簡易檢索 / 詳目顯示

研究生: 黃献佑
Huang, Hsien-Yu
論文名稱: 氣態氫化鈉分子X、A、C1Σ+能態的雷射光譜研究
Laser Spectroscopy of the X, A and C1Σ+ States in NaH molecule
指導教授: 黃守仁
Whang, Thou-Jen
蔡錦俊
Tsai, Chin-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 氫化鈉雷射光譜雙光子共振解離能螢光減弱光譜位能曲線
外文關鍵詞: NaH, Laser spectroscopy, Multiple resonances, Dissociation energy, Fluorescence depletion spectroscopy, Potential curve
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,利用不同的光譜方法探討氫化鈉分子基態(X1Σ+)、第一激發態
    (A1Σ+)與第三激發態(C1Σ+)的實驗。
    利用激發光譜法(Excitation Spectroscopy)分析波長範圍在378–436 nm範圍內A1Σ+→X1Σ+能態間的266條躍遷譜線訊號,躍遷的振動能級範圍為A(v'=3-12)–X(v"=0)。根據實驗所觀測的數據,提供了一組分子常數與RKR位能曲線。由於避免交錯(Avoid Crossing)現象的影響,導致A1Σ+低振動能級的振轉常數發生特殊的變化,這樣的結果也反應在A1Σ+能態的位能曲線圖上。
    利用誘導放射雙光子共振螢光(Stimulated Emission Pumping and Fluorescence Depletion Spectroscopy)光譜法分析氫化鈉分子基態接近解離極限的振轉能級訊號,可以更精確獲得氫化鈉基態(X1Σ+)的解離能,實驗總共分析了114個基態(X1Σ+)高能振動態的振轉能級,其振轉量子數分別為9≤v"≤21與1≤J"≤14,其中最高振轉能級與解離極限僅相差約40 cm-1。實驗中觀測到一個能量高於解離極限值的準束縛態(Quasibound State),也透過離心勢壘(Centrifugal Barrier)能量加以確認。依據近解離極限理論(Near Dissociation Theory),可以利用四個最高振動能級外推出解離極限的振動量子數vD,進而得到氫化鈉基態(X1Σ+)的解離能為 De=15815±5 cm-1。結合本實驗觀測與文獻的數據,提供了一組分子常數與RKR位能曲線。同時實驗也對準束縛態與有效位能曲線做了相關的討論。
    利用雙光子共振螢光減弱光譜(Optical-Optical Double Resonance Fluorescence Depletion Spectroscopy)的技術,偵測A1Σ+→X1Σ+能態間特定躍遷訊號強度因為受到探測雷射激發A1Σ+→C1Σ+態的躍遷而減弱的特性,可以分析氫化鈉分子C1Σ+激發態外部位能井的振轉能級。實驗中總共觀測了456個振轉能級,其範圍包含了v=5-33與J=1-11。同樣的,提供了一組C1Σ+激發態的分子常數與RKR位能曲線。

    Using different spectroscopic methods, three electronic states, ground (X1Σ+), first excited (A1Σ+), and third excited (C1Σ+) states, of sodium hydride molecule NaH were investigated in this dissertation.
    The Excitation spectroscopy of the A1Σ+→X1Σ+ transitions of NaH has been analyzed in the wavelength range of 378–436 nm. The observed vibrational levels of the first excited state (A1Σ+) were from v′=3 to 12. A set of molecular constants has been obtained and Rydberg-Klein-Rees (RKR) potential curve has been constructed in this work.
    The dissociation energy of the ground state (X1Σ+) of NaH was determined by analyzing the observed near-dissociation rovibrational levels. These levels were detected by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the range 9≤v"≤21 and 1≤J"≤14 were assigned to the X1Σ+ state of NaH. The highest vibrational level observed was about 40 cm-1 to the dissociation limit of the ground state. One quasibound level, above the dissociation limit and confined by the centrifugal barrier, was observed. Using near dissociation theory, one can determine the vibrational quantum number at dissociation vD from extropalation of the highest four vibrational levels and yield the dissociation energy De=15815±5 cm-1. Based on the observed eigenvalues in this work and the available data from literature, a set of Dunham coefficients and the rotationless RKR curve were provided. The effective potential curve and the quasibound states were discussed.
    The outer well of the third excited state (C1Σ+) of NaH was determined using pulsed optical-optical double resonance fluorescence depletion spectroscopy. The level-selected fluorescence of the A1Σ+ state emitted to the ground state is depleted when a probe laser excites the molecules from A1Σ+ to C1Σ+ states. A total of 456 rovibrational levels, v=5-33 and J=1-11, were assigned to C1Σ+ state. A set of Dunham coefficients and the RKR potential curve for the outer well were reported.

    中文摘要……………………………………………………………………… I 英文摘要……………………………………………………………………… II 誌謝…………………………………………………………………………… III 目錄…………………………………………………………………………… V 表目錄………………………………………………………………………… IX 圖目錄………………………………………………………………………… X 第一章 序論…………………………………………………………………… 1 1-1. 引言與研究動機………………………………………………………… 1 1-2. 氣態氫化鈉分子能態概述……………………………………………… 2 1-2-1. A1Σ+激發態的相關研究…………………………………………… 3 1-2-2. X1Σ+基態的相關研究……………………………………………… 6 1-2-3. C1Σ+激發態的相關研究…………………………………………… 7 第二章 量子與光譜理論……………………………………………………… 8 2-1. 電磁波簡介……………………………………………………………… 8 2-2. B-O近似法…………………………………………………………… 8 2-3. 分子光譜………………………………………………………………… 10 2-4. 分子常數………………………………………………………………… 10 2-5. RKR位能曲線………………………………………………………… 11 2-6. 洪德耦合與項符………………………………………………………… 12 2-7. 雙原子分子躍遷選擇…………………………………………………… 14 2-8. 法蘭克-康登原理……………………………………………………… 14 第三章 實驗…………………………………………………………………… 15 3-1. 實驗藥品與雷射染料…………………………………………………… 15 3-1-1. 鈉金屬塊…………………………………………………………… 15 3-1-2. 甲醇………………………………………………………………… 15 3-1-3. 雷射染料…………………………………………………………… 15 3-2. 實驗裝置與儀器……………………………………………………… 16 3-2-1. 雷射系統…………………………………………………………… 16 3-2-2. 熱管爐系統………………………………………………………… 17 3-2-3. 校正系統…………………………………………………………… 18 3-2-4. 訊號偵測與處理系統……………………………………………… 19 3-3. 實驗介紹………………………………………………………………… 21 3-3-1. A1Σ+激發態的研究………………………………………………… 21 3-3-2. X1Σ+基態的研究…………………………………………………… 24 3-3-3. C1Σ+激發態的研究………………………………………………… 27 第四章 結果與討論…………………………………………………………… 29 4-1. A1Σ+激發態的結果與討論…………………………………………… 29 4-1-1. 波長校正與訊號分類……………………………………………… 29 4-1-2. 訊號的分析與確認………………………………………………… 31 4-1-3. A1Σ+位能的避免交錯……………………………………………… 39 4-1-4. 結論………………………………………………………………… 39 4-2. X1Σ+基態的結果與討論...………………………………………… 40 4-2-1. 光譜訊號…………………………………………………………… 40 4-2-2. 振動與轉動常數…………………………………………………… 42 4-2-3. X1Σ+基態的解離能………………………………………………… 46 4-2-4. 分子常數與RKR位能曲線…………………………………………… 49 4-2-5. 結論……………….….…………………………………………… 56 4-3. C1Σ+激發態的結果與討論…………………………………………… 58 4-3-1. 光譜分析…………………………………………………………… 58 4-3-2. 絕對振動量子數的確認…………………………………………… 58 4-3-3. 分子常數…………………………………………………………… 65 4-3-4. 結論………………………………………………………………… 65 參考文獻……………………………………………………………………… 69 附錄A-1 A1Σ+與X1Σ+激發光譜譜線訊號………………………………… 73 附錄A-2 NaH A1Σ+ 分子常數擬合結果………………………………… 77 附錄B-1 NaH X1Σ+基態振轉能量………………………………………… 80 附錄B-2 NaH X1Σ+分子常數擬合結果…………………………………… 88 附錄C-1 經由分析ΔGv+1/2的差異決定NaH C1Σ+的振動量子數……… 92 附錄C-2 經由分析螢光減量訊號強度與FCFs的差異決定NaH C1Σ+的振動量子數…………………………………………… 93 附錄C-3 NaH C1Σ+分子常數擬合結果…………………………………… 95

