science and Technology, vol. 28, pp. 167-173, 2014.
    [31] F. Shoraka, K. Kinsman, B. Natarajan, and C. Gealer, "Package and Molding Compound Mechanics," Proceedings of 6th Annual International Electronics Packaging Conference, pp. 294-312, 1986.
    [32] G. L. Lehmann, T. Driscoll, N. Guydosh, P. Li, and E. J. Cotts, "Underflow Process for Direct-Chip-Attachment Packaging," IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol. 21, no. 2, pp. 266-274, 1998.
    [33] 賴成展, 覆晶封裝底部填膠之流動分析, 碩士論文, 機械工程研究所, 中原大學, 2003.
    [34] H. Y. Guo, Prediction of Warpage Considering P-V-T-C Relation and Viscoelastic Behavior of EMC during IC Encapsulation Process, Department of Mechanical Engineering, National Cheng Kung University, 2020.
    [35] S.-W. Moon, Z. Li, S. Gokhale, and J. Wang, "3-D Numerical Simulation and Validation of Underfill Flow of Flip-Chips," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 10, pp. 1517-1522, 2011.

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE