| 研究生: |
黃献佑 Huang, Hsien-Yu |
|---|---|
| 論文名稱: |
氣態氫化鈉分子X、A、C1Σ+能態的雷射光譜研究 Laser Spectroscopy of the X, A and C1Σ+ States in NaH molecule |
| 指導教授: |
黃守仁
Whang, Thou-Jen 蔡錦俊 Tsai, Chin-Chun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 氫化鈉 、雷射光譜 、雙光子共振 、解離能 、螢光減弱光譜 、位能曲線 |
| 外文關鍵詞: | NaH, Laser spectroscopy, Multiple resonances, Dissociation energy, Fluorescence depletion spectroscopy, Potential curve |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,利用不同的光譜方法探討氫化鈉分子基態(X1Σ+)、第一激發態
(A1Σ+)與第三激發態(C1Σ+)的實驗。
利用激發光譜法(Excitation Spectroscopy)分析波長範圍在378–436 nm範圍內A1Σ+→X1Σ+能態間的266條躍遷譜線訊號,躍遷的振動能級範圍為A(v'=3-12)–X(v"=0)。根據實驗所觀測的數據,提供了一組分子常數與RKR位能曲線。由於避免交錯(Avoid Crossing)現象的影響,導致A1Σ+低振動能級的振轉常數發生特殊的變化,這樣的結果也反應在A1Σ+能態的位能曲線圖上。
利用誘導放射雙光子共振螢光(Stimulated Emission Pumping and Fluorescence Depletion Spectroscopy)光譜法分析氫化鈉分子基態接近解離極限的振轉能級訊號,可以更精確獲得氫化鈉基態(X1Σ+)的解離能,實驗總共分析了114個基態(X1Σ+)高能振動態的振轉能級,其振轉量子數分別為9≤v"≤21與1≤J"≤14,其中最高振轉能級與解離極限僅相差約40 cm-1。實驗中觀測到一個能量高於解離極限值的準束縛態(Quasibound State),也透過離心勢壘(Centrifugal Barrier)能量加以確認。依據近解離極限理論(Near Dissociation Theory),可以利用四個最高振動能級外推出解離極限的振動量子數vD,進而得到氫化鈉基態(X1Σ+)的解離能為 De=15815±5 cm-1。結合本實驗觀測與文獻的數據,提供了一組分子常數與RKR位能曲線。同時實驗也對準束縛態與有效位能曲線做了相關的討論。
利用雙光子共振螢光減弱光譜(Optical-Optical Double Resonance Fluorescence Depletion Spectroscopy)的技術,偵測A1Σ+→X1Σ+能態間特定躍遷訊號強度因為受到探測雷射激發A1Σ+→C1Σ+態的躍遷而減弱的特性,可以分析氫化鈉分子C1Σ+激發態外部位能井的振轉能級。實驗中總共觀測了456個振轉能級,其範圍包含了v=5-33與J=1-11。同樣的,提供了一組C1Σ+激發態的分子常數與RKR位能曲線。
Using different spectroscopic methods, three electronic states, ground (X1Σ+), first excited (A1Σ+), and third excited (C1Σ+) states, of sodium hydride molecule NaH were investigated in this dissertation.
The Excitation spectroscopy of the A1Σ+→X1Σ+ transitions of NaH has been analyzed in the wavelength range of 378–436 nm. The observed vibrational levels of the first excited state (A1Σ+) were from v′=3 to 12. A set of molecular constants has been obtained and Rydberg-Klein-Rees (RKR) potential curve has been constructed in this work.
The dissociation energy of the ground state (X1Σ+) of NaH was determined by analyzing the observed near-dissociation rovibrational levels. These levels were detected by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the range 9≤v"≤21 and 1≤J"≤14 were assigned to the X1Σ+ state of NaH. The highest vibrational level observed was about 40 cm-1 to the dissociation limit of the ground state. One quasibound level, above the dissociation limit and confined by the centrifugal barrier, was observed. Using near dissociation theory, one can determine the vibrational quantum number at dissociation vD from extropalation of the highest four vibrational levels and yield the dissociation energy De=15815±5 cm-1. Based on the observed eigenvalues in this work and the available data from literature, a set of Dunham coefficients and the rotationless RKR curve were provided. The effective potential curve and the quasibound states were discussed.
The outer well of the third excited state (C1Σ+) of NaH was determined using pulsed optical-optical double resonance fluorescence depletion spectroscopy. The level-selected fluorescence of the A1Σ+ state emitted to the ground state is depleted when a probe laser excites the molecules from A1Σ+ to C1Σ+ states. A total of 456 rovibrational levels, v=5-33 and J=1-11, were assigned to C1Σ+ state. A set of Dunham coefficients and the RKR potential curve for the outer well were reported.
1. W. Demtroder, Laser Spectroscopy. Springer-Verlag: Berlin, 1981.
2. G. Herzberg, Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules. Robert E. Krieger Publishing Co.: Malabar,Florida, 1989.
3. A. S. Dickinson, J. Phys. B: At. Mol. Opt. Phys. 1999, 32, L13.
4. I. R. Bartky, J. Mol. Spectrosc. 1966, 21, 25.
5. I. R. Bartky, J. Mol. Spectrosc. 1966, 21, 1.
6. R. C. Pankhurst, Proc. Phys. Soc. Lond. A 1949, 62, 191.
7. F. B. Orth, W. C. Stwalley, S. C. Yang, Y. K. Hsieh, J. Mol. Spectrosc. 1980, 79, 314.
8. K. V. L. N. Sastry, H. Eric, C. D. L. Frank, J. Chem. Phys. 1981, 75, 4753.
9. K. R. Leopold, L. R. Zink, K. M. Evenson, D. A. Jennings, J. Mol. Spectrosc. 1987, 122, 150.
10. A. G. Maki, W. B. Olson, J. Chem. Phys. 1989, 90, 6887.
11. P. J. Dagdigian, J. Chem. Phys. 1976, 64, 2609.
12. P. J. Dagdigian, J. Chem. Phys. 1979, 71, 2328.
13. P. Baltayan, A. Jourand, O. Nedelec, Phys. Lett. A 1976, 58, 443.
14. M. Giroud, O. Nedelec, J. Chem. Phys. 1980, 73, 4151.
15. T. Hori, Z. Phys. 1931, 71, 478.
16. R. C. Pankhurst, Nature. Lond 1941, 147, 643.
17. E. S. Sachs, J. Hinze, N. H. Sabelli, J. Chem. Phys. 1975, 62, 3377.
18. O. Nedelec, M. Giroud, J. Chem. Phys. 1983, 79, 2121.
19. A. H. M. Brieger, A. Renn, and A. Sodeik, Chem. Phys. Lett. 1981, 78, 153.
20. J. T. Bahns, W. C. Stwalley, Appl. Phys. Lett. 1984, 44, 826.
21. W. C. Stwalley, W. T. Zemke, S. C. Yang, J. Phys. Chem. Ref. Data 1991, 20, 153.
22. M. Rafi, N. Ali, K. Ahmad, I. A. Khan, M. A. Baig, Z. Iqbal, J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L129.
23. S. Lochbrunner, M. Motzkus, G. Pichler, K. L. Kompa, P. Hering, Z. Phys. D 1996, 38, 35.
24. J. T. Bahns, C. C. Tsai, B. Ji, J. T. Kim, G. Zhao, W. C. Stwalley, J. C. Bloch, R. W. Field, J. Mol. Spectrosc. 1997, 186, 222.
25. F. P. Pesl, S. Lutz, K. Bergmann, Eur. Phys. J. D 2000, 10, 247.
26. L. Lehr, M. Motzkus, G. Pichler, P. Hering, J. Raman Spectrosc. 1998, 29, 273.
27. S. Magnier, J. Phys. Chem. A 2005, 109, 5411.
28. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Science 1995, 269, 198.
29. U. Magg, H. Jones, Chem. Phys. Lett. 1988, 146, 415.
30. M. Brieger, A. Hese, A. Renn, A. Sodeik, Chem. Phys. Lett. 1981, 78, 153.
31. C. L. Yang, X. Zhang, K. L. Han, J. Mol. Structure. (Theochem) 2004, 676, 209.
32. S. S. Edward, H. Juergen, H. S. Nora, J. Chem. Phys. 1975, 62, 3377.
33. W. Meyer, P. Rosmus, J. Chem. Phys. 1975, 63, 2356.
34. R. E. Olson, B. Liu, J. Chem. Phys. 1980, 73, 2817.
35. H. S. Lee, Y. S. Lee, G. H. Jeung, Chem. Phys. Lett. 2000, 325, 46.
36. J. J. Chen, W. T. Luh, G. H. Jeung, J. Chem. Phys. 1999, 110, 4402.
37. C. N. Banwell, E. M. McCash, Fundamentals of Molecular Spectroscopy. Tata McGraw-Hill: New Delhi, 1995.
38. Z. G. Wang, H. R. Xia, Molecular and Laser Spectroscopy. Springer-Verlag: New York, 1991.
39. K. L. Tsai, T. J. Whang, J. Chin. Chem. Soc. 1998, 45, 23.
40. A. S. King, J. Astrophys. 1908, 28, 300.
41. C. R. Vidal, J. Appl. Phys. 1973, 44, 2225.
42. J. T. Bahns, Ph. D. thesis. Iowa: The Unuversity of Iowa, 1983.
43. S. Gerstenkorn, P. Luc, Rev. Phys. Appl. 1979, 14, 791.
44. H. Salami, A. J. Ross, J. Mol. Spectrosc. 2005, 233, 157.
45. X. Zhu, A. H. Nur, P. Misra, J. Quant. Spectrosc. Radiat. Transfer 1994, 52, 167.
46. R. A. Bernheim, C. Kittrell, D. K. Veirs, J. Chem. Phys. 1978, 69, 1308.
47. P. Juncar, J. Pinard, J. Hamon, A. Chartier, Metrologia 1981, 17, 77.
48. B. Edlén, Metrologia 1966, 2, 71.
49. R. AlTuwirqi, A. Bakry, M. Rafi, Fayyazuddin, J. Phys. B: At. Mol. Opt. Phys. 1997, 30, 2033.
50. D. C. Jain, P. Sah, J. Chem. Phys. 1963, 38, 1553.
51. N. Khelifi, J. Russ. Laser Res. 2008, 29, 274.
52. B. K. Taylor, P. R. Newman, J. Chem. Phys. 2003, 118, 8770.
53. N. Geum, G. H. Jeung, A. Derevianko, R. Cote, A. Dalgarno, J. Chem. Phys. 2001, 115, 5984.
54. A. Pardo, J. J. Camacho, J. M. L. Poyato, E. Martin, Chem. Phys. 1988, 121, 41.
55. L. Li, R. W. Field, J. Mol. Spectrosc. 1986, 117, 245.
56. R. S. Mulliken, Phys. Rev. 1936, 50, 1017.
57. D. H. Shi, Y. F. Liu, J. F. Sun, X. D. Yang, Z. L. Zhu, Chinese Physics 2006, 15, 1015.
58. F. X. Gadea, H. Berriche, O. Roncero, P. Villarreal, G. D. Barrio, J. Chem. Phys. 1997, 107, 10515.
59. A. K. Sharma, S. Chandra, J. Phys. B: At. Mol. Opt. Phys. 2000, 33, 2623.
60. T. J. Whang, W. C. Stwalley, L. Li, A. M. Lyyra, J. Chem. Phys. 1992, 97, 7211.
61. C. Y. Wu, W. T. Luh, F. X. Gadea, W. C. Stwalley, J. Chem. Phys. 2008, 128, 064303.
62. J. L. Dunham, Phys. Rev. 1932, 41, 713.
63. T. L. Lu, Master thesis. National Cheng-Kung University: Taiwan, 2003.
64. D. M. Bishop, L. M. Cheung, J. Chem. Phys. 1983, 79, 2945.
65. A. C. Tam, W. Happer, J. Chem. Phys. 1976, 64, 2456.
66. S. C. Yang, J. Chem. Phys. 1982, 77, 2884.
67. B. K. Taylor, Abstr. Pap. Am. Chem. Soc. 2003, 225, U474.
68. M. Aymar, J. Deiglmayr, O. Dulieu, Can. J. Phys. 2009, 87, 543.
69. A. M. Karo, M. A. Gardner, J. R. Hiskes, J. Chem. Phys. 1978, 68, 1942-1950.
70. W. C. Stwalley, J. Chem. Phys. 1972, 56, 2485.
71. W. T. Zemke, R. E. Olson, K. K. Verma, W. C. Stwalley, B. Liu, J. Chem. Phys. 1984, 80, 356.
72. W. T. Zemke, R. E. Olson, K. K. Verma, W. C. Stwalley, B. Liu, J. Chem. Phys. 1986, 85, 4209.
73. K. J. Jordan, R. H. Lipson, N. A. McDonald, R. J. LeRoy, J. Phys. Chem. 1992, 96, 4778.
74. T. R. Proctor, W. C. Stwalley, J. Chem. Phys. 1977, 66, 2063.
75. K. M. Jones, S. Maleki, S. Bize, P. D. Lett, C. J. Williams, H. Richling, H. Knokel, E. Tiemann, H. Wang, P. L. Gould, W. C. Stwalley, Phys. Rev. A 1996, 54, R1006.
76. T. J. Whang, H. Wang, A. M. Lyyra, L. Li, W. C. Stwalley, J. Mol. Spectrosc. 1991, 145, 112.
77. T. J. Whang, W. C. Stwalley, L. Li, A. M. Lyyra, J. Mol. Spectrosc. 1992, 155, 184.
78. Y. L. Pan, S. Dianping, L. S. Ma, D. Liangen, Z. G. Wang, J. Mol. Spectrosc. 1995, 169, 534.
79. Y. Y. Chang, Master thesis. National Cheng-Kung University: Taiwan, 2000.
80. M. H. Liao, Master thesis. National Cheng-Kung University: Taiwan, 2001.
81. K. L. Wu, Master thesis. National Cheng-Kung University: Taiwan, 2002.
82. C. C. Tsai, R. Y. Chang, H. W. Wu, T. J. Whang, J. Mol. Spectrosc. 2005, 232, 66.
83. W. C. Martin, R. Zalubas, J. Phys. Chem. Ref. Data 1981, 10, 153.