| 研究生: |
王世銘 Wang, Shih-Ming |
|---|---|
| 論文名稱: |
利用不同基板與鎳金屬催化機制成長高性能氮化鎵光偵測器 The Growth of High Performance Gallium Nitride-based Ultraviolet Photodetectors by Using Different Substrate and Nickel Treatment Process |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 基板 、鎳 、催化 、偵測器 、響應 、暗電流 |
| 外文關鍵詞: | substrate, Ni, treatment, photodetector, responsivity, dark current |
| 相關次數: | 點閱:68 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了改善氮化鎵成長過程所產生的缺陷,係利用不同基板結構,作為磊晶成長的基板。首先,為了成長高效能之氮化鎵光偵測器,先利用顯影與電漿離子矽蝕刻吃出圖案化藍寶石基板,其寬度與間距皆為3 微米;深度為150 奈米,再利用有機金屬化學氣相沉積法成長元件主動層。針對圖案化藍寶石基板與傳統藍寶石基板之元件效能之比較,前者,除了暗電流與光響應有大幅改善外,其對稱面之半高寬亦優於傳統基板。再透過蕭基位障計算,可計算出圖案化藍寶石基板之理想因子和蕭基位障為1.53、0.79電子伏特,其因缺陷密度改善,位障高於傳統基板所成長之元件!經由計算,傳統基板所成長的元件,其蕭基位障,僅0.69電子伏特。更深入地利用閃爍雜訊測量,分析元件晶格品質,計算兩元件之低頻雜訊等數據。於2伏特下,雜訊等效功率與標準化偵測能力各為9.08×10-11 W、1.74×1010 cmHz0.5W-1,亦優於傳統基板所製造的光偵測元件利用圖案化藍寶石基板成長的元件,其光電特性數據皆優於傳統元件的表現,亦可證明其晶格缺陷遠小於傳統式成長方式。
除了圖案化藍寶石基板技術外,我們亦利用自我對準技術與電漿離子矽蝕刻吃出奈米等級之奈米棒,奈米棒的平均直徑為350奈米,密度為3×108 cm-2。最後,經由有機金屬化學氣相沉積法成長光偵測元件。透過X光繞射分析儀器,其非對稱角(缺陷方向)的半高寬為422角秒,優於傳統基板的525角秒。其暗電流與光拒次比,兩者相比,暗電流改善3個級數,光拒次增為350倍。於2伏特下,雜訊等效功率與標準化偵測能力各為7.00×10-10 W、2.26×109 cmHz0.5W-1,優於傳統基板所製造的光偵測(3.56×10-6 W、4.44×105 cmHz0.5W-1)。
最後,我們更提出一種新而便利的方式,改善光偵測器的光電效益。係利用鎳金屬催化製程,先擷取我們於P型氮化鎵所得到的最佳化數據,係利用10奈米厚度的鎳金屬層,搭配不同的回火溫度、時間,增強元件表面的蕭基位障,可有效地抑制暗電流,且氧化鎳的高透光性,不影響元件本身的光響應特性。利用最佳化的鎳催化條件,元件本身的蕭基位障、理想因子從0.698電子伏特,增強至1.008電子伏特;理想因子從1.822減至1.263。暗電流與光響應亦皆有改善,而光拒次比則由104增強至12149。於2伏特下,雜訊等效功率與標準化偵測能力各為1.74×10-11 W、9.07×1010 cmHz0.5W-1,優於未經過鎳金屬催化的元件之光偵測能力(9.95×10-8 W、1.57×107 cmHz0.5W-1)。
The fabrication of GaN-based Schottky barrier PDs on patterned sapphire substrate (PSS) was investigated. The stripe width and spacing of PSS template were both 3 μm. The depth of the groove was controlled at 150 nm by ICP etching. A high quality GaN Schottky barrier PD was prepared on PSS by metalorganic chemical vapor deposition (MOCVD). Comparing with the PD prepared on conventional flat sapphire substrate (FSS), it was found that we can reduce dark current and enhance responsivity. Furthermore, it was found that full-width-half-maxima (FWHMs) measured the samples prepared on from FSS and PSS were 255 and 186 arcsec, respectively. The significantly smaller FWHM observed from the sample prepared on PSS again be attributed to the smaller TD density. We also determine Schottky barrier height (ΦBE) and ideality factor (n) from the forward I-V characteristics, it was found that ΦBE and n for the PD prepared on FSS were 0.69eV and 1.82, respectively, while ΦBE and n for the PD prepared on PSS were 0.79eV and 1.53, respectively. The larger turn-on voltage, the larger ΦBE and smaller n observed from the PD prepared on PSS should again be attributed to the reduced TD density. Under -2 V applied bias, it was found that noise equivalent power (NEP) and normalized detectivity (D*) were 9.08×10-11 W and 1.74×1010 cmHz0.5W-1, respectively, for the PD prepared on PSS. These values were also better than those achieved from the PD prepared on flat sapphire substrate.
