簡易檢索 / 詳目顯示

研究生: 湯宇仕
Tang, Yu-Shih
論文名稱: 考量近斷層震波作用下之隔震建物機率式耐震評估法
Probabilistic assessment of seismic performance for isolated buildings with consideration of near-fault earthquake effect
指導教授: 盧煉元
Lu, Lyan-Ywan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 265
中文關鍵詞: 隔震建物近斷層震波機率式風險評估耐震性能評估增量動力分析非線性動力分析
外文關鍵詞: Isolated building, near-fault earthquake, seismic performance assessment, probabilistic risk assessment, incremental dynamic analysis, nonlinear time history analysis.
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構隔震技術為十分有效的建物防震技術,可用以提升新建物之耐震性能或用於既有建物之耐震補強。為確保隔震建物達到應有之耐震性能等級,建物若採用隔震技術宜有一套評估方法。再者,現行評估法多屬於定值式(deterministic)之靜力分析法,未能計及地震力、分析模型及施工過程所具有的不確定因子,亦無法反應隔震系統與上部結構在強震下的非線性動態特性反應行為及其地震力的不確定因子。另外,隔震建物對於具有長週期速度脈衝之近斷層震波較為敏感,但我國隔震設計規範並未說明如何考量近斷層效應。
    有鑑於此,本文乃針對隔震建物建議一套可考量近斷層震波效應與多種性能目標之機率式耐震評估方法及流程,該流程除適用於一般建物外,尤其適用於具有高耐震性能之隔減震結構,該流程乃參考最新之美國FEMA P-58 機率式易損評估法(collapse fragility assessment,CFA)及增量式非線性動力分析方法(incremental dynamic analysis,IDA),以反應隔震系統與上部結構在強震下的非線性動態特性及地震力的不確定性等項因子。倘若建物鄰近活動斷層,本文另參考美國NIST報告書ASCE7-16之建議,利用震波指向效應模型調整原有之目標反應譜(target spectrum),再據以進行耐震評估及隔震設計。另則,於耐震評估流程中,本文參照國外相關規範訂定隔震建物各性能等級之損壞準則,再據以建立不同性能等級之易損曲線作為評估之依據。
    本文以一幢耐震力不足之老舊建物為例,並以摩擦單擺支承(FPS)對該建物進行耐震補強,再以本文所建議之機率式非線性動力分析評估法,進行隔震補強前後之耐震性能評估與比較,以量化隔震補強之效益。本文提出之機率式耐震評估法適用於一般建物與隔震建物,可供工程界完整評估建物各種性能等級耐震性能之用。

    Seismic isolation has emerged as a very effective technique for seismic protection and retrofit of buildings. In order to ensure that isolated buildings achieve the required performance level, it is a critical issue to develop suitable assessment method for isolated buildings. Nevertheless, conventional seismic assessment methods usually employ nonlinear static pushover analysis, which usually leads to a deterministic result that could not account for the uncertainty in seismic forces, numerical models and structural responses of the superstructure and isolation system. Furthermore, in spite of the fact that isolated buildings are sensitive to near-fault earthquakes, that usually feature a strong velocity pulse, the current Taiwanese Seismic Design Code dose not specify how to properly consider near-fault earthquake effect.
    In the light of above problems, this paper presents a generic seismic assessment procedure that is able to consider near-fault earthquake effect and is feasible for both fixed-base and isolated buildings. This procedure also allows the seismic assessment of buildings with various performance levels. The proposed procedure is based on the methodology of FEMA P-58, and the acceptance criteria suggested by ASCE 41-13 and FEMA 356 are also adopted in this study. In order to establish the fragility curves of the building, this approach employs nonlinear time history analysis together with the method of incremental dynamic analysis (IDA). Moreover, if the building is located in near-fault area, the target spectrum should be modified by using the directivity model specified in the document ASCE 7-16 and NIST report. For demonstration, the proposed method is applied to assess the seismic risk of an existing old building with insufficient seismic capacity. Both the original building and the building retrofitted by using an isolation system will be evaluated. The probability assessment results of the building before and after isolation is implemented will be compared and discussed, so the applicability of the proposed method to both fix-based and isolated buildings can be demonstrated.

    摘要 I EXTENDED ABSTRACT III 誌謝 XV 目錄 XVII 表目錄 XXIII 圖目錄 XXV 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 有關耐震性能評估相關文獻 2 1.2.2 有關隔震建物耐震評估文獻 4 1.2.3 有關核能電廠耐震性能評估之文獻 6 1.2.4 有關近斷層震波之文獻 8 1.3 本文研究目的 9 1.4 本文架構 10 第2章 隔震建物耐震性能評估法 17 2.1 本章研究動機與目的 17 2.2 隔震建物機率式耐震評估流程 17 2.3 選定目標反應譜 19 2.3.1 等危害度反應譜 19 2.3.2 條件平均反應譜與條件反應譜(CMS與CS) 22 2.4 歷時震波之挑選與縮放 25 2.4.1 選定地動強度因子 25 2.4.2 震波縮放方法 26 2.4.3 FEMA P-58震波縮放方法 27 2.5 各性能等級損傷準則之訂定 28 2.5.1 整體損傷準則 29 2.5.2 局部損傷準則 30 2.6 增量動力分析 31 2.6.1 方法說明 31 2.6.2 地震強度增量 32 2.7 易損曲線之建立 33 2.7.1 建立方法 33 2.7.2 不確定因子之考量 34 2.8 性能指標之計算 35 2.8.1 特定地震力下之建物損壞機率 35 2.8.2 年平均損壞頻率 36 2.9 小結 37 第3章 考慮近斷層特性之目標反應譜調整方法 53 3.1 近斷層震波之特性 53 3.2 近斷層震波之分類 54 3.2.1 小波分析(wavelet analysis) 55 3.2.2 小波轉換用於兩正交方向之震波 56 3.2.3 近斷層震波分類準則 57 3.2.4 公開之程式工具 59 3.3 目標反應譜調整方法 60 3.3.1 Narrowband窄頻模型 60 3.3.2 Broadband寬頻模型 65 3.4 目標反應譜調整之範例說明 67 3.5 本文建議之執行步驟 68 第4章 非線性分析數值模型之設定 85 4.1 本章研究動機與目的 85 4.2 雙層雙跨RC構架實驗 85 4.2.1 實驗試體與方法說明 85 4.2.2 數值模型與參數之建立 86 4.2.3 數值模型塑鉸之設定 88 4.2.4 數值分析與實驗結果比較 90 4.3 FPS雙向行為驗證 92 4.3.1 實驗組立 92 4.3.2 數值模型參數之設定 93 4.3.3 數值分析與結果之比較 94 第5章 隔震建物耐震評估法之應用案例 137 5.1 案例介紹及建立數值模型 137 5.1.1 案例建物—五層樓集合式住宅簡介 137 5.1.2 建立數值模型 138 5.1.3 非線性側推分析 139 5.2 經隔震補強之案例建物 140 5.2.1 隔震參數設計 141 5.2.2 案例建物基底隔震設定 142 5.3 地震歷時挑選與縮放 143 5.3.1 目標反應譜 143 5.3.2 地震歷時挑選 144 5.4 增量動力分析 146 5.5 易損曲線之建立 147 5.6 計算各性能等級之性能指標 149 5.7 小結 152 第6章 考量近斷層地震力之隔震建物耐震評估法 185 6.1 本章研究動機與目的 185 6.2 近斷層震波挑選及縮放 185 6.2.1 目標反應譜調整 186 6.2.2 地震歷時挑選 187 6.3 隔震建物考慮近斷層震波作用下之評估結果 188 6.4 小結 190 第7章 考量近斷層震波作用下之隔震設計 205 7.1 本章研究動機與目的 205 7.2 靜力分析設計法 205 7.2.1 隔震支承參數研究 205 7.2.2 支承參數之選定 207 7.3 新隔震系統之耐震評估—非線性動力分析 209 7.4 小結 210 第8章 結論與建議 223 8.1 結論 223 8.2 建議 226 參考文獻 227 附錄A利用數值軟體模擬摩擦單擺支承之方法 233 A.1分析方法說明 233 A.2非線性模態分析(FNA) 233 A.3非線性直接積分法 234 附錄B台灣地區正規化危害度曲線使用方法 253 附錄C不同地震強度增量之易損曲線迴歸結果 257 附錄D隔震建物最大總位移之計算 261 著作清單 265

    1. ASCE 41-06 (2007) “Seismic Rehabilitation of Existing Building.” American Society of Civil Engineers
    2. ASCE 41-13 (2014) “Seismic Rehabilitation of Existing Building.” American Society of Civil Engineers.
    3. ASCE 7-10 (2013) “Minimum Design Loads for Buildings and Other Structures.” American Society of Civil Engineers.
    4. ASCE 7-16 (2016) “Minimum Design Loads for Buildings and Other Structures.” American Society of Civil Engineers.
    5. Baker, J. W., Cornell, C. A. (2005) “A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon.”, Earthquake Engineering and Structrual Dynamics ,34 , 1193-1217.
    6. Baker, J. W., Cornell, C. A. (2006) “Spectral shape, epsilon and record selection.” Earthquake Engineering and Structrual Dynamics, 35, 1077-1095.
    7. Boore D.M., Watson-Lamprey, J., and Abrahamson, N. A, (2006) “Orientation-independent measure of ground motion.” Bulletin of the Seismologic Society of America, Vol. 96, No. 4, pp.1502-1511.
    8. Baker J. W. (2007) “Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis.” Bulletin of the Seismological Society of America, 97 (5), 1486-1501.
    9. Baker, J. W. (2011) “ Condition Mean Spectrum:Tool for ground motion selection.” Journal for Structural Engineering, 137 , 322-331.
    10. Baker, J. W. (2015) “Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis.” Earthquake Spectra, Vol. 31, No. 1, pp. 579-599.
    11. Castaldo, P., Palazzo, B., Della Vecchia, P. (2015a) “Seismic reliability of base-isolated structures with friction pendulum bearings. ” Engineering Structure. 95, 80–93.
    12. Castaldo, P., Tubaldi, E. (2015b) “Influence of FPS bearing properties on the seismic performance of base‐ isolated structures.” Earthquake Engineer and Structural Dynamics, 44, 2817-2836.
    13. Castaldo, P., Palazzo, B., Ferrentino, T., (2016) “Seismic reliability‐based ductility demand evaluation for inelastic base‐isolated structures with friction pendulum devices.”, Earthquake Engineer and Structural Dynamics, 46, 1245-1266.
    14. Castaldo P. Amendola G. Palazzo B (2017a) “Seismic fragility and reliability of structures isolated by friction pendulum devices:seismic reliability-based design (SRBD).”, Earthquake Engineer and Structural Dynamics, 46, 425-446.
    15. Castaldo, P., Palazzo, B., Ferrentino, T., Petrone, G., (2017b) “Influence of the strength reduction factor on the seismic reliability of structures with FPS considering intermediate PGA/PGV ratios.” Composite Part B. 115, 308–315.
    16. Computers & Structures, Inc. (2016) “ETABS 2016 CSi Analysis Reference Manual.”
    17. EPRI (1991) “A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1).” EPRI Report NP-6041-SLR1.
    18. EPRI (1994) “Methodology for Developing Seismic Fragilities.” EPRI TR-103959.
    19. EPRI (2002) “Seismic Fragility Applications Guide.” EPRI Report 1002988.
    20. EPRI (2009) “Seismic Fragility Applications Guide Update.” EPRI Report 1019200.
    21. EPRI (2010) “Surry Seismic Probabilistic Risk Assessment Pilot Plant Review.” EPRI Report 1020756.
    22. EPRI (2013) “Seismic Probabilistic Risk Assessment Implementation Guide.” EPRI Report 3002000709.
    23. FEMA 356 (2000), “Prestandard and Commentary for the Seismic Rehabilitation of Buildings.” Federal Emergency Management Agency.
    24. FEMA P-58 (2012) “Seismic Performance Assessment of Buildings.” Federal Emergency Management Agency.
    25. FEMA P-58/BD-3.7.8 (2008) “Casualty Consequence Function and Building Population Model Development.” Federal Emergency Management Agency.
    26. FEMA P-695 (2009) “Quantification of Building Seismic Performance Factors.” Federal Emergency Management Agency.
    27. FEMA P-750 (2009) “NEHRP Recommended Seismic Provision.” Federal Emergency Management Agency.
    28. Gutenberg, R.and Richer, C.F., (1944) “Frequency of earthquakes in California.” Bulletin of the Seismologic Society of America, Vol. 34, No. 6, pp.185-188.
    29. Harmsen, S.C.,(2001)“Mean and modal in the deaggregation of probabilistic ground motion.” Bulletin of the Seismologic Society of America, Vol. 91, No. 6, pp.1537-1552.
    30. Hancock, J., Watson-Lamprey, J., Abrahamson, N., Bommer, J., Markatis, A., McCoy, E., and Mendis, R., (2006) “An improved method of matching response spectra of recorded earthquake ground motion using wavelets.” Journal of Earthquake Engineering, Vol. 10, Special Issue 1, pp. 67-89.
    31. Huang Y. N., Whittaker A. S. (2009) “Maximum Spectral Demands in the Near-Fault Region.” Eathquake Spectra, Vol.24, pp319-341.
    32. Lai, J. W., Wang, S. S., Matthew, J. S., Mahin, S. A. (2015) “Seismic Evaluation and Retrofit of Existing Tall Buildings in California: Case Study of a 35-Story Steel Moment-Resisting Frame Building in San Francisco”, PEER Report No. 2015/14.
    33. Mavroeidis, G. P., and A. S. Papageorgiou (2002). “Near-Source Strong Ground Motion: Characteristics and Design Issues.” US National Conference on Earthquake Engineering, pp 1529-1540.
    34. Mavroeidis, G. P., and A. S. Papageorgiou (2003) “A Mathematical Representation of Near-Fault Ground Motions.” Bulletin of the Seismological Society of America, Vol. 93, No. 3, pp. 1099–1131.
    35. Makris, N., S. Chang, (1998), “Rocking response and overturning of equipment under horizontal pulse-type motion.” Report No. PEER-98/05, University of California, Berkeley, CA.
    36. Medina, R.A. and Krawinkler, H. (2002). “Seismic demands for nondeteriorating frame structures and their dependence on ground motions.” Report No. 144, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
    37. NIST (2011) “Selecting and Scaling Earthquake Ground Motions for Performing Response-History Analyses.” GCR 11-917-15.
    38. PEER-TBI (2010) “Tall Building Initiative - Guidelines for Performance-Based Seismic Design of Tall Buildings.” Pacific Earthquake Engineering Research Center, Berkeley, Technical Report no. 2010/05.
    39. PEER-TBI Task7 (2010) “Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings.” PEER Report No. 2010/111.
    40. SEAOC Vision 2000 (1995) “A Framework for Performance-based Design.” California Office of Emergency Services.
    41. Somerville, P.G., N.F. Smith, R.W. Graves, and N.A. Abrahamson (1997). “Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity.” Seismol. Res.Let. 68(1), 199-222.
    42. Somerville, P.G. (2003). “Magnitude scaling of the near fault rupture directivity pulse.” Phys. Earth Planet. Inter.137(1), 201-212.
    43. Shahi, S. K., and Baker, J. W. (2011a) “An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis.” Bulletin of the Seismological Society of America, Vol.101, No. 2, pp. 742–755.
    44. Shahi, S. K., and Baker, J. W. (2011b). “Regression models for predicting the probability of near-fault earthquake ground motion pulses, and their period .” in 11th International Conference on Applications of Statistics and Probability in Civil Engineering, Zurich, Switzerland, 1–4 August.
    45. Shahi, S. K., and Baker, J. W. (2013) “A Probability Framework to Include the Effects of Near-fault Directivity in Seismic Hazard Assessment.” Report No. 180, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
    46. Shahi, S. K., and Baker, J. W. (2014) “An Efficient Algorithm to Identify Strong-Velocity Pulses in Multicomponent Ground Motions.” Bulletin of the Seismological Society of America, Vol.104, No. 5, pp. 2456–2466.
    47. Spudich P. (2013) “Final Report of the NGA-West2 Directivity Working Group.” PEER Report No. 2013/09.
    48. Takeda, T., Sozen, M. A., Nielsen, N. N. (1970) “Reinforced Concrete Response to Simulated Earthquakes.” Journal of the Structural Division, Vol. 96, Issue 12, pp. 2557-2573.
    49. USNRC (1985) “An Approach to the Quantification of Seismic Margins in Nuclear Power Plants.” NUREG/CR-4334, Washington, DC.
    50. USNRC (1986) “Recommendations to the Nuclear Regulatory Commission on Trial Guidelines for Seismic Margin Reviews of Nuclear Power Plants.” NUREG/CR-4482., Washington, DC.
    51. USNRC (1991a) “Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities.” Generic Letter No. 88-20, Supplement 4., Washington, DC.
    52. USNRC (1991b) “Procedural and Submittal Guidance for IPEEE for Severe Accident Vulnerabilities.” NUREG-1407.
    53. Vamvatsikos, D. and Cornell, C. A. (2002) “Incremental dynamic analysis.” Earthquake Engineering and Structural Dynamics, Vol.31, Issue.3, pp. 491-514.
    54. Vamvatsikos, D. and Cornell, C. A. (2006) “Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA.” Earthquake Engineering and Structural Dynamics, Vol.35, Issue.9, pp 1097-1117.
    55. Wu, C. L., Lin, S. H., Soheil Y., Weng P. W., Hwang, S. J., Elwood, K. J. and Moehle, J. P. (2009) “Design of Dynamic Collapse Testing System for 2-Story Reinforced Concrete Frames” 3rd International Conference on Advances in Experimental Structural Engineering, San Francisco, USA.
    56. Yang, T. Y., Moehle, J., Stojadinovic, B., and Der Kiureghian, A. (2009) “Performance evaluation of structural systems: theory and implementation.” Journal of Structural Engineering, Vol. 135, No. 10, pp. 1146-1154.
    57. Samanta A., Huang Y. N., (2017), “Ground-motion scaling for seismic performance assessment of high-rise moment-resisting frame building.” Soil Dynamics and Earthquake Engineering, 94, pp125-135.
    58. 盧煉元,施明祥,張婉妮 (2003)“近斷層震波對滑動式隔震結構之影響評估”,結構工程,第18卷,第4期,23-48頁。
    59. 盧煉元,王亮偉,陳慶輝,李官峰,李姿瑩,蔡諄昶 (2016)“以性能為導向之二階段隔震設計法”,結構工程,第31卷,第3期,33-61頁。
    60. 謝瑋桓,盧煉元,蕭輔沛,湯宇仕,黃尹男 (2018)“中高樓結構機率式倒塌風險評估法之應用研究”,結構工程,第33卷,第2期(出刊中)。
    61. 盧煉元 (2016)“結構隔減震技術講義”,國立成功大學土木工程研究所。
    62. 中華民國內政部營建署 (2011)“建築物耐震設計規範及解說”。
    63. 吳俊霖,郭武威,黃世建,楊元森,羅俊雄 (2009)“在地震力作用下非韌性鋼筋混凝土構架倒塌行為研究”,國家地震工程研究中心,NCREE-09-025。
    64. 簡文郁,張毓文,邱世彬,劉勳仁 (2014)“近斷層設計地震研究”,國家地震工程研究中心,NCREE-14-005。
    65. 林士涵,Soheil Yavari,吳俊霖,黃世建,Kenneth J. Elwood,楊元森,翁樸文,Beyhan Bayhan,Jack P. Moehle (2010)“非韌性配筋鋼筋混凝土構架振動台實驗研究”,國家地震工程研究中心,NCREE-10-002。
    66. 黃尹男 (2011)“美國新一代房屋結構耐震性能評估法(一)”,結構工程,第26卷,第4期,59-74頁。
    67. 鄧崇任,柴駿甫,廖文義,翁元滔,簡文郁,邱世彬,林凡茹,周德光 (2010) “耐震性能設計規範改進先期研究”,國家地震工程研究中心,NCREE-10-013。
    68. 蕭輔沛,鍾立來,葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,褚有倫,涂耀賢,柴駿甫,黃世建 (2013)“校舍結構耐震評估與補強技術手冊第三版”,國家地震工程研究中心,NCREE-13-023。
    69. 簡文郁 (2017) 國家地震工程研究中心強地動組提供資料:台灣地區正規化之地震危害度曲線。
    70. 鄭世楠、王子賓、林祖慰、江嘉豪 (2010)“台灣地區地震目錄的建置”,中央氣象局地震技術報告彙編,第 54 卷,575-605。
    71. 張婉妮 (2001) “近斷層震波對滑動式隔震結構之影響”,高雄第一科技大學營建工程學系碩士論文,7月,指導教授:盧煉元。
    72. 蔡諄昶 (2015) “具摩擦可變特性之滑動隔震系統於垂直震波作用下之實驗與分析”,高雄第一科技大學營建工程學系碩士論文,7月,指導教授:盧煉元。
    73. 王亮偉 (2016) “變曲率滑動隔震系統於三維震波作用下之實驗與理論研究”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。
    74. 謝瑋桓 (2017)“中高樓建築機率式耐震與倒塌風險評估之研究”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。
    75. 吳信賢 (2017)“重要設施非結構構件之耐震性能與風險評估”,國立成功大學土木工程學系碩士論文,7月,指導教授:盧煉元。

    下載圖示 校內:2024-07-31公開
    校外:2024-07-31公開
    QR CODE