簡易檢索 / 詳目顯示

研究生: 林欣慧
Lin, Hsin-Hui
論文名稱: 金屬鍍層及組裝壓力對燃料電池中316L不銹鋼雙極板的電化學性質影響之研究
Effects of Metal Coating and Clamping Pressure on the Electrochemical Behavior of 316L Stainless Steel Bipolar Plate in Simulated Fuel Cell Environment
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 84
中文關鍵詞: 不銹鋼玻璃金屬雙極板組裝壓力
外文關鍵詞: stainless steel, glassy metal, bipolar plate, clamping pressure
相關次數: 點閱:84下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中以316L不銹鋼作為金屬基板,採用物理氣相蒸鍍(Physical Vapor Deposition, PVD)沈積玻璃金屬鍍層及純金屬鍍層於基板上,研究不同金屬鍍層在模擬燃料電池電解質(1 MH2SO4水溶液)的電化學行為,鍍層型態分為(一)以Zr52.4Cu32.2Al8.4Ni7非晶質合金為鈀材之鍍膜,以及(二)以純金屬為鈀材之奈米多層鍍膜。將各種含有鍍膜的試片在燃料電池模擬電解質(即1 MH2SO4水溶液)中進行交流阻抗以及極化曲線等電化學測試,藉此了解上述鍍層的電化學性質及腐蝕現象。研究結果發現:以純金屬為鈀材之奈米多層膜鍍層的抗蝕性優於以Zr52.4Cu32.2Al8.4Ni7非晶質合金為鈀材之鍍層,前者抗蝕性高的原因主要是純ZrO2鈍化膜可以在試片表面上生成,而後者試片表面之鈍化膜除了ZrO2尚有其他氧化物。
    本研究亦探討組裝壓力對於316L不銹鋼電化學性質的影響,在模擬燃料電池的特殊測試系統中於模擬電解質(即1M H2SO4水溶液)中進行交流阻抗以及極化曲線等電化學測試,藉此了解不同組裝壓力對電化學性質及腐蝕現象的影響。研究結果發現,(一)以一般玻璃槽開放測試系統與模擬燃料電池之封閉測試系統相比,後者的極化阻抗較大且鈍化電流較小,其原因主要來自於電解液導電性質變化以及質傳效果改變的關係;(二)在不同壓力下所測得之極化阻抗皆呈現往第四象限壓縮的現象,可能是壓力下電極表面不均勻的電化學反應所致,且隨著壓力上升,極化阻抗有下降的趨勢。

    In this investigation, 316L stainless steel (SS) was used as the bi-polar plate substrate. Two types of coating were applied on the substrate using physical vapor deposition technique. The coatings were single layer of Zr52.4Cu32.2Al8.4Ni7 amorphous metal (NG) and nano-multilayered pure metals(NMZr), respectively. The polarization behaviors of the above coated specimens were investigated in 1M H2SO4 solution by conducting potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The experimental results showed that the nano-multilayered coating had a high polarization resistance than the Zr52.4Cu32.2Al8.4Ni7 amorphous coating. The difference in polarization resistance was determined by the chemical composition of the passive films formed on different coated electrodes.
    This study also investigate the effect of clamping pressure (0.1~1.0MPa) on electrochemical behavior of 316L SS. The electrochemical behavior of 316L SS proceeding in fuel cell-simulating testing cell was investigated in 1M H2SO4 solution by conducting potentiodynamic polarization and EIS tests. The experimental results showed that (1) the higher polarization resistance and smaller passive current density in fuel cell-simulating testing cell. The result comes from the lower electric conductivity in fuel cell-simulating testing cell, (2) the semi-circle for the Nyquist plot of different clamping pressure was depressed downward, because of the un-uniform electrochemical reaction on the surfaces under clamping pressure. The results of EIS reveal that the polarization resistance decreased obviously with the increase of clamping pressure.

    中文摘要 I Abstract II 誌謝 III 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 理論基礎與文獻回顧 2 2.1 燃料電池原理及種類 2 2.1.1 高分子電解質膜燃料電池雙極板 5 2.1.2 雙極板的種類與發展 7 2.2 材料的電化學性質 12 2.2.1 316L不銹鋼之電化學性質 12 2.2.2 玻璃金屬之抗腐蝕性質 13 2.2.3 金屬在硫酸水溶液中的腐蝕行為 14 2.2.3.1 鋯在硫酸水溶液中的腐蝕行為 14 2.2.3.2 銅在硫酸水溶液中的腐蝕行為 15 2.2.3.3 鋁在硫酸水溶液中的腐蝕行為 15 2.2.3.4 鎳在硫酸水溶液中的腐蝕行為 16 2.3 壓力對電化學性質的影響 17 2.3.1 組裝壓力對PEMFC電性的影響 17 2.3.2 液壓對電化學性質的影響 18 2.3.3 電化學勢與電化學活性的力學效應 19 2.3.4 金屬電極電位的力學效應 21 第三章 實驗方法與步驟 25 3.1 金屬鍍層的電化學性質研究 25 3.1.1 試片組成及製備 25 3.1.2 結晶結構分析 25 3.1.3 電化學性質研究 26 3.1.4 腐蝕表面形貌觀察及成分分析 27 3.2 不同組裝壓力對316L不銹鋼的電化學性質研究 30 3.2.1 電化學性質研究 30 3.2.2 腐蝕表面形貌觀察及成分分析 31 第四章 結果與討論 36 4.1 玻璃金屬鍍層的電化學性質 36 4.1.1 結晶結構分析 36 4.1.2 金屬鍍層試片的電化學測試 37 4.1.2.1 動電位極化測試 37 4.1.2.2 交流阻抗測試 38 4.1.3 腐蝕表面形貌觀察及成分分析 39 4.2 不同系統之316L不銹鋼的電化學性質分析 52 4.2.1 交流阻抗曲線的表現 52 4.2.2 動電位極化曲線的表現 53 4.2.3 定電位後的表面形貌觀察 54 4.3 壓力對於316L不銹鋼的電化學性質的影響 65 4.3.1 交流阻抗曲線的表現 65 4.3.2 動電位極化曲線的表現 66 4.3.3 定電位後的表面形貌觀察 67 第五章 結論 78 參考文獻 80

    1. V. Mehta and Cooper, J.S., Review and Analysis of Pem Fuel Cell Design and Manufacturing. Journal of Power Sources, 114 (2003). p. 32-53.
    2. J. Wind, Spah, R., Kaiser, W., and Bohm, G., Metallic Bipolar Plates for Pem Fuel Cells. Journal of Power Sources, 105 (2002). p. 256-260.
    3. H. Tawfik, Hung, Y., and Mahajan, D., Metal Bipolar Plates for Pem Fuel Cell - a Review. Journal of Power Sources, 163 (2007). p. 755-767.
    4. T. Kinumoto, Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., Iriyama, Y., Abe, T., and Ogumi, Z., Durability of Perfluorinated Ionomer Membrane against Hydrogen Peroxide. Journal of Power Sources, 158 (2006). p. 1222-1228.
    5. X.T. Wang, Song, Y., and Zhang, B., Experimental Study on Clamping Pressure Distribution in Pem Fuel Cells. Journal of Power Sources, 179 (2008). p. 305-309.
    6. W.K. Lee, Ho, C.H., Van Zee, J.W., and Murthy, M., The Effects of Compression and Gas Diffusion Layers on the Performance of a Pem Fuel Cell. Journal of Power Sources, 84 (1999). p. 45-51.
    7. W.R. Chang, Hwang, J.J., Weng, F.B., and Chan, S.H., Effect of Clamping Pressure on the Performance of a Pem Fuel Cell. Journal of Power Sources, 166 (2007). p. 149-154.
    8. C.Y. Wen, Lin, Y.S., and Lu, C.H., Experimental Study of Clamping Effects on the Performances of a Single Proton Exchange Membrane Fuel Cell and a 10-Cell Stack. Journal of Power Sources, 192 (2009). p. 475-485.
    9. L. Carrette, Friedrich, K.A., and Stimming, U., Fuel Cells: Principles, Types, Fuels, and Applications. Chemphyschem, 1 (2000). p. 162-193.
    10. R.A. Lemons, Fuel-Cells for Transportation. Journal of Power Sources, 29 (1990). p. 251-264.
    11. Z. Ogumi, Kuroe, T., and Takehara, Z., Gas Permeation in Spe Method .2. Oxygen and Hydrogen Permeation through Nafion. Journal of the Electrochemical Society, 132 (1985). p. 2601-2605.
    12. H. Tsuchiya and Kobayashi, O., Mass Production Cost of Pem Fuel Cell by Learning Curve. International Journal of Hydrogen Energy, 29 (2004). p. 985-990.
    13. A. Hermann, Chaudhuri, T., and Spagnol, P., Bipolar Plates for Pem Fuel Cells: A Review. International Journal of Hydrogen Energy, 30 (2005). p. 1297-1302.
    14. D.P. Davies, Adcock, P.L., Turpin, M., and Rowen, S.J., Bipolar Plate Materials for Solid Polymer Fuel Cells. Journal of Applied Electrochemistry, 30 (2000). p. 101-105.