Besides PSS approach, we report the preparation of nanorod (NRs) templates with a simplified NRELOG method and the fabrication of GaN Schottky barrier PDs on the nanorod template. In this thesis, GaN nanorods were vertically aligned with an average diameter of 350 nm. It was also found that density of the GaN nanorods was around 3×108 cm-2. Comparing with conventional substrate, it was found that FWHMs measured from NR_PD and PD were 422 and 525 arcsec, respectively. In dark current and rejection contrast, the significant three orders of magnitude and 350 times are reduction in reverse leakage current and responsivity observed from NR_PD, respectively. With -2 V applied bias, it was found that noise equivalent power (NEP) and normalized detectivity (D*) were 7.00×10-10 W and 2.26×109 cmHz0.5W-1, respectively, for the PD prepared on nanorods template. With the same -2 V bias, it was found that NEP and D* were 3.56×10-6 W and 4.44×105 cmHz0.5W-1, respectively, for the PD prepared on a conventional sapphire substrate.
Finally, we reveal a new method to improve the performance of PDs that use Ni treatment. In first stage, we deposited Ni catalytic films with different thicknesses onto the as-grown Mg-doped GaN epitaxial layers and subsequently annealed the samples by conventional furnace annealing. It was found that surface of the Ni catalytic films became rough with numerous island structures after thermal treatment. With a 10 nm-thick Ni film, it was found that we achieved a hole concentration of 4.35×1017 cm−3 with a 400 ℃ annealing. Without the Ni catalytic film, we could achieve p-type conduction only when the annealing temperature was equal to or larger than 600 ℃. SIMS results show that H concentration was reduced and a certain amount of Ni atoms seem to penetrate into the GaN epitaxial layers after annealing. Furthermore, it was found that we could only achieve p-GaN with high hole concentration at the sample surface by using the Ni catalytic films.
On the contrary, we first try to use this methodology to improve GaN-based PD performance. It was found that ΦBE and n for the PD prepared on Ni treatment sample were 1.008 eV and 1.263, respectively, while ΦBE and n for the PD prepared on as-grown sample were 0.698 eV and 1.822, respectively, at 600 ℃, O2 ambient. It was found that we can reduce dark current and enhance responsivity, too. The rejection contrast is raised from 104 (without Ni treatment) to 12149 (with Ni treatment at 600 ℃). It can be seen clearly that NEP increased while D* decreased monotonically with the increase of applied reverse bias. With -2 V applied bias, it was found that NEP for the PDs prepared without and with Ni treatment were 9.95×10-8 and 1.74×10-11 W, respectively. At the same applied bias, it was found that D* for PDs prepared without and with Ni treatment were 1.57×107 and 9.07×1010 cmHz0.5W-1, respectively. The smaller NEP and higher D* observed from the PD prepared with Ni treatment indicate we can also improve noise characteristics of GaN-based UV PDs by using Ni treatment methodology.
[1] R. Juza and H. Hahn, 「Über die kristallstrukturen von Cu3N, GaN und InN metallamide und metallnitride,」 Zeitschrift für anorganische und allgemeine Chemie, vol. 239, pp. 282–287, Oct. 1938.
[2] H. P. Maruska and J. J. Tietjen, 「The preparation and properties of vapor-deposited single-crystalline GaN,」 Appl. Phys. Lett., vol. 15, pp. 327–329, Nov. 1969
[3] H. P. Maruska, D. A. Stevenson and J. I. Pankove, "Violet Luminescence of Mg-doped GaN," Appl. Phys. Lett., vol. 22, pp.303-305, 1973.
[4] J. I. Pankove, M. T. Duffy, E. A. Miller, and J. E. Berkeyheiser, "Luminescence of insulating Be-doped and Li-doped GaN," J. Luminescence, vol. 8, pp. 89-93, 1973.
[5] J. I. Pankove, J. E. Berkeyheiser, and E. A. Miller, "Properties of Zinc-doped GaN," J. Appl. Phys., vol. 45, pp.1280 1285, 1974.
[6] I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, 「Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED,」 J. Lumin., vol. 48, pp. 666–670, 1991.
