簡易檢索 / 詳目顯示

研究生: 郭博竣
Kuo, Po-Chun
論文名稱: Magnetic properties of Co1-xOsx alloys
Co1-xOsx合金的磁性特性
指導教授: 黃建龍
Huang, Chien-Lung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 95
中文關鍵詞: 量子臨界點量子擾動化學無序鐵磁性
外文關鍵詞: quantum critical point, quantum fluctuation, chemical disorder, ferromagnetism
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討 Co1-xOsx 合金在絕對零度附近的量子相變行為,並深入研究化學無序效應對鐵磁性量子臨界點特性的影響機制。實驗採用電弧熔融法結合高溫退火處理製備出結構均勻且相純度高的多晶樣品,並透過X射線繞射與電子探針微區分析驗證樣品的晶體結構完整性與組成均勻性。利用物理性質量測系統在 1.8 K 至 300 K 溫度範圍內測量電阻率與比熱,並結合磁學性質量測系統獲取磁化強度及磁化率數據,全面掌握 Co1-xOsx 合金在不同 Os 摻雜濃度下的電、熱、磁響應。
    實驗結果顯示,隨著 Os 摻雜濃度的增加,低溫殘餘電阻比呈現顯著下降趨勢,反映化學無序與自旋擾動效應的加劇,有效抑制傳統費米液體的行為。而透過修正 Arrott 圖分析及 WKF 標度分析,從 M(H) 曲線中擷取出臨界指數 ?、? 與 ?,其數值明顯偏離理論模型預測,與描述含無序擾動誘導一階相變的 BKV 理論高度吻合。此外,在臨界濃度 ? ≈ 0.44 附近,C/T 在 2 K 時達到最大值,暗示有效質量和費米能級態密度趨向發散,明確確立了量子臨界點的存在。
    綜合分析非費米液體電性特徵、低溫比熱異常及非古典臨界指數行為,本研究不僅深入闡明了 Co1-xOsx 系統中化學無序與量子擾動的相互作用機制,更為凝態物理領域中量子相變提供了重要的實驗依據。

    This study investigates the quantum phase transition behavior of Co1-xOsx alloys near absolute zero and explores the underlying mechanisms by which chemical disorder affects the characteristics of ferromagnetic quantum critical points. Polycrystalline samples with uniform structure and high phase purity were synthesized using arc melting followed by high-temperature annealing. The structural integrity and compositional homogeneity of the samples were verified through X-ray diffraction and electron probe microanalysis. Electrical resistivity and specific heat measurements were performed using a Physical Property Measurement System over the temperature range of 1.8 K to 300 K, while magnetization and magnetic susceptibility data were obtained using a Magnetic Property Measurement System, providing comprehensive characterization of the electrical, thermal, and magnetic responses of Co1-xOsx alloys across different Os doping concentrations.
    The experimental results reveal that the low-temperature residual resistivity ratio exhibits a significant decrease with increasing Os concentration, reflecting the intensification of chemical disorder and spin fluctuation effects that effectively suppress conventional Fermi liquid behavior. Through modified Arrott plot analysis and WKF scaling analysis, critical exponents ?, ?, and ? were extracted from M(H) curves. These values deviate significantly from theoretical model predictions and show excellent agreement with the BKV theory, which describes disorder-induced first-order phase transitions. Furthermore, At the critical concentration ? ≈ 0.44, the C/T value reaches an maximum at 2 K, indicating that the electronic effective mass and density of states at the Fermi level approaches divergence and unambiguously establishing the existence of a quantum critical point.
    Through comprehensive analysis of non-Fermi liquid electrical characteristics, low-temperature specific heat anomalies, and non-classical critical exponent behavior, this study not only elucidates the interplay between chemical disorder and quantum fluctuations in the Co1-xOsx system but also provides crucial experimental evidence for quantum phase transitions in condensed matter physics.

