| 研究生: |
陳正琦 Chen, Cheng-Chi |
|---|---|
| 論文名稱: |
圓柱型複合層殼之微分數值解 Analysis of cylindrical shells using generalized differential quadrature |
| 指導教授: |
顏崇斌
Yen, Chung-Bing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 複合層殼 、微分數值 、圓柱型 |
| 外文關鍵詞: | cylindrical shell, differential quadrature |
| 相關次數: | 點閱:137 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以古典層殼理論(classical laminated shell theory , CST )為基礎,分析開放性正交疊層圓柱殼在不同邊界條件下受撓曲作用之力學行為,將古典層殼理論之偏微分控制方程式,利用廣義微分數值法(generalized differential quadrature method),並配合適宜之邊界條件,轉化為線性代數方程組,求得各位移量及應力(membrane stresses)量。文中針對一至三層之圓柱層殼,以微分數值法與古典層殼理論解作一比較,並探討微分數值法取樣點多寡對於數值結果之收斂性。
According to classical shell theory(CST), the analysis of bending of cross-ply cylindrical shells with different boundary conditions is presented. Using generalized differential quadrature method(GDQ), we can transform the government equations(partial differential equations) according to CST to linear algebraic equations, setting suitable boundary conditions, and get all displacements and membrane stresses finally. In this article, to examine the GDQ method of cylindrical shells of one to three layers, a comparison of the results with CST was carried out. And discuss the convergence of the results from the number of sampling points.
Ambartsumian, S. A., Theory of Anisotropic Shells, English translation, NASA TT-F-118 (1964)
Bellman, R. E. and Casti, J. “Differential quadrature and long-term integration", J. Math.
Anal. Appl., 1971, 34(2), 235-238
Bellman, R. E., Kashef, B. G. and Casti, J., “Differential quadrature : a technique for the rapid solution of nonlinear partial differential equations”, J. Comput. Phys., 10, 40-52 (1972)
Dong, S. B., Pister, K. S. and Taylor, R. L., “On the theory of laminated isotropic shells and plates”, J. Aerospace Sci., 29, 969-975 (1962)
Du, H., Lim, M. K. and Lin, R. M. “Application of generalized differential quadrature method to structure problems", Int. J. Numer. Methods Engng., 1994, 37(11), 1881-1896.
Flügge, W., Stress in Shells, 2nd ed., Springer-Verlag, New York (1973)
Jones, R. M., Mechanics of Composite materials, McGraw-Hill Book Company, New York (1975)
Love, A. E. H., A Treatise on the Mathematical Theory of Elasticit, Dover, New York (1944)
Shu, C., 1991, “Generalized Differential-Integral Qqadrature and application on the Simulation of Incompressible Viscous Flows including Parallel
Computation “, PhD Thesis , University of Glasgow, Glasgow, Scotland
Shu, C. and Richard, B. E., “Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stocks equations”, Int. J. Numer. Meth. Fluids 1992, 15, 791-798
Whitney, J. M., Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Company, Pennsylvania (1987)