| 研究生: |
林韋丞 Lin, Wei-Cheng |
|---|---|
| 論文名稱: |
以OPC UA為基之智慧防碰撞機械手臂協作系統實現 Implementation of Collaborative Industrial Robot Arm System with Smart Collision Avoidance by Using OPC UA |
| 指導教授: |
陳響亮
Chen, Shang-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 人機協作 、人機交互 、安全防碰撞 、數位孿生 、OPC UA |
| 外文關鍵詞: | Human-robot collaboration, Human-robot interaction, Collision avoidance, Digital twin, OPC UA |
| 相關次數: | 點閱:166 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般工業機械手臂具有高速、高精及高重複等特性,為自動化製造現場帶來益處,然而隨著人力成本提高,對於中小型企業,在空間有限的製造現場,更需要的是具有製造彈性、安全性的協作型機械手臂。對此,國際標準組織訂定出ISO/TS 15066針對協作型機器人安全性進行規範,國際機器人聯盟也提出了四種人機交互等級。然而協作型機器人的相關技術相較傳統工業機械手臂更複雜且跨領域,國內外製造大廠以及知名大學皆關注於此。對於製造業來說,若能結合協作型手臂以及傳統工業機械手臂之特性,預期能帶來更大的效益。
為此,本研究提出「以OPC UA為基之智慧防碰撞機械手臂協作系統實現」,以兩子系統建構機械手臂協作系統,兼顧人機交互以及防碰撞兩大協作手臂功能,並以多模組方式進行「感知、認知、傳輸、決策以及執行」,協助機械手臂進行協作,模組間透過OPC UA開放且跨平台的特性進行訊息共享,不僅快速建構機器對機器間的通訊,更可快速進行系統擴充。
經由測試各模組的效能,並進行系統驗證,確保了智慧防碰撞以及人機交互功能可行性。其中,智慧防碰撞預期可於每500毫秒內進行反應,人機交互方面更可藉由RFID識別不同人員進行不同的運動任務,使本研究之機械手臂協作系統兼具彈性與安全性。
本研究提供一種多模組、跨平台的人機協作框架,並進行性能分析與測試,驗證其可行性;於產業界,本系統提供之機械手臂協作系統可快速且低成本地導入製造場域,利於在有限的製造現場中提供彈性且安全的人機協作製造模式。
The general industrial robot arm has the characteristics of high speed, high precision, and high repetition, which brings benefits to the automated manufacturing site. However, with the increase of labor cost, the collaborative robot arm with manufacturing flexibility and safety is more needed for small and medium-sized enterprises in the manufacturing site with limited space. For the manufacturing industry, if combined with the characteristics of cooperative arms and general industrial robot arms, it is expected to bring greater benefits.
To this end, this study proposed " Implementation of Collaborative Industrial Robot Arm System with Smart Collision Avoidance by Using OPC UA." The robot arm collaboration system is constructed with two subsystems, which include human-robot interaction and collision avoidance. "Perception, cognition, transmission, decision making and execution" in a multi-module manner, assisted the robot arm to collaborate and shared information between modules through OPC UA.
Test the performance of each module and verify the system. It ensures the feasibility of smart collision avoidance and human-robot interaction functions. Smart collision avoidance is expected to respond within 500 milliseconds. In the aspect of human-robot interaction, the robot arm collaboration system is flexible and safe by identifying different people to perform other tasks.
[1] M. Vasic and A. Billard, "Safety issues in human-robot interactions," in 2013 IEEE International Conference on Robotics and Automation, 2013: IEEE, pp. 197-204.
[2] A. Murphy, "Industrial: Robotics Outlook 2025," ed: Loup, 2017.
[3] G. Frankfurt, "Demystifying Collaborative Industrial Robots," 2019.
[4] M. Bdiwi, M. Pfeifer, and A. Sterzing, "A new strategy for ensuring human safety during various levels of interaction with industrial robots," CIRP Annals, vol. 66, no. 1, pp. 453-456, 2017.
[5] R. N. Shea and R. Automation, "Collaborative Robot Technical Specification ISO/TS 15066 Update," 2016.
[6] V. Villani, F. Pini, F. Leali, and C. Secchi, "Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications," Mechatronics, vol. 55, pp. 248-266, 2018.
[7] J. Schmidtler, V. Knott, C. Hölzel, and K. Bengler, "Human Centered Assistance Applications for the working environment of the future," Occupational Ergonomics, vol. 12, no. 3, pp. 83-95, 2015.
[8] R. Wilcox and J. Shah, "Optimization of multi-agent workflow for human-robot collaboration in assembly manufacturing," in Infotech@ Aerospace 2012, 2012, p. 2535.
[9] P. Tsarouchi, A.-S. Matthaiakis, S. Makris, and G. Chryssolouris, "On a human-robot collaboration in an assembly cell," Int. J. Comput. Integr. Manuf., vol. 30, no. 6, pp. 580-589, 2017.
[10] T. Vuletic, A. Duffy, L. Hay, C. McTeague, G. Campbell, and M. Grealy, "Systematic literature review of hand gestures used in human computer interaction interfaces," International Journal of Human-Computer Studies, vol. 129, pp. 74-94, 2019.
[11] S. Djezairi, I. Akli, R. B. Zamoum, and B. Bouzouia, "Mission allocation and execution for human and robot agents in industrial environment," in 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2018: IEEE, pp. 796-801.
[12] S. Kean, J. C. Hall, P. Perry, and J. Webb, Meet the Kinect: An introduction to programming natural user interfaces. Springer, 2011.
[13] E. Magrini, F. Ferraguti, A. J. Ronga, F. Pini, A. De Luca, and F. Leali, "Human-robot coexistence and interaction in open industrial cells," Robotics and Computer-Integrated Manufacturing, vol. 61, p. 101846, 2020.
[14] N. Nikolakis, V. Maratos, and S. Makris, "A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace," Robotics and Computer-Integrated Manufacturing, vol. 56, pp. 233-243, 2019.
[15] A. Vysocky and P. Novak, "Human-Robot collaboration in industry," MM Science Journal, vol. 9, no. 2, pp. 903-906, 2016.
[16] M. Fujii, H. Murakami, and M. Sonehara, "Study on application of a human-robot collaborative system using hand-guiding in a production line," IHI Eng. Rev, vol. 49, no. 1, pp. 24-29, 2016.
[17] V. Gopinath and K. Johansen, "Risk assessment process for collaborative assembly–a job safety analysis approach," Procedia CIRP, vol. 44, pp. 199-203, 2016.
[18] J. A. Marvel and R. Norcross, "Implementing speed and separation monitoring in collaborative robot workcells," Robotics and computer-integrated manufacturing, vol. 44, pp. 144-155, 2017.
[19] B. Matthias and T. Reisinger, "Example application of ISO/TS 15066 to a collaborative assembly scenario," in Proceedings of ISR 2016: 47st International Symposium on Robotics, 2016: VDE, pp. 1-5.
校內:2025-07-01公開