    Abstract i 摘要 iii 誌謝 iv Contents v List of Tables vii List of Figures viii 1 Introduction 1 2 Theoretical Framework 5 2.1 Phase Transitions 5 2.2 Critical Phenomena 8 2.3 Quantum Critical Point 11 2.4 Hertz–Millis–Moriya Theory 14 2.5 Belitz–Kirkpatrick–Vojta Theory 17 3 Experimental Methods 20 3.1 Sample Preparation 20 3.1.1 Arc Melting Process 21 3.1.2 Annealing Process 23 3.2 Structural Characterization 25 3.2.1 X-ray Diffraction 26 3.2.2 Quantitative Analysis 29 3.3 Physical Property Measurements 32 3.3.1 Resistivity Measurement 33 3.3.2 Specific Heat Measurement 36 3.3.3 Magnetization Measurement 39 4 Results and Analysis 43 4.1 Sample Preparation 43 4.2 X-ray Diffraction 46 4.3 Quantitative Analysis 50 4.4 Resistivity Measurement 54 4.5 Magnetization Measurement 58 4.5.1 DC Susceptibility 58 4.5.2 AC Susceptibility 62 4.5.3 Critical Exponents Analysis 64 4.6 Specific Heat Measurement 71 5 Conclusions 75 References 77

    [1] S. Sachdev. Quantum Phase Transitions. Cambridge University Press, 2011.
    [2] G. R. Stewart. Unconventional superconductivity. Adv. Phys., 66(2):75–196, 2017.
    [3] D. Belitz, T. R. Kirkpatrick, and T. Vojta. First order transitions and multicritical points in weak itinerant ferromagnets. Phys. Rev. Lett., 82(23):4707–4710, 1999.
    [4] M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick. Metallic quantum ferromagnets. Rev. Mod. Phys., 88(2):025006, 2016.
    [5] M. Uhlarz, C. Pfleiderer, and S. M. Hayden. Quantum phase transitions in the itinerant ferromagnet ZrZn₂. Phys. Rev. Lett., 93(25):256404, 2004.
    [6] H. E. Stanley. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, 1987.
    [7] P. M. Chaikin and T. C. Lubensky. Principles of Condensed Matter Physics. Cambridge University Press, 1995.
    [8] T. Sauer. A look back at the Ehrenfest classification. Eur. Phys. J. Spec. Top., 226:539–549, 2017.
    [9] K. G. Wilson. The renormalization group and critical phenomena. Rev. Mod. Phys., 55(3):583–600, 1983.
    [10] Wikimedia Commons. Second order phase transition. https://commons.wikimedia.org/wiki/File:Second_order_phase_transition.png. Accessed: July 1, 2025.
    [11] M. E. Fisher. Renormalization group theory: Its basis and formulation in statistical physics. Rev. Mod. Phys., 70(2):653–681, 1998.
    [12] P. C. Hohenberg and B. I. Halperin. Theory of dynamic critical phenomena. Rev. Mod. Phys., 49(3):435–479, 1977.
    [13] B. Widom. Equation of state in the neighborhood of the critical point. J. Chem. Phys., 43(11):3898–3905, 1965.
    [14] A. Pelissetto and E. Vicari. Critical phenomena and renormalization-group theory. Phys. Rep., 368(6):549–727, 2002.
    [15] H. E. Stanley. Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev. Mod. Phys., 71(2):S358–S366, 1999.
    [16] M. Vojta. Quantum phase transitions. Rep. Prog. Phys., 66(12):2069–2110, 2003.
    [17] P. Coleman and A. J. Schofield. Quantum criticality. Nature, 433(7023):226–229, 2005.
    [18] G. R. Stewart. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys., 73(4):797–855, 2001.
    [19] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith. Locally critical quantum phase transitions in strongly correlated metals. Nature, 413(6858):804–808, 2001.
    [20] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 79(3):1015–1075, 2007.
    [21] J. A. Hertz. Quantum critical phenomena. Phys. Rev. B, 14(3):1165–1184, 1976.
    [22] A. J. Millis. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B, 48(10):7183–7196, 1993.
    [23] T. Moriya. Spin Fluctuations in Itinerant Electron Magnetism. Springer Berlin, Heidelberg, 1985.
    [24] A. V. Chubukov, C. Pépin, and J. Rech. Instability of the quantum-critical point of itinerant ferromagnets. Phys. Rev. Lett., 92(14):147003, 2004.
    [25] T. R. Kirkpatrick and D. Belitz. Quantum critical behavior of disordered itinerant ferromagnets. Phys. Rev. B, 53(21):14364–14376, 1996.
    [26] D. Belitz, T. R. Kirkpatrick, and J. Rollbühler. Tricritical behavior in itinerant quantum ferromagnets. Phys. Rev. Lett., 94(24):247205, 2005.
    [27] R. Narayanan, T. Vojta, D. Belitz, and T.R. Kirkpatrick. Critical behavior of disordered quantum magnets: The relevance of rare regions. Phys. Rev. B, 60(14):10150–10163, 1999.
    [28] T. Vojta, D. Belitz, R. Narayanan, and T.R. Kirkpatrick. Quantum critical behavior of clean itinerant ferromagnets. Z. Phys. B, 103(3):451–461, 1997.
    [29] Y. Sang, D. Belitz, and T. R. Kirkpatrick. Disorder dependence of the ferromagnetic quantum phase transition. Phys. Rev. Lett., 113(20):207201, 2014.
    [30] JEOL USA. JXA-iHP200F field emission electron probe microanalyzer. https://www.jeolusa.com/PRODUCTS/Microprobe-EPMA-and-Auger/JXA-iHP200F. Accessed: July 1, 2025.
    [31] M. Uo, T. Wada, and T. Sugiyama. Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Jpn. Dent. Sci. Rev., 51(1):2–9, 2015.
    [32] BYJU'S. Bragg's law. https://byjus.com/physics/braggs-law/. Accessed: July 1, 2025.
    [33] JEOL Ltd. Electron probe micro analyzer (EPMA). https://www.jeol.com/products/science/epma.php. Accessed: July 1, 2025.
    [34] Quantum Design. DynaCool physical property measurement system. https://qdusa.com/products/dynacool.html. Accessed: July 1, 2025.
    [35] Quantum Design. MPMS3 magnetic property measurement system. https://qdusa.com/products/mpms3.html. Accessed: July 1, 2025.
    [36] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College, 1976.
    [37] J. S. Hwang, K. J. Lin, and C. Tien. Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. Rev. Sci. Instrum., 68(1):94–101, 1997.
    [38] HyperPhysics. SQUID magnetometry. http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Squid.html. Accessed: July 1, 2025.
    [39] S. Foner. Versatile and sensitive vibrating-sample magnetometer. Rev. Sci. Instrum., 30(7):548–557, 1959.
    [40] J. Crangle and D. Parsons. The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups. Proc. R. Soc. Lond. A, 255(1283):509–519, 1960.
    [41] B. D. Cullity and S. R. Stock. Elements of X-Ray Diffraction. Pearson, 2001.
    [42] P. Scherrer. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Springer, Berlin, Heidelberg, 1912.
    [43] H. P. Klug and L. E. Alexander. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. Wiley, 1974.
    [44] T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak. Binary Alloy Phase Diagrams. ASM International, 1990.
    [45] FIZ Karlsruhe – Leibniz Institute for Information Infrastructure. ICSD. https://icsd.fiz-karlsruhe.de/index.xhtml. Accessed: July 1, 2025.
    [46] A. Guinier. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. Dover Publications, 1994.
    [47] V. A. Lubarda. On the effective lattice parameter of binary alloys. Mech. Mater., 35(1–2):53–68, 2003.
    [48] L. Vegard. Die konstitution der mischkristalle und die raumfüllung der atome. Z. Physik, 5(1):17–26, 1921.
    [49] B. E. Warren. X-ray Diffraction. Dover Publications, 1990.
    [50] D. Harries. Homogeneity testing at the micrometer scale. Microsc. Today, 25(1):28–35, 2017.
    [51] X. Llovet, P. T. Pinard, J. J. Donovan, and F. Salvat. Secondary fluorescence in electron probe microanalysis of material couples. J. Phys. D: Appl. Phys., 45(22):225301, 2012.
    [52] Y.-U. Heo, C.-G. Jeong, S.-H. Kim, G.-Y. Yoon, T. T. T. Trang, Y. Woo, E. Y. Yoon, and Y.-S. Lee. EPMA quantification on the chemical composition of retained austenite in a Fe-Mn-Si-C-based multi-phase steel. Appl. Microsc., 52(1):14, 2022.
    [53] X. Llovet, A. Moy, P. T. Pinard, and J. Fournelle. Electron probe microanalysis: A review of recent developments and applications in materials science and engineering. Prog. Mater. Sci., 116:100673, 2021.
    [54] K. Jurek and V. Hulínský. The use and accuracy of the ZAF correction procedure for the microanalysis of glasses. Mikrochim Acta, 73(3):183–198, 1980.
    [55] B. Bordini, L. Bottura, L. Oberli, L. Rossi, and E. Takala. Impact of the residual resistivity ratio on the stability of NbSn₃ magnets. IEEE Trans. Appl. Supercond., 22(3):4705804–4705804, 2012.
    [56] J. Bass. Deviations from Matthiessen's rule. Adv. Phys., 21(91):431–604, 1972.
    [57] J. H. Mooij. Electrical conduction in concentrated disordered transition metal alloys. Phys. Status Solidi (a), 17(2):521–530, 1973.
    [58] J. M. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, 2001.
    [59] P. A. Lee and T. V. Ramakrishnan. Disordered electronic systems. Rev. Mod. Phys., 57(2):287–337, 1985.
    [60] S. Mugiraneza and A. M. Hallas. Tutorial: a beginner's guide to interpreting magnetic susceptibility data with the Curie–Weiss law. Commun. Phys., 5(1):95, 2022.
    [61] B. K. Banerjee. On a generalised approach to first and second order magnetic transitions. Phys. Lett., 12(1):16–17, 1964.
    [62] G. Cao, S. McCall, M. Shepard, J. E. Crow, and R. P. Guertin. Thermal, magnetic, and transport properties of single-crystal Sr₁₋ₓCaₓRuO₃ (0 ≤ x ≤ 1.0). Phys. Rev. B, 56(1):321–329, 1997.
    [63] B. D. Cullity and C. D. Graham. Introduction to Magnetic Materials. Wiley-IEEE Press, 2008.
    [64] J. A. Mydosh. Spin Glasses: An Experimental Introduction. Taylor & Francis, 2007.
    [65] J. L. Tholence. On the frequency dependence of the transition temperature in spin glasses. Solid State Commun., 88(11–12):917–921, 1980.
    [66] K. Binder and A. P. Young. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys., 58(4):801–976, 1986.
    [67] J.-X. Hsu, R.-Z. Lin, E.-P. Liu, W.-T. Chen, and C.-L. Huang. Magnetic properties of binary alloys Ni₁₋ₓMoₓ and Ni₁₋ᵧCuᵧ close to critical concentrations. Physica B, 695(15):416524, 2024.
    [68] A. Arrott and J. E. Noakes. Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett., 19(14):786–789, 1967.
    [69] J. S. Kouvel and M. E. Fisher. Detailed magnetic behavior of nickel near its Curie point. Phys. Rev., 136(6A):A1626–A1632, 1964.
    [70] D. Fuchs, M. Wissinger, J. Schmalian, C.-L. Huang, R. Fromknecht, R. Schneider, and H. v. Löhneysen. Critical scaling analysis of the itinerant ferromagnet Sr₁₋ₓCaₓRuO₃. Phys. Rev. B, 89(17):174405, 2014.
    [71] C. Kittel. Introduction to Solid State Physics. Wiley, 2018.
    [72] A. Rosch. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett., 82(21):4280–4283, 1999.
    [73] R.-Z. Lin, H. Jin, P. Klavins, W.-T. Chen, Y.-Y. Chang, C.-H. Chung, V. Taufour, and C.-L. Huang. Non-Fermi-liquid behavior in a ferromagnetic heavy fermion system CeTi₁₋ₓVₓGe₃. Phys. Rev. Res., 6(3):033130, 2024.
    [74] C.-L. Huang, A. M. Hallas, K. Grube, S. Kuntz, B. Spieß, K. Bayliff, T. Besara, T. Siegrist, Y. Cai, J. Beare, G. M. Luke, and E. Morosan. Quantum critical point in the itinerant ferromagnet Ni₁₋ₓRhₓ. Phys. Rev. Lett., 124(11):117203, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE