簡易檢索 / 詳目顯示

研究生: 陳沛均
Chen, Pei-Chun
論文名稱: 表面處理及預型條件對竹纖維折角機械性質之影響
Influence of Surface Treatment and Preforming Conditions on the Mechanical Properties of Angle Bend Bamboo Fiber
指導教授: 楊文彬
Young, Wen-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 132
中文關鍵詞: 竹纖維預型棕櫚油處理竹纖維折角處拉伸強度
外文關鍵詞: bamboo fiber preforming, palm oil treatment, bonding strength with resin, tensile strength of angle bend fiber
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 竹纖維在彎曲預型後,其折角處的拉伸強度會因內部纖維素受到破壞而降低。因此,本研究通過表面處理對竹纖維進行改性,以增加其彎曲強度,從而提升竹纖維在預型後,其折角的拉伸強度。研究內容將分為四個階段進行。第一階段探討不同油處理以及油溫對竹纖維機械性質、吸水性的影響。根據研究結果,棕櫚油處理具有最佳的疏水性和次佳的機械性質。隨著油處理溫度的提高,竹纖維有著更好的疏水性,但其機械性質會降低。第二階段探討不同油處理對竹纖維與樹脂結合度的影響,並研究了竹纖維埋入樹脂的深度對其界面剪切力的影響。結果顯示,經過棕櫚油處理的竹纖維與樹脂的結合度最佳。此外,竹纖維與樹脂的界面剪切力隨著竹纖維埋入樹脂的深度增加而減少。第三階段由前兩階段所得出的最佳油處理製程,將以150 °C的棕櫚油作為油處理製程。本階段研究了表面處理對竹纖維折角處拉伸強度的影響。研究結果顯示,經過棕櫚油處理的竹纖維能夠提高預型後折角處的拉伸強度。第四階段探討提高預型溫度、在預型中加入Caul Plate、以及將竹纖維先加熱再進行彎曲預型對竹纖維折角處拉伸強度的影響。研究結果顯示,提高預型溫度和先將竹纖維加熱再預型這兩種預型條件會導致竹纖維折角處拉伸強度下降。然而,在預型製程中加入Caul Plate對竹纖維折角處的拉伸強度沒有造成影響。

    The objective of this study is to modify property of the bamboo fiber through surface treatment to increase its residual strength after bend forming. The effects of avocado oil, palm oil, soybean oil, and tung oil treatments on the water absorption, mechanical properties, and bonding strength with resin were compared for bamboo fibers. Furthermore, the impact of oil temperature on the mechanical properties and water absorption of bamboo fibers was investigated. The results showed that the bamboo fibers treated with palm oil had the best hydrophobicity and bonding strength with resin, and the second-best mechanical properties. As the temperature of the oil treatment increased, the hydrophobicity of the bamboo fibers improved, but their mechanical properties decreased. Therefore, in this study, palm oil treatment at 150 °C was chosen as the oil treatment process. Subsequently, the influence of surface treatment on tensile strength of angle bend fiber was investigated. The results showed that bamboo fiber treated with palm oil before preforming was able to improve the tensile strength of the angle bend fiber.

    中文摘要 I ABSTRACT II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XV 第一章、緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 竹纖維關文獻 2 1-2-2 竹纖維鹼處理相關文獻 6 1-2-3 竹纖維表面處理相關文獻 8 1-2-4 竹纖維與基材界面結合度相關文獻 13 1-2-5 竹纖維預型相關文獻 15 1-3 研究目的 16 1-4 研究方法 17 第二章、研究簡介 23 2-1 桂竹介紹 23 2-2 竹細胞結構介紹 24 2-3 鹼處理介紹 26 2-4 表面處理介紹 27 2-5 環氧樹脂介紹 29 2-6 材料性質測試 29 2-6-1 物理性質量測 30 2-6-2 機械性質量測 30 2-7 真空預型製程介紹 33 第三章、研究規劃與製程設計 35 3-1 實驗材料 35 3-2 實驗模具 44 3-3 實驗設備 47 3-4 竹纖維製程 57 3-4-1 竹纖維提取製程 57 3-4-2 竹纖維鹼處理 57 3-5 表面處理竹纖維製程 59 3-5-1 油加熱處理製程 59 3-5-2 不同溫度油加熱處理 60 3-5-3 矽烷處理 60 3-6 竹纖維物理性質與機械性質量測 61 3-6-1 竹纖維物理性質量測 61 3-6-2 竹纖維機械性質量測 62 3-7 表面處理竹纖維/樹脂結合度量測 64 3-7-1 竹纖維/樹脂試片製造 64 3-7-2 竹纖維/樹脂結合度量測 66 3-8 竹纖維真空預型製程與量測 68 3-8-1 不同表面處理預型製程 68 3-8-2 不同預行條件製程 71 3-8-3 竹纖維折角處拉伸強度量測 75 第四章、實驗結果與討論 77 4-1 表面處理竹纖維性質比較 77 4-1-1 物理性質量測 79 4-1-2 吸水率量測 81 4-1-3 機械性質量測 82 4-1-4 竹纖維/樹脂結合度量測 86 4-2 竹纖維折角處拉伸強度量測 88 4-2-1 表面處理對竹纖維折角處拉伸強度的影響 90 4-2-2 預型條件對竹纖維折角處拉伸強度的影響 92 第五章、結論與展望 94 5-1 研究結論 94 5-2 未來展望 96 參考文獻 97 附錄 102

    [1] K.-t. Lau, P.-y. Hung, M.-H. Zhu, and D. Hui, "Properties of natural fibre composites for structural engineering applications," Composites Part B: Engineering, vol. 136, pp. 222-233, 2018.
    [2] M. R. M. Asyraf et al., "Product development of natural fibre-composites for various applications: Design for sustainability," Polymers, vol. 14, no. 5, p. 920, 2022.
    [3] S. C. Chin, K. F. Tee, F. S. Tong, H. R. Ong, and J. Gimbun, "Thermal and mechanical properties of bamboo fiber reinforced composites," Materials Today Communications, vol. 23, p. 100876, 2020.
    [4] D. Divya, S. Indran, and K. N. Bharath, "Bamboo: A Potential Natural Material for Bio-composites," Bamboo Fiber Composites: Processing, Properties and Applications, pp. 15-37, 2021.
    [5] J.-K. Huang and W.-B. Young, "The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites," Composites Part B: Engineering, vol. 166, pp. 272-283, 2019.
    [6] X. Gao, D. Zhu, S. Fan, M. Z. Rahman, S. Guo, and F. Chen, "Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: a review," Journal of Materials Research and Technology, vol. 19, pp. 1162-1190, 2022.
    [7] T. Richmond et al., "Physical and dynamic mechanical properties of continuous bamboo reinforcement/bio-based epoxy composites," Materials Research Express, vol. 9, no. 1, p. 015505, 2022.
    [8] Y.-Y. Wang et al., "High-performance bamboo steel derived from natural bamboo," ACS applied materials & interfaces, vol. 13, no. 1, pp. 1431-1440, 2020.
    [9] I. Widiastuti, Y. R. Pratiwi, and D. N. Cahyo, "A study on water absorption and mechanical properties in epoxy-bamboo laminate composite with varying immersion temperatures," Open Engineering, vol. 10, no. 1, pp. 814-819, 2020.
    [10] A. Adel Salih, R. Zulkifli, and C. H. Azhari, "Tensile properties and microstructure of single-cellulosic bamboo fiber strips after alkali treatment," Fibers, vol. 8, no. 5, p. 26, 2020.
    [11] A. Saha and P. Kumari, "Effect of alkaline treatment on physical, structural, mechanical and thermal properties of Bambusa tulda (Northeast Indian species) based sustainable green composites," Polymer Composites, vol. 44, no. 4, pp. 2449-2473, 2023.
    [12] A. B. Akinyemi, E. T. Omoniyi, and G. Onuzulike, "Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites," Construction and Building Materials, vol. 245, p. 118405, 2020.
    [13] X. Wang et al., "Effect of high-temperature saturated steam treatment on the physical, chemical, and mechanical properties of moso bamboo," Journal of Wood Science, vol. 66, pp. 1-9, 2020.
    [14] Z. Yuan et al., "Effects of one-step hot oil treatment on the physical, mechanical, and surface properties of bamboo scrimber," Molecules, vol. 25, no. 19, p. 4488, 2020.
    [15] X. Piao, Z. Zhao, H. Guo, Z. Wang, and C. Jin, "Improved properties of bamboo by thermal treatment with wood wax oil," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 643, p. 128807, 2022.
    [16] T. Tang, X. Chen, B. Zhang, X. Liu, and B. Fei, "Research on the physico-mechanical properties of moso bamboo with thermal treatment in tung oil and its influencing factors," Materials, vol. 12, no. 4, p. 599, 2019.
    [17] X. Hao et al., "The effect of oil heat treatment on biological, mechanical and physical properties of bamboo," Journal of wood science, vol. 67, pp. 1-14, 2021.
    [18] Q. Wang, Y. Zhang, W. Liang, J. Wang, and Y. Chen, "Effect of silane treatment on mechanical properties and thermal behavior of bamboo fibers reinforced polypropylene composites," Journal of Engineered Fibers and Fabrics, vol. 15, p. 1558925020958195, 2020.
    [19] T. Bai et al., "Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites," Composites Science and Technology, vol. 213, p. 108951, 2021.
    [20] Y. Liu, H. Li, Z. Feng, L. Ge, R. Li, and S. Liu, "Study on the interfacial bonding properties between alkali-treated bamboo fibers and high-performance seawater sea-sand concrete," Construction and Building Materials, vol. 426, p. 136190, 2024.
    [21] H.-H. Chiu and W.-B. Young, "Characteristic study of bamboo fibers in preforming," Journal of Composite Materials, vol. 54, no. 25, pp. 3871-3882, 2020.
    [22] B.-J. Wang and W.-B. Young, "The natural fiber reinforced thermoplastic composite made of woven bamboo fiber and polypropylene," Fibers and Polymers, vol. 23, no. 1, pp. 155-163, 2022.
    [23] 莊溪. "桂竹." 中央研究院生物多樣性研究中心. http://kplant.biodiv.tw/%E6%A1%82%E7%AB%B9/%E6%A1%82%E7%AB%B9.htm (accessed April, 2024).
    [24] 呂錦明, 台灣竹圖鑑. 晨星出版公司, 2010.
    [25] L. Osorio, E. Trujillo, F. Lens, J. Ivens, I. Verpoest, and A. Van Vuure, "In-depth study of the microstructure of bamboo fibres and their relation to the mechanical properties," Journal of Reinforced Plastics and Composites, vol. 37, no. 17, pp. 1099-1113, 2018.
    [26] F. Rusch, A. D. Wastowski, T. S. de Lira, K. C. C. S. R. Moreira, and D. de Moraes Lúcio, "Description of the component properties of species of bamboo: a review," Biomass Conversion and Biorefinery, vol. 13, no. 3, pp. 2487-2495, 2023.
    [27] S. Tsuchikawa and H. Kobori, "A review of recent application of near infrared spectroscopy to wood science and technology," Journal of Wood Science, vol. 61, pp. 213-220, 2015.
    [28] D. T. Ebissa, T. Tesfaye, D. Worku, and D. Wood, "Characterization and optimization of alkali-treated yushania alpina bamboo fiber properties: case study of ethiopia species," SN Applied Sciences, vol. 4, no. 3, p. 79, 2022.
    [29] M. Das and D. Chakraborty, "Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment," Journal of applied polymer science, vol. 107, no. 1, pp. 522-527, 2008.
    [30] K. Vardhini, R. Murugan, and R. Rathinamoorthy, "Effect of alkali treatment on physical properties of banana fibre," Indian Journal of Fibre & Textile Research (IJFTR), vol. 44, no. 4, pp. 459-465, 2019.
    [31] Y. Li, L. Jiang, C. Xiong, and W. Peng, "Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly (lactic-co-glycolic) composite," Industrial & Engineering Chemistry Research, vol. 54, no. 48, pp. 12017-12024, 2015.
    [32] S. Cui et al., "Effect of the fiber surface treatment on the mechanical performance of bamboo fiber modified asphalt binder," Construction and Building Materials, vol. 347, p. 128453, 2022.
    [33] A. Woolf et al., "Avocado oil," in Gourmet and health-promoting specialty oils: Elsevier, 2009, pp. 73-125.
    [34] A. Mancini et al., "Biological and nutritional properties of palm oil and palmitic acid: effects on health," Molecules, vol. 20, no. 9, pp. 17339-17361, 2015.
    [35] R. D. O'brien, Fats and oils: formulating and processing for applications. CRC press, 2008.
    [36] L. Boateng, R. Ansong, W. Owusu, and M. Steiner-Asiedu, "Coconut oil and palm oil’s role in nutrition, health and national development: A review," Ghana medical journal, vol. 50, no. 3, pp. 189-196, 2016.
    [37] N. Karak, "Vegetable oil-based polymers: properties, processing and applications," 2012.
    [38] X. Jianliang et al., "Durable hydrophobic Enteromorpha design for controlling oil spills in marine environment prepared by organosilane modification for efficient oil-water separation," Journal of Hazardous Materials, vol. 421, p. 126824, 2022.
    [39] H. Sukanto, W. W. Raharjo, D. Ariawan, J. Triyono, and M. Kaavesina, "Epoxy resins thermosetting for mechanical engineering," Open Engineering, vol. 11, no. 1, pp. 797-814, 2021, doi: doi:10.1515/eng-2021-0078.
    [40] F.-L. Jin, X. Li, and S.-J. Park, "Synthesis and application of epoxy resins: A review," Journal of industrial and engineering chemistry, vol. 29, pp. 1-11, 2015.
    [41] 許家泓, "竹纖維/聚酯纖維編織預型與複合材料之研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2023.
    [42] R. S. Mbakop, G. Lebrun, and F. Brouillette, "Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers," Composites Part A: Applied Science and Manufacturing, vol. 109, pp. 604-614, 2018.
    [43] 黃博偉, "竹纖維表面處理對吸水率與機械性質探討," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2023.
    [44] 周紫濃, "竹纖維拉伸強度之研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2015.
    [45] 邱宣豪, "連續竹纖維預型與竹纖維複合材料研究," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2019.
    [46] 歐雷迪, "矽烷/鹼處理竹纖環氧複合材料的吸水率研究," 碩士, 機械工程學系, 國立成功大學, 台南市, 2021.

    無法下載圖示 校內:2026-07-26公開
    校外:2026-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE