簡易檢索 / 詳目顯示

研究生: 林菁容
Lin, Jing-Rong
論文名稱: 以分子動力學模擬法研究錐狀奈米碳管在奈米滴管的應用
Study of Cone-shaped Carbon Nanotube in the Application of Nano-pipette by Molecular Dynamics Simulations
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 分子動力學模擬奈米碳錐奈米流道
外文關鍵詞: molecular dynamic simulation, carbon nanocone, nano-pipette
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於分析儀器的進步,掃描探針顯微技術(Scanning Probe Microscopy, SPM)在科學上的應用已非侷限於奈米尺度表面影像的量測,更廣為應用於探索奈米尺度下微觀的物性量測。而以奈米碳管作為探針的優點為有高長寬比且相當具彈性,可深入坑洞內部探測高低變化。若能賦與探針不僅表面探測且同時也能根據設定條件而注射奈米級大小的液滴進而表面改質。因此本文將研究同樣具有奈米碳管的高長寬比優點的奈米碳錐為流道,分析流體在流道中的運動,並研究不同頂角的奈米碳錐對流體運動的影響。
    本文利用分子動力學模擬方法,探討以頂角19. 2˚、38. 9˚、60. 0˚ 的奈米碳錐為流道,每種頂角之流道皆與工作流體: 水、甲烷、三酸甘油酯組合後以0.01nm/ps(等同10m/sec)的定速度壓縮流體,分析不同頂角之流道對於流體的相對流出能力之差異。此外本研究亦分析流體在流道中的動態行為,如進入流道而運動至流道出口的軌跡。流道的機械性質亦是實用時須考慮的重點,因此本研究中也探討此三組頂角之流道沿軸向拉伸時的斷裂起始點與沿軸向壓縮的挫曲形態的差異。研究發現頂角較小之奈米碳錐可承受較大的壓應力。

    Due to the progress of analysis instruments, the application of Scanning Probe Microscopy (SPM) measurement nowadays is not limited in Nano-scale surface imaging but also used on the measurement/modification of Nano-scale surface physical property. One way to have surface modification capability at specific position is utilizing carbon nano-tube (CNT) as scanning probe as well as nano-pipette at the same time. The advantages of using CNT are high aspect ratio, sharper tip-end and better mechanical properties, which could enhance resolution in SPM. The dual-function CNT, connecting with fluid reservoir on cantilever beam, acts as probe in normal mode and as nano-pipette when the specific position is detected that need to be modified. Then the fluid reserved in the reservoir is injecting out on that position. Since the channel of CNT is in nano-scale, it is possible to control the amount of injection in molecular precision. The technology will have great impact in many applications.
    To assess the practicability of dual-function CNT, molecular dynamics simulation is utilized to simulate the transport phenomena of methane, water and triacylglycerols in cone-shape CNT. The cone-shape CNT is modeled due to its better inlet connection with reservoir. Different conical angle of cone-shape CNT is studied. The research focuses on the behavior of fluid flowing through the nano-channel. The mechanical properties of cone-shape CNT is also studied, since it is expected to be a probe as well. Both compression and tensile condition are simulated. The results show that conical angle plays an important role on nano-transport phenomena and mechanical properties.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌 謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章、緒論 1 1-1、研究動機 1 1-2、文獻回顧 1 1-2-1、溶液在奈米碳管中模擬相關文獻 1 1-2-2、碳奈米錐機械性質相關文獻 2 1-3、本文架構 3 第二章、蒙地卡羅法 4 2-1、基本原理 4 2-2、Metropolis 演算法 6 第三章、分子動力學模擬方法 9 3-1、分子動力學基本原理 9 3-2、分子動力學模擬流程架構 10 3-3、分子勢能模型 12 3-3-1、H2O分子勢能- (SPC) 12 3-3-2、CH4分子勢能(OPLS/AMBER) 12 3-3-3、TAG分子勢能(NERD) 14 3-3-4、石墨烯勢能 15 3-4、分子動力學求解運動方程式 16 3-4-1、Leap frog Algorithm 16 3-4-2、Gear Predictor-Corrector Algorithm 17 3-5、分子動力學系統控制 19 3-5-1、Nosé-Hoover Thermostat 19 3-6、縮減單位(Reduce unit) 19 3-7、週期性邊界與最小映像法則 20 3-7-1、週期性邊界(Periodic Boundary Condition) 20 3-7-2、最小映像法則(Minimum-Image Criterion) 21 3-8、分子動力學簡化方法 22 3-8-1、勢能截斷半徑(Cutoff Distance) 22 3-8-2、Verlet鄰近列表法(Neighbor List) 22 3-8-3、Cell Link 23 第四章、模擬系統的模型介紹 24 4-1、奈米碳錐(carbon nanocone) 24 4-2、奈米碳錐與石墨烯組成流道 26 4-3、奈米碳錐和奈米碳管與鑽石基板組合 29 第五章、模擬結果與分析 32 5-1、流體在奈米流道中的運動現象 32 5-1-1、水在奈米流道中的現象 32 5-1-2、三酸甘油酯在奈米流道中的現象 39 5-1-3、甲烷在奈米流道中的現象 44 5-2、奈米碳錐與奈米碳管施加應力 46 5-2-1、奈米碳錐定速度拉伸 46 5-2-2、奈米碳錐定速度壓縮 53 5-2-3、奈米碳管定速度拉伸 58 5-2-4、奈米碳管定速度壓縮 61 第六章、結論與展望 64 6-1、結論 64 6-2、未來研究方向 65 參考文獻 66

    1. Ball, P. Nature 2001, 414, (6860), 142-144.
    2. Kral, P.; Tomanek, D. Physical Review Letters 1999, 82, (26), 5373-5376.
    3. Sokhan, V. P.; Nicholson, D.; Quirke, N. Journal of Chemical Physics 2002, 117, (18), 8531-8539.
    4. Lin, D. T. W.; Chen, C. K. Acta Mechanica 2004, 173, 181-194.
    5. Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006, 312, (5776), 1034-1037.
    6. Duan, W. H.; Wang, Q. Acs Nano 2010, 4, (4), 2338-2344.
    7. Wei, C. Y.; Srivastava, D. Appl. Phys. Lett. 2004, 85, (12), 2208-2210.
    8. Wei, J. X.; Liew, K. M.; He, X. Q. Appl. Phys. Lett. 2007, 91, (26).
    9. Metropolis, N.; Ulam, S. Journal of the American Statistical Associati 1949, 44, (247), 335-341.
    10. H.J.C.Berendsen; J.P.M.Postma; Gunsteren, W. F. v.; Hermans*, J. Intermolecular Forces 1981, 331—342.
    11. Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. Journal Name: J. Am. Chem. Soc.; (United States); Journal Volume: 106:22 1984, Medium: X; Size: Pages: 6638-6646.
    12. Nath, S. K.; Escobedo, F. A.; de Pablo, J. J. Journal of Chemical Physics 1998, 108, (23), 9905-9911.
    13. Nath, S. K.; De Pablo, J. J. Molecular Physics 2000, 98, (4), 231-238.
    14. Nath, S. K.; Banaszak, B. J.; de Pablo, J. J. Journal of Chemical Physics 2001, 114, (8), 3612-3616.
    15. Sum, A. K.; Biddy, M. J.; de Pablo, J. J.; Tupy, M. J. J. Phys. Chem. B 2003, 107, (51), 14443-14451.
    16. Jones, J. E. Proceedings of the Royal Society of London. Series A 1924, 106, (738), 441-462.
    17. Mark, A. E.; van Helden, S. P.; Smith, P. E.; Janssen, L. H. M.; van Gunsteren, W. F. Journal of the American Chemical Society 1994, 116, (14), 6293-6302.
    18. van Buuren, A. R.; de Vlieg, J.; Berendsen, H. J. C. Langmuir 1995, 11, (8), 2957-2965.
    19. Gear, C. W. Communications of the Acm 1971, 14, (3), 176-&.
    20. Hoover, W. G. Physical Review A 1985, 31, (3), 1695-1697.
    21. Verlet, L. Physical Review 1967, 159, (1), 98-&.
    22. Ge, M. H.; Sattler, K. Chem. Phys. Lett. 1994, 220, (3-5), 192-196.
    23. Endo, M.; Takeuchi, K.; Kobori, K.; Takahashi, K.; Kroto, H. W.; Sarkar, A. Carbon 1995, 33, (7), 873-881.
    24. Ebbesen, T. W. Accounts of Chemical Research 1998, 31, (9), 558-566.

    下載圖示 校內:2012-08-04公開
    校外:2013-08-04公開
    QR CODE