簡易檢索 / 詳目顯示

研究生: 印緹卡
Indriani, Tika
論文名稱: 亞硝酸化-厭氧氨氧化程序應用於煉焦廢水生物除氮研究
Nitritation-Anammox as an Advanced Nitrogen Removal Process in Coke Wastewater Treatment
指導教授: 吳哲宏
Wu, Jer-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 104
外文關鍵詞: nitritation-anammox, coke wastewater, start-up, real-time Q-PCR
相關次數: 點閱:165下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Wastewaters generated from steel mill coking operation may contain high concentration of ammonia, sulfides, phenolic compounds, cyanide, and number of complexes hydrocarbons. Anammox (Anaerobic Ammonium Oxidation) is a new technology for Nitrogen removal found in the late 20th century, which known for its sustainability and cost efficiency aspect. This biological process oxidizes ammonia into nitrogen gas with nitrite as the electron acceptor under anaerobic condition. Combined with nitritation process, the system is considered as a promising cost-effective and low energy alternative compare to nitrification-denitrification process.
    In order to study the capability of nitritation-anammox system to adapt to and process the coke wastewater, two reactors of nitritation and anammox were used. To quickly start-up the system, both reactors were started-up separately using denitrification and nitrification sludge. The nitritation reactor has been started-up within 204 days with gradually increase nitrogen loading to successfully establish the partial nitrification process. While, the anammox reactor was operated for 326 days, with both synthetic wastewater and coke wastewater, in various nitrogen loadings to quickly bring-up the anammox population and observe its performance and adaptability to coke wastewater. PCR and Q-PCR analysis using different primers were done in order to quantify the specific 16S anammox and AOB genes in the systems and to establish performance parameter which could play important role in scaling-up the system.
    Anammox bacteria population has successfully brought out within 6 months in the reactor. The highest total nitrogen loading achieved for nitritation and anammox reactors during their separate start-up are 1.5 kg-N m3 d-1 and 0.789 kg-N m3 d-1, respectively. The nitritation-anammox system was acclimated with coke wastewater and could achieve stable operation treating output of ozonation system with average nitrogen loading of 0.7 kg-N m3 d-1 and 0.2 kg-N m3 d-1 for nitritation and anammox reactor, respectively. Nitrosomonas europaea and a new group of anammox bacteria were dominate in the system. Anammonia oxidizing archaea (AOA) population was also found in the nitritation reactor. The output of ozonation system is considered as a better wastewater input compare to output of biological treatment because it may contain more biodegradable organic compounds which could support the nitrogen removal process in the system by inducing small denitrification to occur.

    ABSTRACT ................................................................................................................. i TABLE OF CONTENT .............................................................................................iii TABLES INDEX ...................................................................................................... vii FIGURES INDEX ..................................................................................................... ix CHAPTER 1. INTRODUCTION ........................................................................... 1 1.1. Background ................................................................................................ 1 1.2. Objectives ................................................................................................... 3 CHAPTER 2. LITERATURE REVIEW ................................................................ 5 2.1. The Nitrogen Cycle .................................................................................... 5 2.2. Control of Biological Nitrogen Treatment Process .................................... 7 2.2.1. Nitrification ........................................................................................ 8 2.2.2. Denitrification .................................................................................. 12 2.2.3. Nitrate reduction to ammonium ....................................................... 13 2.2.4. Free Ammonia (NH3) ....................................................................... 15 2.3. Anaerobic Ammonium Oxidation ............................................................ 16 2.3.1. Anaerobic Ammonium Oxidation Bacteria ..................................... 16 2.3.2. Unique Features of Anammox Cell ................................................. 19 2.3.3. Anaerobic Ammonium Oxidation Molecular Mechanism .............. 23 2.3.4. Detection of Anammox Bacteria ..................................................... 27 2.3.5. Microbial Co-Existency in Anammox System ................................ 29 2.3.6. Anammox System Applications ...................................................... 31 2.4. Coke Wastewater ...................................................................................... 38 2.4.1. Characteristic ................................................................................... 38 iv 2.4.2. Coke Wastewater Treatment ............................................................ 38 2.5. Related Regulation in Taiwan .................................................................. 40 2.6. Microbial Analysis ................................................................................... 41 2.6.1. Polymerase Chain Reaction (PCR) .................................................. 41 2.6.2. Real-Time Q-PCR ............................................................................ 43 CHAPTER 3. RESEARCH METHODS .............................................................. 51 3.1. CSC Wastewater Treatment System ........................................................ 51 3.2. Reactor Study ........................................................................................... 52 3.2.1. Nitritation Reactor ........................................................................... 53 3.2.2. Anammox Reactor ........................................................................... 54 3.2.3. Nitritation-Anammox System .......................................................... 57 3.3. Analytical Procedure ................................................................................ 59 3.4. DNA Extraction and PCR amplification .................................................. 59 3.5. Real-Time Q-PCR Analysis ..................................................................... 61 3.6. Free Ammonia Calculation ...................................................................... 62 3.7. Nitrogen Recovery Calculation ................................................................ 63 3.8. Research Framework ................................................................................ 63 CHAPTER 4. RESULTS AND DISCUSSION .................................................... 65 4.1. Nitritation Reactor Start-Up ..................................................................... 65 4.2. Anammox Reactor Start-Up ..................................................................... 70 4.3. Nitritation-Anammox System .................................................................. 76 4.3.1. Feeding of Synthetic Wastewater .................................................... 76 4.3.2. Feeding of the Output Derived from Biological (MBR) Unit ......... 77 4.3.3. Feeding of the Output Derived from Ozonation Unit ...................... 78 4.4. Specific Bacteria Abundance in Each Reactor......................................... 84 v 4.4.1. AOB and AOA in Nitritation Reactor ............................................. 84 4.4.2. Anammox Bacteria in Anammox Reactor ....................................... 90 4.5. Effect of Loading to the Microbial Growth ............................................. 94 4.6. The Inhibitions in Anammox Reactor ...................................................... 97 4.6.1. During the Separated Operation ...................................................... 97 4.6.2. During the Parallel Operation with 2-Stage in Series ...................... 98 4.7. Summary of the Reactors Operation Condition ..................................... 100 CHAPTER 5. CONCLUSIONS AND SUGGESTIONS ................................... 103 5.1. Conclusions ............................................................................................ 103 5.2. Suggestions ............................................................................................. 104 REFERENCES ........................................................................................................xiii Appendix 1. Gel Electrophoresis Results of Anammox Bacteria Detection ..... xxiii Appendix 2. Anammox Reactor Inhibition during the Separated Operation ...... xxv Appendix 3. Anammox Reactor Inhibition during the Parallel Operation ........ xxvii Appendix 4. Total Nitrogen Recovery Analysis ................................................. xxix

    1. Kartal, B., J.G. Kuenen, and M.C.M. van Loosdrecht, Sewage Treatment with Anammox. Science, 2010. 328(5979): p. 702-703.
    2. Mulder, A., The quest for sustainable nitrogen removal technologies. Water Science & Technology, 2003. 48(1): p. 9.
    3. Van der Star, W.R., et al., Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Research, 2007. 41(18): p. 4149-4163.
    4. Tokutomi, T., et al., Application of the nitritation and anammox process into inorganic nitrogenous wastewater from semiconductor factory. Journal of Environmental Engineering, 2011. 137(2): p. 146-154.
    5. Wang, C.-C., et al., Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal of Hazardous Materials, 2010. 175(1–3): p. 622-628.
    6. Wett, B., Solved upscaling problems for implementing deammonification of rejection water. Water science and technology, 2006. 53(12): p. 121-128.
    7. Kumar, M. and J.-G. Lin, Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues. Journal of Hazardous Materials, 2010. 178(1–3): p. 1-9.
    8. Chao, Y.M., T.F. Yeh, and W.K. Shieh, PAC-activated sludge treatment of a steel mill coke-plant wastewater. Water Pollution Control Federation, 1986. 58(4): p. 333-338.
    9. Jetten, M.S., et al., Biochemistry and molecular biology of anammox bacteria. Critical reviews in biochemistry and molecular biology, 2009. 44(2-3): p. 65-84.
    xiv
    10. Kuenen, J.G., Anammox bacteria: from discovery to application. Nature, 2008. 6(April 2008): p. 320-326.
    11. Philips, S., H.J. Laanbroek, and W. Verstraete, Origin, causes and effects of increased nitrite concentrations in aquatic environments. Re/Views in Environmental Science & Bio/Technology, 2002. 1: p. 115-141.
    12. Kleiner, D., Bacterial ammonium transport. FEMS Microbiology Letters, 1985. 32(2): p. 87-100.
    13. Groeneweg, J., B. Sellner, and W. Tappe, Ammonia oxidation in nitrosomonas at NH3 concentrations near km: Effects of pH and temperature. Water Research, 1994. 28(12): p. 2561-2566.
    14. Stein, L.Y., D.J. Arp, and M.R. Hyman, Regulation of the Synthesis and Activity of Ammonia Monooxygenase in Nitrosomonas europaea by Altering pH To Affect NH (inf3) Availability. Applied and environmental microbiology, 1997. 63(11): p. 4588-4592.
    15. Suzuki, I., U. Dular, and S. Kwok, Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. Journal of Bacteriology, 1974. 120(1): p. 556-558.
    16. Kelly, D., Bioenergetics of chemolithotrophic bacteria. Companion to Microbiology; Selected Topics for Further Discussion, 1978: p. 363-386.