    15. H.L. Wang and Turner, J.A., Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources, 128 (2004). p. 193-200.
    16. H.L. Wang, Sweikart, M.A., and Turner, J.A., Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources, 115 (2003). p. 243-251.
    17. H.S. Choi, Han, D.H., Hong, W.H., and Lee, J.J., (Titanium, Chromium) Nitride Coatings for Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell. Journal of Power Sources, 189 (2009). p. 966-971.
    18. S.A.A. Ei-Enin, Abdel-Salam, O.E., Ei-Abd, H., and Amin, A.M., New Electroplated Aluminum Bipolar Plate for Pem Fuel Cell. Journal of Power Sources, 177 (2008). p. 131-136.
    19. W.Y. Ho, Pan, H.J., Chang, C.L., Wang, D.Y., and Hwang, J.J., Corrosion and Electrical Properties of Multi-Layered Coatings on Stainless Steel for Pemfc Bipolar Plate Applications. Surface & Coatings Technology, 202 (2007). p. 1297-1301.
    20. Y. Hung, El-Khatib, K.M., and Tawfik, H., Testing and Evaluation of Aluminum Coated Bipolar Plates of Pern Fuel Cells Operating at 70 Degrees C. Journal of Power Sources, 163 (2006). p. 509-513.
    21. M.P. Brady, Weisbrod, K., Paulauskas, I., Buchanan, R.A., More, K.L., Wang, H., Wilson, M., Garzon, F., and Walker, L.R., Preferential Thermal Nitridation to Form Pin-Hole Free Cr-Nitrides to Protect Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates. Scripta Materialia, 50 (2004). p. 1017-1022.
    22. L. Ma, Warthesen, S., and Shores, D.A., Evaluation of Materials for Bipolar Plates in Pemfcs. Journal of New Materials for Electrochemical Systems, 3 (2000). p. 221-228.
    23. C.O.A. Olsson and Landolt, D., Passive Films on Stainless Steels - Chemistry, Structure and Growth. Electrochimica Acta, 48 (2003). p. 1093-1104.
    24. R.F.A. Jargelius-Pettersson and Pound, B.G., Examination of the Role of Molybdenum in Passivation of Stainless Steels Using Ac Impedance Spectroscopy. Journal of the Electrochemical Society, 145 (1998). p. 1462-1469.
    25. J.S. Noh, Laycock, N.J., Gao, W., and Wells, D.B., Effects of Nitric Acid Passivation on the Pitting Resistance of 316 Stainless Steel. Corrosion Science, 42 (2000). p. 2069-2084.
    26. A. Fattah-alhosseini, Saatchi, A., Golozar, M.A., and Raeissi, K., The Passivity of Aisi 316l Stainless Steel in 0.05 M H2SO4. Journal of Applied Electrochemistry, 40 (2010). p. 457-461.
    27. S.J. Pang, Zhang, T., Kimura, H., Asami, K., and Inoue, A., Corrosion Behavior of Zr-(Nb-)Al-Ni-Cu Glassy Alloys. Materials Transactions Jim, 41 (2000). p. 1490-1494.
    28. A. Gebert, Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., and Schultz, L., Investigations on the Electrochemical Behaviour of Zr-Based Bulk Metallic Glasses. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 267 (1999). p. 294-300.
    29. U.K. Mudali, Baunack, S., Eckert, J., Schultz, L., and Gebert, A., Pitting Corrosion of Bulk Glass-Forming Zirconium-Based Alloys. Journal of Alloys and Compounds, 377 (2004). p. 290-297.
    30. G.A. El-Mahdy and Mahmoud, S.S., Effect of Different Acid Anions on Kinetics of the Formation and Dissolution Behavior of Anodic Zirconium Oxide. Corrosion, 54 (1998). p. 354-361.
    31. C.O.A. Olsson, Verge, M.G., and Landolt, D., Eqcm Study of Anodic Film Growth on Valve Metals. Journal of the Electrochemical Society, 151 (2004). p. B652-B660.
    32. S.P. Shavkunov and Tolkachev, A.B., Electrochemical Behavior of Mono- and Polycrystalline Zirconium Electrodes in Sulfuric Acid Solutions. Protection of Metals, 39 (2003). p. 222-227.
    33. H.H. Strehblow and Titze, B., The Investigation of the Passive Behavior of Copper in Weakly Acid and Alkaline-Solutions and the Examination of the Passive Film by Esca and Iss. Electrochimica Acta, 25 (1980). p. 839-850.
    34. M.M. Lohrengel, Schultze, J.W., Speckmann, H.D., and Strehblow, H.H., Growth, Corrosion and Capacity of Copper-Oxide Films Investigated by Pulse Techniques. Electrochimica Acta, 32 (1987). p. 733-742.
    35. B. Millet, Fiaud, C., Hinnen, C., and Sutter, E.M.M., A Correlation between Electrochemical-Behavior, Composition and Semiconducting Properties of Naturally Grown Oxide-Films on Copper. Corrosion Science, 37 (1995). p. 1903-1918.
    36. A. Eftekhari, Aluminum as a Suitable Substrate for the Deposition of Conducting Polymers: Application to Polyaniline and Enzyme-Modified Electrode. Synthetic Metals, 125 (2001). p. 295-300.
    37. I. De Graeve, Terryn, H., and Thompson, G.E., Influence of Local Heat Development on Film Thickness for Anodizing Aluminum in Sulfuric Acid. Journal of the Electrochemical Society, 150 (2003). p. B158-B165.
    38. G. Patermarakis and Moussoutzanis, K., Electrochemical Kinetic-Study on the Growth of Porous Anodic Oxide-Films on Aluminum. Electrochimica Acta, 40 (1995). p. 699-708.
    39. I. Mellan, Corrosion Resistant Materials Handbook,3rd. Ed. 1976, Park Ridge: N.J. :Noyes Data Corp. 444.
    40. T. Sato and Nakamura, T., Complexes Formed in Divalent Transition Metal Sulfuric Acid-Di-(2-Ethylhexyl)-Phosphoric Acid Extraction Systems-Cobalt(Ii), Nickel(Ii) and Copper(Ii) Complexes. Journal of Inorganic & Nuclear Chemistry, 34 (1972). p. 3721-&.
    41. J. Tousek, Mechanism of Localized Corrosion of Nickel in Sulfuric-Acid. Corrosion, 33 (1977). p. 193-196.
    42. E. Sadeghi, Bahrami, M., and Djilali, N., Analytic Determination of the Effective Thermal Conductivity of Pem Fuel Cell Gas Diffusion Layers. Journal of Power Sources, 179 (2008). p. 200-208.
    43. A.M. Beccaria and Poggi, G., Influence of Hydrostatic-Pressure on Pitting of Aluminum in Sea-Water. British Corrosion Journal, 20 (1985). p. 183-186.
    44. A.M. Beccaria and Poggi, G., Effect of Some Surface Treatments on Kinetics of Aluminum Corrosion in Nacl Solutions at Various Hydrostatic Pressures. British Corrosion Journal, 21 (1986). p. 19-22.
    45. A.M. Beccaria and Poggi, G., Aluminum Corrosion in Slightly Alkaline Sodium-Sulfate Solutions at Different Hydrostatic Pressures. Corrosion, 43 (1987). p. 153-158.
    46. A.M. Beccaria, Fiordiponti, P., and Mattogno, G., The Effect of Hydrostatic-Pressure on the Corrosion of Nickel in Slightly Alkaline-Solutions Containing C1- Ions. Corrosion Science, 29 (1989). p. 403-&.
    47. A.M. Beccaria, Poggi, G., and Castello, G., Influence of Passive Film Composition and Sea Water Pressure on Resistance to Localised Corrosion of Some Stainless Steels in Sea Water. British Corrosion Journal, 30 (1995). p. 283-287.
    48. 丁寶峰, 曹備, 張崢嶸, 余方鋒, 304不銹鋼在彈性變形過程中的力學-電化學效應, in: 第四屆全國腐蝕大會, 北京, 2003.
    49. J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy :A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data X-Ray Spectroscopy--Tables., ed. J.K. Chastain, Roger C. 1995, Eden Prairie, Minn: Physical Electronics.
    50. M. Yamashita, Nagano, H., and Oriani, R.A., Dependence of Corrosion Potential and Corrosion Rate of a Low-Alloy Steel Upon Depth of Aqueous Solution. Corrosion Science, 40 (1998). p. 1447-1453.
    51. S. Iseki, Nagaura, S., and Ohashi, K., Impedance of Oxygen-Evolution Reaction on Noble-Metal Electrodes. Electrochimica Acta, 17 (1972). p. 2249-&.
    52. U. Rammelt and Reinhard, G., The Influence of Surface-Roughness on the Impedance Data for Iron Electrodes in Acid-Solutions. Corrosion Science, 27 (1987). p. 373-382.
    53. S. Feliu, Barajas, R., Bastidas, J.M., and Morcillo, M., Mechanism of Cathodic Protection of Zinc-Rich Paints by Electrochemical Impedance Spectroscopy .1. Galvanic Stage. Journal of Coatings Technology, 61 (1989). p. 63-69.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE