簡易檢索 / 詳目顯示

研究生: 陳正琦
Chen, Cheng-Chi
論文名稱: 圓柱型複合層殼之微分數值解
Analysis of cylindrical shells using generalized differential quadrature
指導教授: 顏崇斌
Yen, Chung-Bing
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 55
中文關鍵詞: 複合層殼微分數值圓柱型
外文關鍵詞: cylindrical shell, differential quadrature
相關次數: 點閱:137下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以古典層殼理論(classical laminated shell theory , CST )為基礎,分析開放性正交疊層圓柱殼在不同邊界條件下受撓曲作用之力學行為,將古典層殼理論之偏微分控制方程式,利用廣義微分數值法(generalized differential quadrature method),並配合適宜之邊界條件,轉化為線性代數方程組,求得各位移量及應力(membrane stresses)量。文中針對一至三層之圓柱層殼,以微分數值法與古典層殼理論解作一比較,並探討微分數值法取樣點多寡對於數值結果之收斂性。

      According to classical shell theory(CST), the analysis of bending of cross-ply cylindrical shells with different boundary conditions is presented. Using generalized differential quadrature method(GDQ), we can transform the government equations(partial differential equations) according to CST to linear algebraic equations, setting suitable boundary conditions, and get all displacements and membrane stresses finally. In this article, to examine the GDQ method of cylindrical shells of one to three layers, a comparison of the results with CST was carried out. And discuss the convergence of the results from the number of sampling points.

    摘 要 I 誌 謝 II 目 錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1-1 研究主旨 1 1-2 本文內容 2 第二章 古典圓柱層殼理論 4 2-1 基本假設 4 2-2 應變與位移之關係式 5 2-3 材料組成方程式 7 2-4 控制方程式 9 第三章 應用問題解析 14 第四章 微分數值法(DQM)概述 18 4-1 基本概念 18 4-2 節點之選取 19 4-3 測試函數與權係數 19 第五章 數值結果 22 5-1 均質性圓柱殼 22 5-2 正交疊層圓柱殼 23 第六章 結論 27 參考文獻 28 附錄 30 表 32 圖 40

    Ambartsumian, S. A., Theory of Anisotropic Shells, English translation, NASA TT-F-118 (1964)

    Bellman, R. E. and Casti, J. “Differential quadrature and long-term integration", J. Math.
    Anal. Appl., 1971, 34(2), 235-238

    Bellman, R. E., Kashef, B. G. and Casti, J., “Differential quadrature : a technique for the rapid solution of nonlinear partial differential equations”, J. Comput. Phys., 10, 40-52 (1972)

    Dong, S. B., Pister, K. S. and Taylor, R. L., “On the theory of laminated isotropic shells and plates”, J. Aerospace Sci., 29, 969-975 (1962)

    Du, H., Lim, M. K. and Lin, R. M. “Application of generalized differential quadrature method to structure problems", Int. J. Numer. Methods Engng., 1994, 37(11), 1881-1896.

    Flügge, W., Stress in Shells, 2nd ed., Springer-Verlag, New York (1973)

    Jones, R. M., Mechanics of Composite materials, McGraw-Hill Book Company, New York (1975)

    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticit, Dover, New York (1944)

    Shu, C., 1991, “Generalized Differential-Integral Qqadrature and application on the Simulation of Incompressible Viscous Flows including Parallel
    Computation “, PhD Thesis , University of Glasgow, Glasgow, Scotland

    Shu, C. and Richard, B. E., “Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stocks equations”, Int. J. Numer. Meth. Fluids 1992, 15, 791-798

    Whitney, J. M., Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Company, Pennsylvania (1987)

    下載圖示 校內:立即公開
    校外:2004-07-05公開
    QR CODE