    17. Wood, P.M., Nitrification as a bacterial energy source, ed. J.I. Prosser. 1986: Oxford: published for the Society for General Microbiology by IRL.
    18. Sharma, B. and R. Ahlert, Nitrification and nitrogen removal (in waste water treatment). Water Research, 1977. 11(10): p. 897-925.
    19. Parker, D.S., Process Design Manual for Nitrogen Control. 1975.
    xv
    20. Henze, M., Biological Wastewater Treatment: Principles, Modeling, and Design. 2008: International Water Assn.
    21. Jenkins, D., M.G. Richard, and G.T. Daigger, Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems. 2004: International Water Assn.
    22. Okabe, S., et al., Development of long-term stable partial nitrification and subsequent anammox process. Bioresource Technology, 2011. 102: p. 6801–6807.
    23. Sawyer, C.N., P.L. McCarty, and G.F. Parkin, Chemistry for Environmental Engineering and Science. International Edition, Fifth Edition ed. 2003, New York: McGraw-Hill. 752.
    24. Anthonisen, A., et al., Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollution Control Federation), 1976: p. 835-852.
    25. Jaroszynski, L.W. and J.A. Oleszkiewicz, Autotrophic ammonium removal from reject water: partial nitrification and anammox in one‐reactor versus two‐reactor systems. Environmental Technology, 2011. 32(3): p. 289-294.
    26. van Teeseling, M., S. Neumann, and L. van Niftrik, The Anammoxosome Organelle Is Crucial for the Energy Metabolism of Anaerobic Ammonium Oxidizing Bacteria. Journal of molecular microbiology and biotechnology, 2012. 23(1-2): p. 104-117.
    27. van der Star, W.R., et al., The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnology and bioengineering, 2008. 101(2): p. 286-294.
    28. Pilcher, H., Pipe dreams. Nature, 2005. 437: p. 1227-1228.
    xvi
    29. Strous, M., J.G. Kuenen, and M.S. Jetten, Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 1999. 65(7): p. 3248-3250.
    30. Kartal, B., W. Geerts, and M.S. Jetten, 4 Cultivation, Detection, and Ecophysiology of Anaerobic Ammonium-Oxidizing Bacteria. Methods in enzymology, 2011. 486(Part A): p. 89-108.
    31. Strous, M., et al., The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 1998. 50(5): p. 589-596.
    32. Isaka, K., et al., Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor. Applied microbiology and biotechnology, 2006. 70(1): p. 47-52.
    33. van de Graaf, A.A., et al., Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology, 1997. 143(7): p. 2415-2421.
    34. Kartal, B., et al., Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011. 479(7371): p. 127-130.
    35. Tsushima, I., T. Kindaichi, and S. Okabe, Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. WATER RESEARCH, 2007. 41: p. 785-794.
    36. Cho, S., et al., Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere, 2010. 78: p. 1129–1135.
    37. Gao, D.-W. and Y. Tao, Versatility and application of anaerobic ammonium-oxidizing bacteria. Applied microbiology and biotechnology, 2011. 91(4): p. 887-894.
    xvii
    38. Cho, S., et al., Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresource Technology, 2011. 102: p. 652–659.
    39. Li, Z., et al., Factors affecting the treatment of reject water by the anammox process. Bioresource technology, 2011. 102(10): p. 5702-5708.
    40. Toh, S. and N. Ashbolt, Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater. Applied Microbiology and Biotechnology, 2002. 59(2-3): p. 344-352.
    41. Ma, B., et al., Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresource Technology, 2013. 129(0): p. 606-611.
    42. Qiao, S., et al., High-rate nitrogen removal from livestock manure digester liquor by combined partial nitritation–anammox process. Biodegradation, 2010. 21(1): p. 11-20.
    43. Alexandersson, G., Treatment of wastewater from coke production; Feasibility study of Huaxi Jiohua Ltd, Wuhai, Inner Mongolia, RRC, in Industrial Ecology2007, Royal Institute of Technology: Stockholm.
    44. Ahmed, S., R.K. Rathi, and U. Chandra. Wastewater treatment technologies commonly practised in major steel industries in India. in International Sustainable Development Research Conference. 2010. Hongkong.
    45. Kim, Y.M., et al., Instability of biological nitrogen removal in a cokes wastewater treatment facility during summer. Journal of Hazardous Materials, 2007. 141: p. 27-32.
    46. Chang, E.E., et al., The chemical and biological characteristics of coke-oven wastewater by ozonation. J Hazard Mater, 2008. 156(1-3): p. 560-7.
    xviii
    47. Amat, A.M., et al., Ozonisation coupled with biological degradation for treatment of phenolic pollutants: a mechanistically based study. Chemosphere, 2003. 53(1): p. 79-86.
    48. Anonymous Ammonia Nitrogen Controls to Be Added to Effluent Standards for Optoelectronics Industry and Science Parks. Enviromental Policy Monthly, 2012. 15, 12.
    49. Miesfeld, R.L., Applied Molecular Genetics. 1999, New York: Wiley-Liss, Inc. .
    50. Brown, T.A., Gene cloning and DNA analysis: an introduction. Fifth edition ed. 2006: Wiley-Blackwell.
    51. Ginzinger, D.G., Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Experimental Hematology, 2002. 30(6): p. 503-512.
    52. Overbergh, L., et al., Chapter 7 - Real-Time Polymerase Chain Reaction, in Molecular Diagnostics (Second Edition), P.P. George and J.A. Wilhelm, Editors. 2010, Academic Press: San Diego. p. 87-105.
    53. Van de Graaf, A.A., et al., Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology, 1996. 142(8): p. 2187-2196.
    54. Trigo, C., et al., Start-up of the Anammox process in a membrane bioreactor. Journal of Biotechnology, 2006. 126(4): p. 475-487.
    55. Tang, C.-J., et al., Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water research, 2011. 45(1): p. 135-144.
    xix
    56. Hoshino, T., et al., Direct Detection by In Situ PCR of theamoA Gene in Biofilm Resulting from a Nitrogen Removal Process. Applied and Environmental Microbiology, 2001. 67(11): p. 5261-5266.
    57. Rotthauwe, J.H., K.P. Witzel, and W. Liesack, The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997. 63(12): p. 4704-12.
    58. Francis, C.A., et al., Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(41): p. 14683-14688.
    59. Chuang, H.-P., et al., Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition. Water Research, 2007. 41(2): p. 295-302.
    60. Schmidt, I., et al., New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology Reviews, 2003. 27(4): p. 481-492.
    61. Wrage, N., et al., Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 2001. 33(12): p. 1723-1732.
    62. Goreau, T.J., et al., Production of NO2-and N2O by nitrifying bacteria at reduced concentrations of oxygen. Applied and Environmental Microbiology, 1980. 40(3): p. 526-532.
    63. Helmer, C. and S. Kunst, Simultaneous nitrification/denitrification in an aerobic biofilm system. Water Science and Technology, 1998. 37(4–5): p. 183-187.
    xx
    64. Lloyd, D., L. Boddy, and K.J.P. Davies, Persistence of bacterial denitrification capacity under aerobic conditions: The rule rather than the exception. FEMS Microbiology Letters, 1987. 45(3): p. 185-190.
    65. Zhang, B., et al., Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater. Bioresource Technology, 2010. 101(9): p. 3054-3059.
    66. Fukushima, T., et al., Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Applied Microbiology and Biotechnology, 2012: p. 1-11.
    67. Jin, T., T. Zhang, and Q. Yan, Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Applied Microbiology and Biotechnology, 2010. 87(3): p. 1167-1176.
    68. Bock, E., et al., Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology, 1995. 163(1): p. 16-20.
    69. Zart, D. and E. Bock, High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Archives of Microbiology, 1998. 169(4): p. 282-286.
    70. Yamamoto, N., K. Otawa, and Y. Nakai, Diversity and Abundance of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea During Cattle Manure Composting. Microbial Ecology, 2010. 60(4): p. 807-815.
    71. Bae, H., Y. Chung, and J. Jung, Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process. 2010.
    xxi
    72. Mosier, A.C. and C.A. Francis, Relative abundance and diversity of ammonia‐oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental microbiology, 2008. 10(11): p. 3002-3016.
    73. Wells, G.F., et al., Ammonia‐oxidizing communities in a highly aerated full‐scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental microbiology, 2009. 11(9): p. 2310-2328.
    74. Bae, H., et al., Distribution of anammox bacteria in domestic WWTPs and their enrichments evaluated by real-time quantitative PCR. Process Biochemistry, 2010. 45(3): p. 323-334.
    75. Strous, M., et al., Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006. 440(7085): p. 790-4.
    76. Wang, Y., et al., Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiology Letters, 2012. 336(2): p. 79-88.
    77. Tsushima, I., et al., Development of high-rate anaerobic ammonium-oxidizing
    (anammox) biofilm reactors. WATER RESEARCH, 2007.
    78. Joss, A., et al., Combined Nitritation–Anammox: Advances in Understanding Process Stability. Environmental Science & Technology, 2011. 45(22): p. 9735-9742.
    79. Waki, M., et al., Nitrogen removal from animal waste treatment water by anammox enrichment. Bioresource technology, 2007. 98(14): p. 2775-2780.
    80. Jetten, M.S.M., et al., The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1998. 22(5): p. 421-437.

    下載圖示 校內:2018-08-28公開
    校外:2018-08-28公開
    QR CODE