    1. W. Demtroder, Laser Spectroscopy. Springer-Verlag: Berlin, 1981.
    2. G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules. Robert E. Krieger Publishing Co.: Malabar,Florida, 1989.
    3. A. S. Dickinson, J. Phys. B: At. Mol. Opt. Phys. 1999, 32, L13.
    4. I. R. Bartky, J. Mol. Spectrosc. 1966, 21, 25.
    5. I. R. Bartky, J. Mol. Spectrosc. 1966, 21, 1.
    6. R. C. Pankhurst, Proc. Phys. Soc. Lond. A 1949, 62, 191.
    7. F. B. Orth, W. C. Stwalley, S. C. Yang, Y. K. Hsieh, J. Mol. Spectrosc. 1980, 79, 314.
    8. K. V. L. N. Sastry, H. Eric, C. D. L. Frank, J. Chem. Phys. 1981, 75, 4753.
    9. K. R. Leopold, L. R. Zink, K. M. Evenson, D. A. Jennings, J. Mol. Spectrosc. 1987, 122, 150.
    10. A. G. Maki, W. B. Olson, J. Chem. Phys. 1989, 90, 6887.
    11. P. J. Dagdigian, J. Chem. Phys. 1976, 64, 2609.
    12. P. J. Dagdigian, J. Chem. Phys. 1979, 71, 2328.
    13. P. Baltayan, A. Jourand, O. Nedelec, Phys. Lett. A 1976, 58, 443.
    14. M. Giroud, O. Nedelec, J. Chem. Phys. 1980, 73, 4151.
    15. T. Hori, Z. Phys. 1931, 71, 478.
    16. R. C. Pankhurst, Nature. Lond 1941, 147, 643.
    17. E. S. Sachs, J. Hinze, N. H. Sabelli, J. Chem. Phys. 1975, 62, 3377.
    18. O. Nedelec, M. Giroud, J. Chem. Phys. 1983, 79, 2121.
    19. A. H. M. Brieger, A. Renn, and A. Sodeik, Chem. Phys. Lett. 1981, 78, 153.
    20. J. T. Bahns, W. C. Stwalley, Appl. Phys. Lett. 1984, 44, 826.
    21. W. C. Stwalley, W. T. Zemke, S. C. Yang, J. Phys. Chem. Ref. Data 1991, 20, 153.
    22. M. Rafi, N. Ali, K. Ahmad, I. A. Khan, M. A. Baig, Z. Iqbal, J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L129.
    23. S. Lochbrunner, M. Motzkus, G. Pichler, K. L. Kompa, P. Hering, Z. Phys. D 1996, 38, 35.
    24. J. T. Bahns, C. C. Tsai, B. Ji, J. T. Kim, G. Zhao, W. C. Stwalley, J. C. Bloch, R. W. Field, J. Mol. Spectrosc. 1997, 186, 222.
    25. F. P. Pesl, S. Lutz, K. Bergmann, Eur. Phys. J. D 2000, 10, 247.
    26. L. Lehr, M. Motzkus, G. Pichler, P. Hering, J. Raman Spectrosc. 1998, 29, 273.
    27. S. Magnier, J. Phys. Chem. A 2005, 109, 5411.
    28. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Science 1995, 269, 198.
