簡易檢索 / 詳目顯示

研究生: 陳永雲
Chen, Yung-Yun
論文名稱: 以分子動力學模擬探討多元合金成分對其微結構與合金強度的影響
Study of the Influences of Multi-Element Alloy Composition on the Microstructure and Strength Using Molecular Dynamics Simulation
指導教授: 翁政義
Weng, Cheng-I
陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 101
中文關鍵詞: 緊束法結構分子動力學多元合金奈米線非晶質
外文關鍵詞: Molecular Dynamics Simulation, nanowire, structure, amorphous, tight-binding, Multi-Element Alloy
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以分子動力學模擬多元合金從高溫熔融狀態急速冷卻至室溫之微結構與強度變化情形,所使用之勢能函數為緊束法(Tight-Binding Method)之半經驗勢能函數,並以Honeycutt-Anderson analysis與拉伸試驗之應力應變分析討論製程參數包括添加元素數量、種類與比例對結構與強度之影響,並探討易於生成非晶質(amorphous)合金之操作變因。由模擬結果可知添加原子尺寸差異越大,添加之比例越高皆有助於非晶質相的生成,所以當等莫耳比例添加Zr元素可得到大量非晶質結構的合金,但非晶質合金中BCC結構皆佔有一定的比例,使得非晶質相的比例最多只可達80%,此BCC結構是由介金屬化合物與Zr保持在高溫之BCC結構所造成。而在拉伸試驗中發現非晶質合金幾乎不受尺寸效應的影響,其奈米線強度相當於塊材,可知非晶質合金之強度將遠大於晶格結構之合金,且非晶質合金中的強度將與添加之元素種類有關。最後提出分子動力學模擬之改進方向與可能推論,可做為未來研究之方向。

    The present study investigates the microstructure and strength of multi-element alloy by quenching from the liquid with the theory of molecular dynamics simulation. The applied potential parameter is the semi-empirical potential parameter of the tight-binding method. The fabrication parameter is analyzed by Honeycutt-Anderson analysis and the relation between the stress and strain of the tensile test, including the influences of the types and proportions of the added elements on the structure and strength of alloy. The factor which caused the good amorphous formation was also investigated in this study. More bigger variations between the added atoms are, more easier to obtain high proportion of amorphous structure. By adding same proportion of zirconium atoms, comparing with other added atoms, large number of amorphous structure will be obtained in the result. Nevertheless, due to that there was specified proportion of BCC structure in the alloy, amorphous structure can only reach the maximum proportion of 80%. The BCC structure mostly composed of the intermetallic compound and the crystalline structure of zirconium at high temperature. Because the size effect of amorphous alloy is slight, the strength of nanowire is equivalent to its bulk material. This showed that the strength of amorphous alloy is far greater than that of crystalline alloy and the strength of amorphous alloy is with respect to the type of added atoms. Improvement and inference of molecular dynamics simulation were mentioned at the final of this study, which provided the aspect of future investigation.