[7] H. Amano, M. Iwaya, S. Nitta, S. Terao, R. Nakamura, T. Ukai, S. Saitoh, S. Kamiyama, C.Wetzel, and I. Akasaki, 「Defect and stress control of AlGaN and fabrication of high-efficiency UV-LED,」 in Mat. Res. Soc. Symp. Proc., vol. 639. Materials Research Society, pp. G12.7.1–G12.7.7, 2001.
[8] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, 「p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),」 Jpn. J. Appl. Phys., vol. 28, pp. L2112– L2114, 1989.
[9] J. A. van Vechten, J. D. Zook, R. D. Horning, and G. Goldenberg, 「Defeating compensation in wide gap semiconductors by growing in H that is removed by low temperature de-ionizing radiation,」 Jpn. J. Appl. Phys., vol. 31, pp. 3662–3663, 1992.
[10] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, 「Thermal annealing effects on p-type Mg-doped GaN films,」 Jpn. J. Appl. Phys., vol. 31, pp. L139–L142, 1992.
[11] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, 「Metalorganic vapor phase epitaxial growth of a high quality GaN film using AlN buffer layer,」 Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
[12] S. Nakamura, 「In situ monitoring of GaN growth using interference effects,」 Jpn. J. Appl. Phys., vol. 30, no. 8, pp. 1620–1627, 1991.
[13] S. Nakamura, M. Senoh, and T. Mukai, 「p-GaN/n-InGaN/n-GaN double-heterostructure bluelight-emitting diodes,」 Jpn. J. Appl. Phys., vol. 32, pp. L8–L11, 1993.
[14] S. Nakamura, 「Characteristics of room temperature CW operated InGaN multi-quantum-wellstructure laser diodes,」 in Proc. Mat. Res. Soc. Vol. 449. MRS, USA, 1996.
[15] M. Khan, J. van Hoven, J. Kuznia, and D. Olson, 「High electron mobility GaN/AlGaN heterostructures grown by low-pressure metalorganic chemical vapor deposition,」 Appl. Phys. Lett., vol. 58, no. 21, pp. 2408–2410, 1991.
[16] M. Khan, J. N. Kuznia, D. T. Olson, W. Schaff, J. Burm, and M. Shur, 「Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor,」 Appl. Phys. Lett., vol. 65, no. 9, pp. 1121–1123, 1994.
[17] M. Khan, J. Kuznia, A. Bhattarai, and D. Olson, 「Metal semiconductor field effect transistor based on single crystal GaN,」 Appl. Phys. Lett., vol. 62, no. 15, pp. 1786–1787, 1993.
[18] S. Nakamura, M. Senoh, and T. Mukai, 「p-GaN/n-InGaN/n-GaN double-heterostructure bluelight- emitting diodes,」 Jpn. J. Appl. Phys., vol. 32, pp. L8–L11, Jan. 1993.
[19] S. Nakamura, 「Characteristics of room temperature CW operated InGaN multi-quantum-wellstructure laser diodes,」 in Proc. Mat. Res. Soc. Vol. 449. MRS, USA, 1996.
[20] J. Li, W. R. Donaldson, and T. Y. Hsiang, 「Very fast metal–semiconductor–metal ultraviolet photodetectors on GaN with submicron finger width,」 IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1141–1143, Aug. 2003.
[21] S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. K. Kao, G. C. Chi, and J. M. Tsai, 「GaN metal–semiconductor–metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts,」 IEEE Electron Device Lett., vol. 24, no. 4, pp. 212–214, Apr. 2003.
[22] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai, and G. C. Chi, 「Reduction of dark current in AlGaN–GaN Schottky-barrier photodetectors with a low-temperature-grown GaN cap layer,」 IEEE Electron Device Lett., vol. 25, no. 9, pp. 593–595, Sep. 2004.
[23] C. K. Wang, T. K. Ko, C. S. Chang, S. J. Chang, Y. K. Su, T. C. Wen, C. H. Kuo, and Y. Z. Chiou, 「The thickness effect of p-AlGaN blocking layer in UV-A bandpass photodetectors,」 IEEE Photon. Technol. Lett., vol. 17, no. 10, pp. 2161–2163, Oct. 2005.
[24] P. C. Chang, C. L. Yu, S. J. Chang, Y. C. Lin, C. H. Liu, and S. L. Wu, 「Low-noise and high-detectivity GaN-based UV photodiode with a semi-insulating Mg-doped GaN cap layer,」 IEEE Sensors J., Vol. 7, no. 9, pp. 1270-1273, Sep. 2007.
[25] K. H. Lee, S. J. Chang, P. C. Chang, Y. C. Wang and C. H. Kuo, 「High quality GaN-based Schottky barrier diodes,」 Appl. Phys. Lett., Vol. 93, pp. 132110, Sep. 2008.
[26] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo, and S. L. Wu, 「AlGaN/GaN Schottky Barrier Photodetector With Multi-MgxNy/GaN Buffer,」 IEEE Sensors J., vol. 9, no. 2, pp. 87-92, 2009.
[27] H. Amano, M. Iwaya, S. Nitta, S. Terao, R. Nakamura, T. Ukai, S. Saitoh, S. Kamiyama, C.Wetzel, and I. Akasaki, 「Defect and stress control of AlGaN and fabrication of high-efficiency UV-LED,」 in Mat. Res. Soc. Symp. Proc., vol. 639. Materials Research Society, pp. G12.7.1–G12.7.7, 2001.
[28] D. Holec, 「Multi-scale modelling of III-nitrides: from dislocations to the electronic structure,」 Selwyn College, Cambridge, 2008
[29] Y. Kato, S. Kitamura, K. Hiramatsu, N. Sawaki, 「「Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,」 J. Cryst. Growth vol. 144, pp. 133, 1994.
[30] A. Sakai, H. Sunakawa, and A. Usui, 「Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,」 Appl. Phys. Lett., vol. 71, pp. 2559-2561, 1997.
[31] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor, and R. Davis, 「Pendeoepitaxy of gallium nitride thin films,」 Appl. Phys. Lett., vol. 75, pp. 196-198, 1999.
[32] H. Kazumasa, N. Katsuya, O. Masaru, M. Hiromitsu, N. Mitsuhisa, M. Atsushi, M. Hideto, I. Yasushi, and M. Takayoshi, 「Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),」 J. Cryst. Growth, vol. 221, pp. 316-326, 2000.
[33] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, 「Air-bridged lateral epitaxial overgrowth of GaN thin films,」 Appl. Phys. Lett., vol. 76, pp. 3768-3770, 2000.
[34] S. Nakamura, S. Masayuki, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T, Kozaki, H. Umemoto, M. Sano, and K. Chocho, 「InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,」 Appl. Phys. Lett., vol. 72, pp. 211-213, 1998.
[35] K. Iida, T. Kawashima, A. Miyazaki, H. Kasugai, S. Mishima, A. Honshio, Y. Miyake, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, 「350.9 nm UV Laser Diode Grown on Low-Dislocation-Density AlGaN,」 Jpn. J. Appl. Phys., vol. 43, L499-L500, 2004.
[36] S. Kamiyama, M. Iwaya, S. Takanami, S. Terao, A. Miyazaki, H. Amano, I. Akasaki, 「UV Light-Emitting Diode Fabricated on Hetero-ELO-Grown Al0.22Ga0.78N with Low Dislocation Density,」 Phys. Stat. Sol. A , vol. 192, pp. 296-300, 2002.
[37] K. Iida, T. Kawashima, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, and A. Bandoh, 「Epitaxial lateral overgrowth of AlxGa1−xN (x>0.2) on sapphire and its application to UV-B-light-emitting devices,」 J. Cryst. Growth, vol. 298, pp. 265-267, 2007.
[38] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, 「Metalorganic vapor phase epitaxial growth of a high quality GaN film using AlN buffer layer,」 Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
[39] A. P. Grzegorczyk, L. Macht, P. R. Hageman, J. L. Weyher, and P. K. Larsen, 「Influence of the nucleation layer morphology and epilayer structure on the resistivity of GaN films grown on cplane sapphire by MOCVD,」 J. Cryst. Growth, vol. 273, no. 3, 2005.
[40] H. M. Manasevit, F. M. Erdman, andW. I. Simpson, J. Electrochem. Soc., vol. 118, p. 1864, 1971.
[41] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, 「Metalorganic vapor phase epitaxial growth of a high quality GaN film using AlN buffer layer,」 Appl. Phys. Lett., vol. 48, pp. 353–355, 1986.
[42] S. Nakamura, 「In situ monitoring of GaN growth using interference effects,」 Jpn. J. Appl. Phys., vol. 30, no. 8, pp. 1620–1627, 1991.
[43] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, 「Thermal annealing effects on p-type Mg-doped GaN films,」 Jpn. J. Appl. Phys., vol. 31, pp. L139–L142, 1992.
[44] T. Mukai, K. Takekawa, and S. Nakamura, 「InGaN-Based Blue Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates,」 Jpn. J. Appl. Phys., vol. 37, L839-841, 1998.
[45] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, 「Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,」 Jpn. J. Appl. Phys., vol. 36, L899-902, 1997.
[46] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, 「InGaN/GaN/A1GaN-based LDs with Modulation-doped Sstrained-lager Superlattices Grown on an Epitaxilly Overgrown GaN Substrate,」 Appl. Phys. Lett. vol. 72, pp. 211-213, 1998.
[47] S. C. Ling, C. L. Chao, J. R. Chen, P. C. Liu, T. S. Ko, T. C. Lu, H. C. Kuo, S. C. Wang, S. J. Cheng and J. D. Tsay, 「Nanorod epitaxial lateral overgrowth of a-plane GaN with low dislocation density,」 Appl. Phy. Lett., vol. 94, 251912, 2009.
[48] S. J. Chang, Y. K. Su, Y. Z. Chiou, J. R. Chiou, B. R. Huang, C. S. Chang and J. F. Chen, 「Deposition of SiO2 Layers on GaN by Photochemical Vapor Deposition,」 J Electrochem Soc, vol. 150, pp. C77-80, 2003.
[49] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy, 「Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,」 Appl Phys Lett, vol. 73, pp. 3893-3895, 1998.
[50] C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi and T. Enoki, 「High Temperature Characteristics of Insulated-Gate AlGaN/GaN Heterostructure Field-Effect Transistors with Ultrathin Al2O3/Si3N4 Bilayer,」 Jpn J Appl Phys, vol. 44, pp. 7889-7891, 2005.
[51] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, 「High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,」 Appl Phys Lett, vol. 77, pp. 3788-3790, 2000.
[52] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 1998.
[53] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
[54] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York, Oxford University Press, CH. 1, 1998.
[55] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, 225, 1981.
[56] F. A. Padovani and R. Stratton, Solid State Electron, 9, 695, 1966.
[57] C. R. Crowell and V. L. Rideout, Solid State Electron, 12, 89, 1969.
[58] V. L. Rideout, Solid State Electron, 18, 541, 1975.
[59] M. Marso, M. Horstmann, H. Hardtdegen, P. Kordos and H. Luth, 「Electrical behaviour of the InP/InGaAs based MSM-2DEG diode,」 Solid State Electron, vol. 41, pp. 25-31, 1997.
[60] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, 1997.
[61] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campbell, 「Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,」 J Appl Phys, vol. 83, pp. 6148-6060, 1998.
[62] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, 「Back-Illuminated GaN Metal-Semiconductor-Metal UV Photodetector with High Internal Gain,」 Jpn J Appl Phys, vol. 40, L505-507, 2001.
[63] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, 「Gain mechanism in GaN Schottky ultraviolet detectors,」 Appl Phys Lett, vol. 79, pp. 1417-1419, 2001.
[64] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart and J. A. Muno, 」Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors,」 Electron. Lett., Vol. 36, pp. 1581-1583, 2000.
[65] A. L. McWhorter, 「1/f noise and germanium surface properties,」 In semiconductor Surface Physics, University of Pennsylvania, Philadelphia, pp. 207-228, 1957.
[66] P. H. Handel, 「1/f Noise-An "Infrared" Phenomenon,」 Phys. Rev. Lett., vol. 34, pp. 1492–1495, 1975.
[67] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A.
Khan, D. Kuksenkov and H. Temkin, 「Schottky barrier detectors on GaN for visible–blind ultraviolet detection,」 Appl. Phys. Lett., Vol. 70, pp. 2277-2279, 1997.
[68] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., p. 747, John Wiley & Sons, New York, 1981.
[69] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars and J. S. Speck, 「Role of threading dislocation structure on the x‐ray diffraction peak widths in epitaxial GaN films,」 Appl Phys Lett, vol. 68, pp. 643-645, 1996.
[70] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim and A. Yoshikawa, 「Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers,」 Appl Phys Lett, vol. 77, pp. 2557-2559, 2000.
[71] Y. Fu, Y. T. Moon, F. Yun, U. Ozgur, J. Q. Xie, S. Dogan, H. Morkoc, C. K. Inoki, T. S. Kuan, L. Zhou and D. J. Smith, 「Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,」 Appl Phys Lett, vol. 86, 043108, 2005.
[72] E. H. Rhoderick, 「Metal-Semiconductor Contacts," IEE Proceeding, Solid-State and Electron Devices, vol. 129, pp. 1-14, 1982.
[73] S. K. Cheung and N. W. Cheung, 「Extraction of Schottky diode parameters from forward current‐voltage characteristics,」 Appl Phys Lett., vol. 49, pp. 85-87, 1986.
[74] H. Norde, 「A modified forward I‐V plot for Schottky diodes with high series resistance,」 J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
[75] K. E. Bohlin, 「Generalized Norde plot including determination of the ideality factor,」 J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
[76] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou and C. M. Chang, 「Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN,」 Appl Phys Lett, vol. 72, pp. 3317-3319, 1998.
[77] V. Mikhelashvili, G. Eisenstein, V. Garber, S. Fainleib, G. Bahir, D. Ritter, M. Orenstein and A. Peer, 「On the extraction of linear and nonlinear physical parameters in nonideal diodes,」 J. Appl. Phys., vol. 85, pp. 6873-6883, 1999.
[78] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, 「Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes,」 Appl. Phys. Lett., vol. 78, pp. 1685-1687, 2001.
[79] J. K. Sheu, M. L. Lee, and W. C. Lai, 「Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,」 Appl. Phys. Lett., vol. 86, 052103, 2005.
[80] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, et al., 「InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,」 Appl. Phys. Lett., vol. 72, pp. 211-213, 1998.
[81] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, 「High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy,」 Phys. Status Solidi A, vol. 188, pp. 121-125, 2001.
[82] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, 「Nitride-based LEDs fabricated on patterned sapphire substrates,」 Solid-State Electron., vol. 47, pp. 1539-1542, 2003.
[83] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu, and A. K. Lin, 「Efficiency Improvement of Near-Ultraviolet InGaN LEDs Using Patterned Sapphire Substrates,」 IEEE J. Quantum Electron., vol. 41, 1403 2005.
[84] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, 「InGaN/AlGaN multiquantum well light-emitting diodes,」 IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 744-748, 2002.
[85] J. Neugebauer and C. G. V. D. Walle, 「Gallium vacancies and the yellow luminescence in GaN,」 Appl. Phys. Lett., vol. 69, pp. 503-505, 1996.
[86] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, 「Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,」 J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
[87] S. K. Cheung and N. W. Cheung, 「Extraction of Schottky diode parameters from forward current‐voltage characteristics,」 Appl. Phys. Lett., vol. 49, pp. 85-87, 1986.
[88] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, 「Low-noise metal-insulator-semiconductor UV photodiodes based on GaN,」 Electron. Lett., vol. 36, pp. 2096-2098, 2000.
[89] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, 「Low-frequency noise and performance of GaN p-n junction photodetectors,」 J. Appl. Phys., vol. 83, pp. 2142-2146, 1998.
[90] S. R. Morrison, 「Low-frequency noise and performance of GaN p-n junction photodetectors,」 J. Appl. Phys., vol. 72, pp. 4104-4112, 1992.
[91] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, 「Schottky barrier detectors on GaN for visible–blind ultraviolet detection,」 Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
[92] T. Mukai, M. Yamada and S. Nakamura, 「Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes」, Jpn. J. Appl. Phys., Vol. 37, pp. L1358-L1361, 1998
[93] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, pp. 278-283, 2002.
[94] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 4, pp. 744-748, July/August 2002.
[95] W. H. Lan, 「Wavelength shift of gallium nitride light emitting diode with p-down structure」, IEEE Tran. Electron. Dev., Vol. 52, pp. 1217-1219, 2005
[96] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, 「Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity」, IEEE Photon. Technol. Lett., Vol. 16, pp. 1718-1720, 2004.
[97] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, 「Gain mechanism in GaN Schottky ultraviolet detectors」, Appl. Phys. Lett., Vol. 79, pp. 1417-1419, 2001. .
[98] J. T. Torvik, J. I. Pankove, E. Iliopoulos, H. M. Ng, and T. D. Moustakas, 「Optical properties of GaN grown over SiO2 on SiC substrates by molecular beam epitaxy」, Appl. Phys. Lett., Vol. 72, pp. 244-246, 1998.
[99] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo and S. L. Wu, "GaN-based Schottky barrier photodetectors with a 12-pair MgxNy-GaN buffer layer", IEEE J. Quan. Electron., Vol. 44, pp. 916-921, 2008.
[100] T. Mukai, K. Takekawa and S. Nakamura, 「InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates」, Jpn. J. Appl. Phys., Vol. 37, pp. L839-L841, 1998.
[101] A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, 「Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy」, Jpn. J. Appl. Phys., Vol. 36, L899-L902, 1997.
[102] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimuto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho, 「InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate」, Appl. Phys. Lett., Vol. 72, pp. 211-213, 1998.
[103] S. C. Ling, C. L. Chao, J. R. Chen, P. C. Liu, T. S. Ko, T. C. Lu, H. C. Kuo, S. C. Wang, S. J. Cheng and J. D. Tsay, 「Nanorod epitaxial lateral overgrowth of a-plane GaN with low dislocation density」, Appl. Phy. Lett., Vol. 94, Art. no. 251912, 2009.
[104] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. Denbaars and J. S. Speck, 「Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films」, Appl. Phys. Lett., Vol. 68, pp. 643-645, 1996.
[105] J A Garrido, E Monroy, I Izpura and E Munoz, 「Photoconductive gain modeling of GaN photodetectors」, Semicond. Sci. Technol., Vol. 13, pp. 563-568, 1998.
[106] S. K. Cheung and N. W. Cheung, 「Extraction of Schottky diode parameters from forward current-voltage characteristics」, Appl. Phys. Lett., Vol. 49, pp. 85-87, 1986.
[107] S. Karmalkar, D. M. Sathaiya and M. S. Shur, 「Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors」, Appl. Phys. Lett., Vol. 82, pp. 3976-3978, 2003.
[108] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart and J. A. Munoz, 「Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors」, Electron. Lett., Vol. 36, pp. 1581-1583, 2000.
[109] Shuji Nakamura, Gerhard Fasol and Stephen J. Pearton, 2000, The Blue Laser Diode: The Complete Story, Springer Verlag.
[110] Shuji Nakamura, 「III-V Nitride Based LED」, Solid State Communications, Vol. 102, No. 2-3, pp. 237-248, 1997.
[111] S. C. Jain, J. Narayan, 「III–nitrides: Growth, characterization, and properties」, J. Appl. Phys., Vol. 87, No. 3, 2000.
[112] T. Maeda, Y. Koide, M. Murakami, 「Effects of NiO on electrical properties of NiAu-based ohmic contacts for p-type GaN」, Appl. Phys. Lett., Vol. 75, No. 26, 1999.
[113] B.A. Hull, S.E. Mohney, H.S. Venugoplan, J.C. Ramer, 「Influence of oxygen on the activation of p-type GaN,」 Appl. Phys. Lett., vol. 76, pp. 2271-2273, 2000.
[114] T.C. Wen, S.C. Lee, T.Y. Chen, S.H. Chan, J.S. Tsang, 「Activation of p-Type GaN in a Pure Oxygen Ambient,」 Jpn. J. Appl. Phys. Vol. 40, pp. 495-497, 2001.
[115] I. Waki, H. Fujioka, M. Oshima, 「Low-temperature activation of Mg-doped GaN using Ni films」, Appl. Phys. Lett., Vol. 78, No. 19, 7 May 2001.
[116] I. Waki, H. Fujioka, M. Oshima, 「Mechanism for low temperature activation of Mg-doped GaN with Ni catalysts」, J. Appl. Phys., Vol. 80, No. 12, 15 December 2001.
[117] Y. Kamii, I. Waki, H. Fujioka, M. Oshima, 「Electrical characteristics of Mg-doped GaN activated with Ni catalysts」, Applied Surface Science, Vol. 190, pp. 348-351, 2002.
[118] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.K. Sheu, J.F. Chen, 「High efficient InGaN/GaN MQW green light emitting diodes with CART and DBR structures,」 IEEE J. Sel. Top. Quant. Electron., vol. 8, pp. 284-288, 2002.
[119] C.H. Chen, Y.K. Su, S.J. Chang, G.C. Chi, J.K. Sheu, J.F. Chen, C.H. Liu, U.H. Liaw, 「High brightness green light emitting diode with charge asymmetric resonance tunneling structure,」 IEEE Electron. Dev. Lett., vol. 23, pp. 130-132, 2002.
[120] C.H. Chen, S.J. Chang, Y.K. Su, G.C. Chi, J.K. Sheu, I.C. Lin, 「Vertical high quality mirror-like facet of GaN-based devices by reactive ion etching,」 Jpn. J. Appl. Phys. Vol. 40, pp. 2762-2764, 2001.
[121] T.C. Wen, S.J. Chang, L.W. Wu, Y.K. Su, W.C. Lai, C.H. Kuo, C.H. Chen, J.K. Sheu, J.F. Chen, 「InGaN/GaN tunnel injection blue light emitting diodes,」 IEEE Trans. Electron. Dev., vol. 49, pp. 1093-1095, 2002.
[122] L.W. Wu, S.J. Chang, T.C. Wen, Y.K. Su, W.C. Lai, C.H. Kuo, C.H. Chen, J.K. Sheu, 「Influence of Si-doping on the characteristics of InGaN/GaN multiple quantum well blue light emitting diodes,」 IEEE J. Quant. Electron., vol. 38, pp. 446-450, 2002.
[123] Wang, J. Kim, S. Kim, H. Yu, and J. Lee, 「Ohmic contacts for high power LEDs,」 Phys. Status Solidi A, vol. 201, pp. 2831-2836, 2004.
[124] C. Lung, C. Chen, and L. Hong, 「Zinc Oxide Doped Indium Oxide Ohmic Contacts to p-Type GaN,」 J. Electrochem. Soc., vol. 153, pp. 931-933, 2006.
[125] J. Song and T. Seong, 「Highly transparent Ag/SnO2 ohmic contact to p-type GaN for ultraviolet light-emitting diodes,」 Appl. Phys. Lett., vol. 85, pp. 6374-6376, 2004.
[126] J. Song, J. Kwak, and T. Seong, 「Improvement of the ohmic characteristics of Pd contacts to p-type GaN using an Ag interlayer,」 Semicond. Sci. Technol., vol. 21, L7, 2006.
[127] T. Arai, H. Sueyoshi, Y. Koide, M. Moriyama, and M. Murakami, 「Development of Pt-based ohmic contact materials for p-type GaN,」 J. Appl. Phys., vol. 89, pp. 2826-2831, 2001.
[128] Y. Lin, S. Chang, Y. Su, T. Tsai, C. Chang, S. Shei, S. Hsu, C. Liu, U. Liaw, and S. Chen, 「Nitride-based light emitting diodes with Ni/ITO p-type ohmic contacts,」 IEEE Photonics Technol. Lett., vol. 14, pp. 1668-1670, 2002
[129] C. Lee, Y. Lin, and T. Lee, 「Mechanism investigation of NiOx in Au/Ni/p-type GaN ohmic contacts annealed in air,」 J. Electron. Mater., vol. 32, pp. 341-345, 2003.
[130] M. Oh, J. Jang, S. Park, and T. Seong, 「lectrical properties of nonalloyed Ni/Au ohmic contacts to laser-irradiated p-GaN,」 J. Mater. Sci., vol. 17, pp. 831-834 2006.
[131] H. J. Wang, L. He, 「Electrical characteristics of high performance Au/n-GaN schottky diodes,」 J. Electron. Mater., vol. 27, pp. 1272-1276, 1998.
[132] K. Wang, R. X. Wang, S. Fung, C. D. Beling, X. D. Chen, Y. Huang, S. Li, S. J. Xu, M. Gong, 「Film thickness degradation of Au/GaN Schottky contact characteristics,」 Mater. Sci. Eng. B, vol. 117, pp. 21-25, 2005.
[133] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou, C. Y. Chang, 「Schottky contact and the thermal stability of Ni on n‐type GaN,」 J. Appl. Phys., vol. 80, pp. 1623-1627, 1996.
[134] N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, H. Ishikawa, T. Egawa, T. Jimbo, 「hermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal,」 Solid-State Electron, vol. 48, pp. 689-695, 2004.
[135] R. Mehandru, S. Kang, S. Kim, F. Ren, I. Kravchenko, W. Lewis, S.J. Pearton, Mater. Sci. Semicon. Proc., vol. 7, pp. 95-96, 2004.
[136] F. D. Auret, S. A. Goodman, G. Myburg, F. K. Koschnick, J. M. Spaeth, B. Beaumont, P. Gibart, 「Defect introduction in epitaxially grown n-GAN during electron beam deposition of Ru schottky contacts,」 Physica B, vol. 273, pp. 84–87, 1999.
[137] C. K. Ramesh, V. Rajagopal reddy, Chel-Jong Choi, 「Electrical characteristics of molybdenum Schottky contacts on n-type GaN,」 Mater. Sci. Eng. B, vol. 112, pp. 30-33, 2004.
[138] L. C. Chen, F. R. Chen and J. J. Kai, 「Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,」 J. Appl. Phys., Vol. 86, pp. 3826-3834, 1999.
[139] H. Kim, M. Schuette, H. Jung, J. H. Song, J. Lee and W. Lu, 「Passivation effects in Ni/AlGaN/GaN Schottky diodes by annealing,」 Appl. Phys. Lett., Vol. 89, 053516, 2006.
[140] C. H. Kang, S. H. Seo, and H. W. Jang, 「Two stage oxidation in epitaxial Ni (111)/GaN (0001) thin films,」 Appl. Phys. Lett., Vol. 83, pp. 2139-2141, 2003.
[141] L. C. Chen, F. R. Chen and J. J. Kai, 「Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,」 J. Appl. Phys., vol. 86, pp. 3826-3832, 1999.
[142] S. M. Wang, C. H. Chen, S. J. Chang, Y. K. Su and B. R. Huang, 「Mg-doped GaN activated with Ni catalysts,」 Materials Science and Engineering B, vol. 117, pp. 107-111, 2005.