| 研究生: |
林冠宇 Lin, Kuan-Yu |
|---|---|
| 論文名稱: |
多功能食物調理機專用磁阻馬達之發展與實現 The Development and Implementation of a Switched Reluctance Motor for Multi-Function Food Processors |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 磁阻馬達 、食物調理機 |
| 外文關鍵詞: | switched reluctance motors, food processors |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著家電產品功能多樣化的趨勢,業界發展出同時具備家用果汁機及蔬果料理機之多功能食物調理機,以符合整體空間、成本與調速性能之考量。目前市面上食物調理機大多採用感應馬達、串激馬達為動力源,但分別有許多缺點有待改善。其中,由於此兩類馬達在製造商低成本的考量下,並無驅動器之設計,因此馬達調速性能較差。而磁阻馬達能在不增加成本的情況下,搭配驅動IC電路,並加入控制機制以提昇馬達的調速性能。然而,在磁阻馬達相關文獻之中,極少探討於食物調理機之應用及規格,故本論文將針對此應用場合,擬定磁阻馬達規格及控制策略,並針對馬達本體、驅動器以及控制策略進行整合之設計。
本論文首先分析食物調理機之特性與各類磁阻馬達之優缺點,並以一三相磁阻馬達進行整體開發。此外,本論文針對磁阻馬達定轉子之幾何尺寸進行設計,並估測其電氣及機械參數,以作為控制器設計之依據。再者,依照食物調理機不同規格下之特性,提出各種功能之控制策略。最後,由於一般在磁阻馬達特性量測時,需要連續改變激磁角度,以獲得相對應之特性曲線,並決定最佳領先角,過程相當耗時。故本文提出一快速計算最小領先角度的方式,以界定激磁角度範圍,有助於減少馬達特性量測時所需的時間。
With the tendency to the products in domestic application, the multi-function food processors which contain the function of juicers and vegetable processors are developed in the recent years. Induction and universal motors are often used in food processors due to the low manufacturing cost. However, they have the difficulty in speed range control without drivers. In order to improve it, switched reluctance motors with drivers are applied because of the variable speed control at the same cost.
In this thesis, the specifications and control strategies are established for switched reluctance motors in food processors. A three-phase switched reluctance motor is geometrically designed to meet the specifications. Moreover, mechanical and electrical parameters of the switched reluctance motor are measured for the control strategy design. Finally, due to the time-consuming measurements of motor characteristics, this thesis proposes a method for fast calculation of the minimum advanced angle for switched reluctance motors to reduce the repeated measurements. Overall, this thesis provides a good reference for switched reluctance motors with the application in food processors.
[1] Harrison R. G., “Juicer Speed Control,” U.S. Patent5417152, 1995.
[2] Lawrenson P. J., Stephenson J. M., Blenkinsop P. T., Corda J., and Fulton N. N.,“Variable-Speed Switched Reluctance Motors,” IEE Proceedings-B Electric Power Applications, vol. 127, pp. 253-265, 1980.
[3] Arumugam R., Lindsay J. F., Krishnan R., “Sensitivity of Pole Arc/Pole Pitch Ratio on Switched Reluctance Motor Performance,” Conf. Rec . IEEE-IAS Annu. Meeting, Pittsburgh, USA, October 2-7, 1988.
[4] Mecrow B. C., “New Winding Configurations for Doubly Salient Reluctance Machines,” IEEE Transactions on Industry Applications, vol. 32, pp. 1348-1356, 1996
[5] Ahn J. W., Oh S. G., Moon J. W., and Hwang Y. M.,“A Three-phase Switched Reluctance Motor with Two-phase Excitation,” IEEE Transactions on Industry Applications, vol. 35, pp. 1067-1075, 1999.
[6] Lopez G. G., Krefta R. J., “Comparison of Full Pitch and Concentrated Coil Switched Reluctance Machines,” IEEE Transactions on Industry Applications, vol. 1, pp. 213-218, 2003.
[7] Barnes M., Pollock C., “Selecting Power Electronic Converters for Single Phase Switched Reluctance Motors,” IEE Conf. Power Electronics and Variable Speed Drives, pp. 527-531, 1998.
[8] Pollock C. and Williams B. W., “Power Converter Circuits for Switched Reluctance Motors with the Minimum Number of Switches,” IEE Proceedings-B Electric Power Applications, vol. 137, pp. 373-384, 1990.
[9] Chang L., “Comparison of AC Drives for Electric Vehicles - a Report on Experts Opinion Survey,” IEEE Aerospace and Electronic Systems Magazine, vol. 9, pp. 7-11, 1994.
[10] Rahman K. M., Fahimi B., Suresh G., Rajarathnam A. V., and Ehsani M., “Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues,” IEEE Transactions on Industry Applications, vol. 36, pp. 111-121, 2000.
[11] Zeraoulia M., Benbouzid M. E. H., and Diallo D., “Electric Motor Drive Selection Issues for HEV Propulsion Systems: A Comparative Study,” IEEE Transactions on Vehicular Technology, vol. 55, pp. 1756-1764, 2006.
[12] Bose B. K., Miller T. J. E., Szczesny P. M., and Bicknell W. H., “Microcomputer Control of Switched Reluctance Motor,” IEEE Transactions on Industry Applications, vol. 22, pp. 708-715, 1986.
[13] Orhtmann R., Schoner H. P., “Turn-off Angle Control of Switched Reluctance Motors for Optimum Torque Output,” IET Conf. Power Electronics and Applications, Brighton, England, September 13-16, 1993.
[14] Kioskeridis I. and Mademlis C., “Maximum Efficiency in Single-pulse Controlled Switched Reluctance Motor Drives,” IEEE Transactions on Energy Conversion, vol. 20, pp. 809-817, 2005.
[15] Cao J. Y., Chen Y. P., Zhou Z. D., and Ai W., “Robust Control of Switched Reluctance Motors for Direct-drive Robotic Applications,” International Journal of Advanced Manufacturing Technology, vol. 22, pp. 184-190, 2003.
[16] Buja G. S., Menis R., and Valla M. I., “Variable Structure Control of an SRM Drive,” IEEE Transactions on Industrial Electronics, vol. 40, pp. 56-63, 1993.
[17] Bolognani S. and Zigliotto M., “Fuzzy Logic Control of a Switched Reluctance Motor Drive,” IEEE Transactions on Industry Applications, vol. 32, pp. 1063-1068, 1996.
[18] Krishnan R., Switched Reluctance Motor Drives, CRC Press, Boca Roton, 2001.
[19] Nashed M. N. F., Ohyama K., Aso K., Fujii H., and Uehara H., “Automatic Turn-off Angle Control for High Speed SRM Drives,” Journal of Power Electronics, vol. 7, pp. 81-88, 2007.
[20] Schulz S. E. and Rahman K. M., “High-performance Digital PI Current Regulator for EV Switched Reluctance Motor Drives,” IEEE Transactions on Industry Applications, vol. 39, pp. 1118-1126, 2003.
[21] Bae H. K. and Krishnan R., “A Study of Current Controllers and Development of a Novel Current Controller for High Performance SRM Drives,” Conf. Rec. IEEE-IAS Annu. Meeting, San Diego, USA October 6-10, 1996.
[22] Miller T.J.E., Switched Reluctance motors and their control, Magna Physics, Ohio and Oxford University Press, 1993.
[23] Hayashi Y. and Miller T. J. E., “A New Approach to Calculate Core Losses in the SRM,” IEEE Transactions on Industry Applications, vol.31, no. 5, pp. 1039-1046, 1995.
[24] 姚信印, 切換式磁阻馬達控制策略之研究, 碩士論文, 國立成功大學機械系, 民國90年。
[25] 唐蘇亞, “世紀之交的小家電市場與發展趨勢,” 微電機, 第118期, pp. 34-36, 2001。
[26] 王宏華, 開關型磁阻電動機調速控制技術, 機械工業出版社, 1995。
[27] 白家蔚, 切換式磁阻馬達調速系統之性能改善, 碩士論文, 國立成功大學機械系, 民國86年。
[28] 徐國卿, 謝維達, 陶生桂, “開關磁阻電機最優開關角控制規律的研究”, 上海鐵道大學學報, 第2期, pp.1-3, 1999。
[29] 龍維.考爾德書, “磁阻馬達和一種用於控制磁阻馬達的方法”, 中華人民共和國國家知識產權局。
[30] CNS 2661, 「電動果汁機」, 中國國家標準, 民國81年。
[31] CNS 11474, 「電動榨汁機」, 中國國家標準, 民國81年。
[32] CNS13783-1, 「家電製品、電動工具和類似裝置的電磁相容性要求-第1部:發射」, 中國國家標準, 民國98年。
[33] 史志鵬, “榨汁機評價指標多 電機最重要”, 現代家電, 第16期, pp. 51-51, 2008。
校內:2108-07-17公開