簡易檢索 / 詳目顯示

研究生: 沈秋梵
Shen, Chiu-Fan
論文名稱: 探討由腫瘤所引起的腦水腫中細胞激素所扮演的角色
The role of cytokines in tumor-induced brain edema
指導教授: 司君一
Sze, Chun-I
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 38
中文關鍵詞: 腦水腫細胞激素一氧化氮合酶神經膠母細胞瘤
外文關鍵詞: Brain Edema, Cytokines, Nitric Oxide Synthases, Glioblastoma
相關次數: 點閱:146下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦腫瘤為造成腦損傷的主要原因,在腦腫瘤中,神經膠母細胞瘤是最常見的初發腦癌腫瘤,它的預後情況相當不樂觀,是屬於復發率高、死亡率高的癌症之一,腦水腫是由腦腫瘤所引起的併發症而病人有可能因為腦水腫造成死亡,這也是為什麼我們要探討由腫瘤所引發腦水腫的原因。腫瘤周圍常伴隨著慢性發炎反應,發炎反應會使細胞釋放出各式各樣的細胞激素,因此,我的實驗主要是探討對於神經膠母細胞瘤所導致的腦水腫中,細胞激素的釋出及變化對細胞、血管通透性、腦組織的影響。
    免疫組織染色法實驗結果顯示,免疫細胞中的T細胞、B細胞和巨噬細胞的浸潤有增加;腫瘤壞死因子α (tumoro necrosis factor-α, TNF-α)、腫瘤壞死因子受器1 (tumoro necrosis factor receptor, TNFR1)、介白素1β (Interleukin-1 β, )、干擾素γ (Interferon γ, IFN-γ) 、誘導型一氧化氮合酶 (iNOS)、內皮型一氧化氮合酶 (eNOS) 和嘌呤受體 (P2X7R) 在打入神經膠母細胞瘤細胞株(CNS-1) 而產生腦水腫的實驗組別中,這些細胞激素及受器表現量也有上升的情形。而西方式點墨法也驗證了,打入腫瘤22天後會產生較多的腫瘤壞死因子α,這些結果顯示發炎反應及細胞激素發生於腫瘤所導致的腦水腫模型;免疫組織染色法中,用來標記活化的小神經膠細胞的蛋白質有OX-6、OX42和ED-1,經由觀察在打入腫瘤22天後確實有活化的小神經膠細胞,在西方式點墨法中,證明了在打入腫瘤細胞株22天的組別,小神經膠細胞OX-6有明顯的活化;在腫瘤壞死因子α和小神經膠細胞的雙重螢光染色實驗顯示,活化的小神經膠細胞會釋出TNF-α並隨著時間有漸漸上升;藉由腫瘤壞死因子受器1、嘌呤受體P2X7R、誘導型一氧化氮合酶和內皮型一氧化氮合酶與星狀神經膠細胞的雙重螢光染色實驗顯示在打入腫瘤細胞株後星狀神經膠細胞上都有腫瘤壞死因子受器1和嘌呤受體P2X7R的表現及一氧化氮的釋出都有上升的情形
    根據這些實驗結果我們可以下一個結論:腫瘤所引起的腦水腫,確實會使細胞激素、細胞激素受器和一氧化氮合酶的表現量改變,上升的腫瘤壞死因子α、介白素1β 、干擾素γ和一氧化氮會使血管通透性增加和造成血腦障壁的瓦解,使得全身的細胞可通過血腦障壁並且釋放出更多的細胞激素與一氧化氮,這些實驗結果將可以更了解細胞毒性及血管性這兩種腦水腫類型的形成並提供病理生理學重要的資訊用於探討惡性神經膠母細胞瘤旁水腫生成的原因。

    Glioblastoma (GBM) is the most common and malignant type of primary brain tumor that carries a poor prognosis, high recurrent rate and mortality. GBM causes direct injury to the brain tissue. Brain edema, one of complications caused by GBM, may result in death of patient. That is why we want to study and discuss tumor-induced brain edema. Focal chronic inflammation, adjacent to the site of tumor growth, may attract and recruit infiltrating of diverse cellular populations which are capable of producing array of cytokines. To characterize the role of cytokines in brain edema, Sprague-Dawley (SD) rats injected with CNS-1 GBM cell line were used to establish a glioma-induced brain edema model. Results of Immunohistochemical (IHC) staining showed that T-cell (CD3), B-cell (CD20) and macrophage (CD68) were focally increased in the tumor. IHC staining results also showed that expression of tumor necrosis factor-α (TNF-α), tumor necrosis factor receptor (TNFR1), interleukin-1β (IL-1β), interferon-γ (IFN-γ), inducible nitric oxide synthases (iNOS), endothelia nitric oxide synthases (eNOS) and P2X7 receptors (P2X7Rs) were gradually increased with our time-course study in CNS-1-injected groups. Western blotting (WB) results showed dramatically increased TNF-α in 22 day-post CNS-1-injected group, which suggests inflammation and cytokines release follow growth of tumor and severity of inflammation in tumor-induced brain edema. By using microglial markers OX-6, OX42 and ED-1, activated microglia was detected on 22 day-post CNS-1-injected group, which is further supported by WB results on OX-6 blotted brain protein homogenate. Double immunofluorescence (IF) staining was used to verify TNF-α. was released by microglia. Double IF staining of astrocyte marker GFAP with TNFR1, P2X7Rs, iNOS, and eNOS showed that the receptors were expressed in reactive astrocytes and astrocytes also produced nitric oxide (NO).
    According to these results, our model showed the changed expression of cytokines, cytokine’s receptor and NO. The increases of TNF-α, IL-1β, IFN-γ and NO which are associated with increased vascular permeability and blood-brain barrier (BBB) disruption which may make systematic cells pass through BBB and released more cytokines and NO. Taken together, these results may be related to cytotoxic and vasogenic component and provide useful information to study detail pathophysiological mechanisms in the genesis of tumor-induced brain edema.

    Abstract in Chinese…………………………………………………………………I Abstract in English…………………………………………………………………III Acknowledgment………………………………………………………………………V Table of Contents……………………………………………………………………VI List of Figure………………………………………………………………………VIII Introduction…………………………………………………………………………1 Brain Edema…………………………………………………………………1 Types of Brain Edema…………………………………………………………1 Brain Tumor-Associated Brain Edema………………………………………2 Glioblastoma Multiforme (GBM)……………………………………………3 Cytokines Produced by Inflammation………………………………………3 Nitric Oxide (NO) Contribute to BBB Disruption…………………………4 Effects of Cytokines…………………………………………………………5 Experiment Design…………………………………………………………………6 Materials and Methods……………………………………………………………7 Cell Culture……………………………………………………………………7 Established GBM-induced Brain Edema Model…………………………7 Tissue Processing………………………………………………………………8 H&E Staining…………………………………………………………………8 Immunohistochemical Staining………………………………………………9 Double Immunofluorescence Staining………………………………………9 Fluoro-Jade B Staining………………………………………………………9 Protein Purification…………………………………………………………10 Western Blot…………………………………………………………………10 Statistical analysis……………………………………………………………11 Results………………………………………………………………………………12 Brain Edema Morphology……………………………………………………12 Immunocytes Infiltrating during Inflammation……………………………12 Expression of Cytokines………………………………………………………13 Expression of iNOS ,eNOS and P2X7Rs……………………………………13 Activation of Microglia………………………………………………………14 TNF-α Released by Activated Microglia and the Expression of TNFR1, P2X7Rs, iNOS, and eNOS in Reactive Astrocyte…………………………14 Neuronal Damage……………………………………………………………15 Discussion…………………………………………………………………………16 Reference……………………………………………………………………………19 Tables………………………………………………………………………………23 Figures………………………………………………………………………………25

    1. Nag, S., Manias, J. L., Stewart, D. J., Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol, 2009. 118(2): p. 197-217.

    2. Kimelberg, H.K., Current concepts of brain edema. J Neurosurg, 1995. 83(6): p. 1051-9.

    3. Kaal, E., Vecht, CJ., The management of brain edema in brain tumors. Curr Opin Oncol, 2004. 16(6): p. 593-600.

    4. Yang, L., Wang, X., Zhen, S., Zhang, S., Kang, D., Lin, Z., Aquaporin-4 upregulated expression in glioma tissue is a reaction to glioma-associated edema induced by vascular endothelial growth factor. Oncol Rep, 2012. 28(5): p. 1633-8.

    5. Rash, J., Yasumura, T., Hudson, CS., Agre, P., Nielsen, S., Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA, 1998. 95(20): p. 11981-6.

    6. Kimbler, D.E., Shields, J., Yanasak, N., Vender, J.R., Dhandapani, K.M., Activation of P2X7 Promotes Cerebral Edema and Neurological Injury after Traumatic Brain Injury in Mice. PLoS One, 2012. 7(7): p. e41229.

    7. Papadopoulos, M.C., Binder, D.K., Verkman, A.S., Enhanced macromolecular diffusion in brain extracellular space in mouse models of vasogenic edema measured by cortical surface photobleaching. FASEB J, 2005 19(3): p. 425-7.

    8. Mark, W., Fabio, J. , Cerebral herniations. APPLIED RADIOLOGY, 1998: p. 10-16.

    9. de Lemos, M.L., de la Torre, A. V., Petrov, D., Brox, S., Folch, J., Pallas, M., Lazarowski, A., Beas-Zarate, C., Auladell, C., Camins, A., Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem Cell Biol, 2013. 45(7): p. 1377-88.

    10. Schoettle, R.J., Kochanek, P.M., Magargee, M.J., Uhl, M.W., Nemoto, E.M., Early Polymorphonuclear Leukocyte Accumulation Correlates with the Development of Posttraumatic Cerebral Edema in Rats. J Neurotrauma, 1990 7(4): p. 207-17.

    11. Kreutzberg, G., Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996. 19(8): p. 312-8.

    12. Liu, W., Tang, Y., Feng, J., Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci, 2011. 89(5-6): p. 141-6.

    13. Sofroniew, M.V., Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci, 2009. 32(12): p. 638-47.

    14. Loane, D.J., Byrnes, K. R., Role of microglia in neurotrauma. Neurotherapeutics, 2010. 7(4): p. 366-77.

    15. Candelario-Jalil, E., Yang, Y., Rosenberg, G. A., Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 2009. 158(3): p. 983-94.

    16. Soliman, M.L., Puig, K. L., Combs, C. K., Rosenberger, T. A., Acetate reduces microglia inflammatory signaling in vitro. J Neurochem, 2012. 123(4): p. 555-67.

    17. Rappold, P.M., Lynd-Balta, E., Joseph, S. A., P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain. Brain Res, 2006. 1089(1): p. 171-8.

    18. Brough, D., Le Feuvre, R. A., Iwakura, Y., Rothwell, N. J., Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. Mol Cell Neurosci, 2002. 19(2): p. 272-80.

    19. Le Feuvre, R.A., Brough, D., Touzani, O., Rothwell, N.J., Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J Cereb Blood Flow Metab, 2003 23(3): p. 381-4.

    20. Nag, S., Harik, SI. , Cerebrovascular permeability to horseradish peroxidase in hypertensive rats: effects of unilateral locus ceruleus lesion. Acta Neuropathologica 1987. 73(3): p. 247-253.

    21. Dux, E., Joó F., Effects of histamine on brain capillaries. Exp Brain Res, 1982. 47(2): p. 252-8.

    22. Xu, W., Liu, L.Z., Loizidou, M., Ahmed, M., Charles, I.G., The role of nitric oxide in cancer. Cell Res, 2002. 12(5-6): p. 311-20.

    23. Mayhan, W., Role of nitric oxide in disruption of the blood-brain barrier during acute hypertension. Brain Res. 1995 Jul 17;686(1):99-103., 1995. 686(1): p. 99-103.

    24. Buster, B.L., Weintrob A.C., Townsend, G.C., Scheld, W.M., Potential role of nitric oxide in the pathophysiology of experimental bacterial meningitis in rats. Infect Immun, 1995. 63(10): p. 3835-9.

    25. Gursoy-Ozdemir, Y., Bolay, H., Saribas, O., Dalkara, T., Beckman, J. S., Role of Endothelial Nitric Oxide Generation and Peroxynitrite Formation in Reperfusion Injury After Focal Cerebral Ischemia Editorial Comment. Stroke, 2000. 31(8): p. 1974-1981.

    26. Ambs, S., Hussain, S.P., Harris, C.C., Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J, 1997. 11(6): p. 443-8.

    27. Keita, M., Vincendeau, P., Buguet, A., Cespuglio, R., Vallat, J. M., Dumas, M., Bouteille, B., Inducible nitric oxide synthase and nitrotyrosine in the central nervous system of mice chronically infected with Trypanosoma brucei brucei. Exp Parasitol, 2000. 95(1): p. 19-27.

    28. Parathath, S.R., Parathath, S., Tsirka, S.E., Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci, 2006. 119(Pt2): p. 339-49.
    29. Tan, K.H., Harrington, S., Purcell W.M., Hurst, R.D., Peroxynitrite mediates nitric oxide-induced blood-brain barrier damage. Neurochem Res, 2004. 29(3): p. 579-87.

    30. Pitossi, F., del Rey A, Kabiersch, A., Besedovsky, H., Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res, 1997 48(4): p. 287-98.

    31. Ohnishi, T., Sher, P.B., Posner, J.B., Shapiro, W.R., Capillary permeability factor secreted by malignant brain tumor. J. Neurosurg, 1990. 72(2): p. 245-51.

    32. Farkas, G., Márton, J., Nagy, Z., Mándi, Y., Takács, T., Deli, M.A., Abrahám, C.S., Experimental acute pancreatitis results in increased blood-brain barrier permeability in the rat a potential role for tumor necrosis factor and interleukin 6. Neurosci Lett, 1998. 242(3): p. 147-50.

    33. Kallmann, B., Hummel, V., Lindenlaub, T., Ruprecht, K., Toyka, KV., Rieckmann, P., Cytokine-induced modulation of cellular adhesion to human cerebral endothelial cells is mediated by soluble vascular cell adhesion molecule-1.pdf. Brain. , 2000. 123(Pt 4): p. 687-97.

    34. Chiaretti, A., Genovese, O., Aloe, L., Antonelli, A., Piastra, M., Polidori, G., Di Rocco, C., Interleukin 1beta and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv Syst. , 2005 21(3): p. 185-93.

    35. Keswani, S.C., Bosch-Marce, M., Reed, N., Fischer, A., Semenza, G. L., Hoke, A., Nitric oxide prevents axonal degeneration by inducing HIF-1-dependent expression of erythropoietin. Proc Natl Acad Sci U S A, 2011. 108(12): p. 4986-90.

    36. Bulnes, S., Argandona, E.G., Bengoetxea, H., Leis, O., Ortuzar, N., Lafuente, J. V., The role of eNOS in vascular permeability in ENU-induced gliomas. Acta Neurochir Suppl, 2010. 106: p. 277-82.

    下載圖示 校內:2018-09-03公開
    校外:2018-09-03公開
    QR CODE