    摘要                            I Abstract                          II 致謝                           III 目次                             IV 表目錄                            VII 圖目錄                          VIII 第1章 緒論                       1 1-1 前言                           2 1-2 研究動機與目的                       5 1-3 分子動力學模擬研究合金結構與性質之文獻回顧    7 1-4 本文架構                       9 第2章 分子動力學理論                  10 2-1 多元合金物理模型                  11 2-2 勢能函數                      14 2-2-1 Embedded Atom Method,EAM             16 2-2-2 Tight-Binding,TB                  17 2-3 運動方程式                      19 2-3-1 Verlet algorithm                  19 2-3-2 Leap Frog algorithm                  20 2-3-3 Velocity Verlet algorithm             21 2-3-4 Gear Predictor-Corrector algorithm         22 2-4 原子級應力計算                      26 2-5 初始條件                      28 2-6 多元合金模擬流程圖                  30 第3章 分子動力學數值模擬方法             32 3-1 模擬參數與無因次化                  33 3-2 週期性邊界條件                      35 3-3 鄰近原子表列法                      36 3-3-1 Verlet list 表列法                  38 3-3-2 Cell link 表列法                  39 3-3-3 Verlet list 表列法結合Cell link 表列法         40 3-4 結構分析法                      41 3-4-1 Radial Distribution Function,RDF         41 3-4-2 Honeycutt and Anderson analysis,HA         43 3-5 合金奈米線強度分析                  49 第4章 模擬結果分析與討論                  50 4-1 等莫耳比例合金                      51 4-1-1 等莫耳合金之結構比較                  52 4-1-2 合金中BCC結構之成因                  67 4-2 添加ZR、AL或CO元素對(CUNI)XRH1-X合金結構之影響    70 4-2-1 (CuNi)0.975Rh0.025                  71 4-2-2 (CuNi)0.85Rh0.15                  74 4-2-3 (CuNi)0.67Rh0.33                  77 4-3 各種合金之奈米線強度之探討             82 第5章 結論與建議                      91 5-1 結論                           92 5-2 建議與未來展望                      94 參考文獻                           95 自述                          101

    [01] P. Duwez, 1967, “Structure and properties of alloys rapidly quenched from the liquid state,” Trans. Am. Soc. Metals, Vol. 60, pp. 607-616.

    [02] 洪育德,2000,「Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討」,國立清華大學材料科學工程研究所碩士論文。

    [03] A. Inoue, and T. Zhang, 1996, “Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method”, Mater. T. JIM., Vol. 37, pp. 185-187.

    [04] A. Inoue, T. Zhang and T. Masumoto, 1990, “Zr-Al-Ni Amorphous Alloys with High-Transition Temperature and Significant Supercooled Liquid Region,” Mater. T. JIM., Vol. 31, No. 3, pp. 177-183.

    [05] A. Inoue, 2000, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” ACTA Mater., Vol. 48, pp. 279-306.

    [06] X. M. Wang, I. Yoshii, and A. Inoue, 2000, “Bulk amorphous Co-Ni-based alloys with a large supercooled liquid region,” Mater. T. JIM., Vol. 41 pp. 539-542.

    [07] A. Inoue, and T. Masumoto, U.S. Patent, No. 5032196, Japanese Patent, No. 07-122120.

    [08] 張貽雲,2005,「以分子動力學模擬多元合金奈米團簇之結構特性」,國立成功大學機械工程研究所碩士論文。

    [09] J. M. Haile, 1992, “Molecular Dynamics Simulation: Elementary Methods,” John Wiley & Sons, Inc., New York.

    [10] D. C. Rapaport, 1997, “The Art of Molecular Dynamics Simulation,” Cambridge University Press, London.

    [11] J. M. Goodfellow et al., 1990, “Molecular dynamics,” CRC Press, Boston.

    [12] M. P. Allen and D. J. Tildesley, 1991, “Computer Simulation of Liquids,” Oxford Science, London.

    [13] D. Frenkel and B. Smit, 1996, “Understanding Molecular Simulation,” Academic Press, San Diego.

    [14] D.W. Heermann, 1990, “Computer Simulation Method,” Springer-Verlag, Berlin.

    [15] W. Eckstein, 1991, “Computer Simulation of Ion-Solid interaction,” Springer-Verlag, Berlin.

    [16] M. P. Allen et al., 1992, “Computer Simulation in Chemical Physics,” Series C: Mathematical and Physical Sciences, Vol. 397, Kluwer Academic, Dordrecht.

    [17] M. Meyer et al., 1991, “Computer Simulation in Material Science,” Series E: Applied Sciences, Vol. 205, Kluwer Academic, Dordrecht.

    [18] M. Daw, M. Baskes, 1983, “Semiempirical Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals,” Phys. Rev. Lett., Vol. 50, Issue. 17, pp. 1285.

    [19] M. Daw, M. Baskes, 1984, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B, Vol. 29, Issue. 12, pp. 6443.

    [20] S. Foiles, M. Baskes, and M. Daw, 1986, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B, Vol. 33, Issue. 12, pp. 7983-7991.

    [21] M. Daw, S. Foiles, and M. Baskes, 1993, “The embedded-atom method: a review of theory and applications,” Materials Science Reports, Vol. 9, Issue. 7-8, pp. 251-310.

    [22] M. Baskes, J. Nelson, and A. Wright, 1989, “Semiempirical modified embedded-atom potentials for silicon and germanium,” Phys. Rev. B, Vol. 40, Issue. 9, pp. 6085-6100.

    [23] M. Baskes, 1992, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B, Vol. 46, Issue. 5, pp. 2727-2742.

    [24] B. Lee, M. Baskes, 2000, “Second nearest-neighbor modified embedded-atom-method potential,” Phys. Rev. B, Vol. 62, Issue. 13, pp. 8564.

    [25] B. Lee, M. Baskes, H. Kim, Y. Cho, 2001, “Second nearest-neighbor modified embedded atom method potentials for bcc transition metals,” Phys. Rev. B, Vol. 64, pp. 184102.

    [26] B. Lee, J. Shim, M. Baskes, 2003, “Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method,” Phys. Rev. B, Vol. 68, pp. 144112.

    [27] J. Slater, G. Koster, 1954, “Simplified LCAO method for periodic potential problem,” Phys. Rev., Vol. 94, No. 6, pp. 1498-1524.

    [28] L. Colombo, 1998, “A source code for tight-binding molecular dynamics simulation,” Computational Materials Science, Vol. 12, pp. 278-287.

    [29] V. Rosato, M. Guillope, and B. Legrand, 1989, “Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model,” Philosophical Magazine A, Vol. 59, Issue. 2, pp. 321-336.

    [30] F. Cleri, and V. Rosato, 1993, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B, Vol. 48, Issue. 1, pp. 22-33.

    [31] M. Mehl, and D. Papaconstantopoulos, 1996, “Applications of a new tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals,” Phys. Rev. B, Vol. 54, Issue. 7, pp. 4519.

    [32] S. Yang, M. Mehl, and D. Papaconstantopoulos, 1998, “Application of a tight-binding total-energy method for Al, Ga, and In,” Phys. Rev. B, Vol. 57, Issue. 4, pp. R2013.

    [33] J. D. Honeycutt and H. C. Andersen, 1987, “Molecular dynamics study of melting and freezing of small Lennard-Jones clusters,” J. Phys. Chem., Vol. 91, pp. 4950-4963.

    [34] H. Jónsson and H. C. Andersen, 1988, “Icosahedral Ordering in the Lennard-Jones Liquid and Glass,” Phys. Rev. Lett., Vol. 60, pp. 2295–2298.

    [35] E.G. Noya, C. Rey, L. J. Gallego, 2001, “amorphization of Ni-Al alloys by fast quenching from the liquid state: a molecular dynamics study,” J. Non-Crystalline Solids, Vol. 298, pp. 60-66.

    [36] F. F. Chen, H. F. Zhang, F. X. Qin, Z. Q. Hu, 2003, “Molecular dynamics study of atomic transport properties in rapidly cooling liquid copper,” J. Chem. Phys., Vol. 120, pp.1826-1831.

    [37] L. Qi, H. F. Zhang, Z. Q. Hu, 2004, “Molecular dynamic simulation of glass formation in binary liquid metal: Cu-Ag using EAM,” Intermetallics, Vol. 12, pp. 1191-1195.

    [38] S. J. A. Koh, H. P. Lee, C. Lu, and Q. H. Cheng, 2005, “Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects,” Phys. Rev. B, Vol. 72, pp. 085414.

    [39] H. Ikeda, Y. Qi, T. Cagin, K. Samwer, W. L. Johnson, W. A. Goddard III, 1999, “Strain Rate Induced Amorphization in Metallic Nanowires,” Phys. Rev. Lett., Vol. 82, pp. 2900.

    [40] P. S. Branı´cio and J. P. Rino, 2000, “Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study,” Phys. Rev. B, Vol. 62, pp. 16950.

    [41] Y. Qi, T. Cagin, Y. Kimura, W. Goddard III, 1999, “Molecular dynamics simulations of glass formation and crystallization in binary liquid metals: Cu–Ag and Cu–Ni,” Phys. Rev. B, Vol. 59, pp. 3527.

    [42] H.W. Sheng, J.H. He, E. Ma, 2002, “molecular dynamics simulation studys of atomic-level structures in rapidly quenched Ag-Cu nonequilibrium alloys,” Phys. Rev. B, Vol.65, pp. 184203.

    [43] E. Ma, 2005, “Alloys created between immiscible elements,” Progress in Materials Science, Vol. 50, pp. 413-509.

    [44] E. Ma, 2003, “Amorphization in mechanically driven materials systems,” Scripta Mater., Vol. 49, pp. 941.

    [45] H. Li, G. H. Wang, X. F. Bian, and F. Ding, 2001, “Local cluster formation in a cobalt melt during the cooling process,” Phys. Rev. B, Vol. 65, Issue. 3, No. 035411.

    [46] L. Wang, X. F. Liu, Y. N. Zhang, H. Yang, Y. Chen, and X. F. Bian, 2003, “The molecular dynamics simulation of structure and transport properties of sheared super-cooled liquid metal,” Phys. Lett. A, Vol. 319, pp. 518-522.

    [47] L. Wang, Y. N. Zhang, X. F. Bian, and Y. Chen, 2003, “Melting of Cu nanoclusters by molecular dynamics simulation,” Phys. Lett. A, Vol. 310, pp. 197-202.

    [48] Y. Chen, X. F. Bian, J. X. Zhang, Y. N. Zhang and L. Wang, 2004, “Structure and dynamics of gold nanocluster under cooling conditions,” Modelling Simul. Mater. Sci. Eng., Vol. 12 , pp. 373–379.

    [49] H.A. Wu, 2006, “Molecular dynamics study on mechanics of metal nanowire,” Mech. Res. Comm., Vol. 33, pp.9-16.

    [50] H.A. Wu, 2006, “Molecular dynamics study of the mechanics of metal nanowires at finite temperature,” Euro. J. Mech. A/Solids, Vol. 25, pp. 370-377.

    [51] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, J. R. Haak, 1984, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., Vol. 81, pp. 3684.

    [52] D. Srolovitz, K. Maeda, V. Vitek, T. Egami, 1981, “Structural defects in amorphous solids statistical analysis of a computer model," Philosophical Mag. A, Vol. 44, pp. 847-866.

    [53] A. L. Greer, 1993, “Confusion by design,” Nature, Vol. 366, pp.303.

    [54] U. Pinsook, G. J. Ackland, 1999, “Calculation of anomalous phonons and the hcp-bcc phase transition in zirconium,” Phys. Rev. B, Vol.59, pp. 13642.

    [55] G. Duan, D. H. Xu, Q. Zhang, G. Y. Zhang, T. Cagin, W. L. Johnson, W. A. Goddard III, 2005, “Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure,” Phys. Rev. B, Vol.71, pp. 224208.

    [56] H. Teichler, 1998, “Melting transition in molecular-dynamics simulations of the Ni0.5Zr0.5 intermetallic compound,” Phys. Rev. B, Vol. 59, pp. 8473.

    [57] A. V. Keitz, G. Sauthoff, 2002, “Laves phases for high temperatures-Part II: Stability and mechanical properties,” Intermetallics, Vol. 10, pp. 497-510.

    [58] N. Miyazaki, Y. Shiozaki, 1996, JSME Int. J. A, Vol. 40, pp. 606.

    下載圖示 校內:2007-07-28公開
    校外:2007-07-28公開
    QR CODE