    29. U. Magg, H. Jones, Chem. Phys. Lett. 1988, 146, 415.
    30. M. Brieger, A. Hese, A. Renn, A. Sodeik, Chem. Phys. Lett. 1981, 78, 153.
    31. C. L. Yang, X. Zhang, K. L. Han, J. Mol. Structure. (Theochem) 2004, 676, 209.
    32. S. S. Edward, H. Juergen, H. S. Nora, J. Chem. Phys. 1975, 62, 3377.
    33. W. Meyer, P. Rosmus, J. Chem. Phys. 1975, 63, 2356.
    34. R. E. Olson, B. Liu, J. Chem. Phys. 1980, 73, 2817.
    35. H. S. Lee, Y. S. Lee, G. H. Jeung, Chem. Phys. Lett. 2000, 325, 46.
    36. J. J. Chen, W. T. Luh, G. H. Jeung, J. Chem. Phys. 1999, 110, 4402.
    37. C. N. Banwell, E. M. McCash, Fundamentals of Molecular Spectroscopy. Tata McGraw-Hill: New Delhi, 1995.
    38. Z. G. Wang, H. R. Xia, Molecular and Laser Spectroscopy. Springer-Verlag: New York, 1991.
    39. K. L. Tsai, T. J. Whang, J. Chin. Chem. Soc. 1998, 45, 23.
    40. A. S. King, J. Astrophys. 1908, 28, 300.
    41. C. R. Vidal, J. Appl. Phys. 1973, 44, 2225.
    42. J. T. Bahns, Ph. D. thesis. Iowa: The Unuversity of Iowa, 1983.
    43. S. Gerstenkorn, P. Luc, Rev. Phys. Appl. 1979, 14, 791.
    44. H. Salami, A. J. Ross, J. Mol. Spectrosc. 2005, 233, 157.
    45. X. Zhu, A. H. Nur, P. Misra, J. Quant. Spectrosc. Radiat. Transfer 1994, 52, 167.
    46. R. A. Bernheim, C. Kittrell, D. K. Veirs, J. Chem. Phys. 1978, 69, 1308.
    47. P. Juncar, J. Pinard, J. Hamon, A. Chartier, Metrologia 1981, 17, 77.
    48. B. Edlén, Metrologia 1966, 2, 71.
    49. R. AlTuwirqi, A. Bakry, M. Rafi, Fayyazuddin, J. Phys. B: At. Mol. Opt. Phys. 1997, 30, 2033.
    50. D. C. Jain, P. Sah, J. Chem. Phys. 1963, 38, 1553.
    51. N. Khelifi, J. Russ. Laser Res. 2008, 29, 274.
    52. B. K. Taylor, P. R. Newman, J. Chem. Phys. 2003, 118, 8770.
    53. N. Geum, G. H. Jeung, A. Derevianko, R. Cote, A. Dalgarno, J. Chem. Phys. 2001, 115, 5984.
    54. A. Pardo, J. J. Camacho, J. M. L. Poyato, E. Martin, Chem. Phys. 1988, 121, 41.
    55. L. Li, R. W. Field, J. Mol. Spectrosc. 1986, 117, 245.
    56. R. S. Mulliken, Phys. Rev. 1936, 50, 1017.
    57. D. H. Shi, Y. F. Liu, J. F. Sun, X. D. Yang, Z. L. Zhu, Chinese Physics 2006, 15, 1015.
    58. F. X. Gadea, H. Berriche, O. Roncero, P. Villarreal, G. D. Barrio, J. Chem. Phys. 1997, 107, 10515.
    59. A. K. Sharma, S. Chandra, J. Phys. B: At. Mol. Opt. Phys. 2000, 33, 2623.
    60. T. J. Whang, W. C. Stwalley, L. Li, A. M. Lyyra, J. Chem. Phys. 1992, 97, 7211.
    61. C. Y. Wu, W. T. Luh, F. X. Gadea, W. C. Stwalley, J. Chem. Phys. 2008, 128, 064303.
    62. J. L. Dunham, Phys. Rev. 1932, 41, 713.
    63. T. L. Lu, Master thesis. National Cheng-Kung University: Taiwan, 2003.
    64. D. M. Bishop, L. M. Cheung, J. Chem. Phys. 1983, 79, 2945.
    65. A. C. Tam, W. Happer, J. Chem. Phys. 1976, 64, 2456.
    66. S. C. Yang, J. Chem. Phys. 1982, 77, 2884.
    67. B. K. Taylor, Abstr. Pap. Am. Chem. Soc. 2003, 225, U474.
    68. M. Aymar, J. Deiglmayr, O. Dulieu, Can. J. Phys. 2009, 87, 543.
    69. A. M. Karo, M. A. Gardner, J. R. Hiskes, J. Chem. Phys. 1978, 68, 1942-1950.
    70. W. C. Stwalley, J. Chem. Phys. 1972, 56, 2485.
    71. W. T. Zemke, R. E. Olson, K. K. Verma, W. C. Stwalley, B. Liu, J. Chem. Phys. 1984, 80, 356.
    72. W. T. Zemke, R. E. Olson, K. K. Verma, W. C. Stwalley, B. Liu, J. Chem. Phys. 1986, 85, 4209.
    73. K. J. Jordan, R. H. Lipson, N. A. McDonald, R. J. LeRoy, J. Phys. Chem. 1992, 96, 4778.
    74. T. R. Proctor, W. C. Stwalley, J. Chem. Phys. 1977, 66, 2063.
    75. K. M. Jones, S. Maleki, S. Bize, P. D. Lett, C. J. Williams, H. Richling, H. Knokel, E. Tiemann, H. Wang, P. L. Gould, W. C. Stwalley, Phys. Rev. A 1996, 54, R1006.
    76. T. J. Whang, H. Wang, A. M. Lyyra, L. Li, W. C. Stwalley, J. Mol. Spectrosc. 1991, 145, 112.
    77. T. J. Whang, W. C. Stwalley, L. Li, A. M. Lyyra, J. Mol. Spectrosc. 1992, 155, 184.
    78. Y. L. Pan, S. Dianping, L. S. Ma, D. Liangen, Z. G. Wang, J. Mol. Spectrosc. 1995, 169, 534.
    79. Y. Y. Chang, Master thesis. National Cheng-Kung University: Taiwan, 2000.
    80. M. H. Liao, Master thesis. National Cheng-Kung University: Taiwan, 2001.
    81. K. L. Wu, Master thesis. National Cheng-Kung University: Taiwan, 2002.
    82. C. C. Tsai, R. Y. Chang, H. W. Wu, T. J. Whang, J. Mol. Spectrosc. 2005, 232, 66.
    83. W. C. Martin, R. Zalubas, J. Phys. Chem. Ref. Data 1981, 10, 153.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE