簡易檢索 / 詳目顯示

研究生: 張志照
Chang, Chi-Chao
論文名稱: 用FDTD方法模擬二維石墨烯奈米帶的完美吸收體
Finite-Different Time-Domain modeling of 2D perfect absorbers using graphene nanoribbons
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: 石墨烯石墨烯電導率inter-band有限差分時域完全吸收
外文關鍵詞: graphene, conductivity of graphene, inter-band, FDTD, total absorption
相關次數: 點閱:59下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文以探討石墨烯的特性與模擬利用石墨烯在中紅外線範圍達到完全吸收,石墨烯的能帶結構特殊,其電導率可以分為intra-band和inter-band兩部分,由於inter-band是複數形式的對數函數,這類函數無法直接帶入FDTD模擬方法,因此本實驗室發展了一套近似法,擬合出可以帶入FDTD運算的石墨烯inter-band模型,同時驗證該模型的正確性,接著討論達到完全吸收的三種方法,但這篇論文僅深入討論前兩種方法,第一種方法礙於單層石墨烯的吸收效果有限,因此用薄層金屬去模擬驗證,確認在符合特定條件下可以達到完全吸收的效果,接著第二種方法利用前面提出的石墨烯電導率擬合模型,模擬單層石墨烯在特定條件下實現強吸收與完全吸收的效果,同時也發現這種方法的限制,因此最後改變結構用週期性的石墨烯做完全吸收,驗證在特定條件下,這種結構在中紅外線可以達到近乎完全吸收的效果。

    This thesis analyzes the possibility of using graphene to achieve total absorption in the mid-infrared. The auxiliary differential equation method is developed to model the broadband conductivity of graphene in FDTD. Three different methods to achieve total absorption in general are first discussed. The first method of using coherent perfect absorption is analyzed with single metallic layer. It requires that the real and imaginary part of the refractive index are equal. This condition is difficult to be achieved in graphene. The second method of using thin film and PEC Fabry-Perot cavity is analyzed. By applied certain gated voltage, a single graphene sheet with PEC FP cavity can achieve nearly perfect absorption at a particular wavelength. Furthermore, by replace graphene sheet with periodic graphene nanoribbon structure, perfect absorption peak can be tuned.

    口試委員審定書 I 中文摘要 II Abstract III 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 3 第二章 相關理論與石墨烯介紹 4 2-1 表面電漿 4 2-2 石墨烯介紹 7 2-3 石墨烯的表面電漿 9 2-4 單層石墨烯的穿透與反射 14 2-5 薄膜結構達到完全吸收的條件 17 第三章 數值方法 21 3-1 有限差分法介紹(Finite-Difference methods) 21 3-2 有限時域差分法(Finite-Difference Time-Domain) 21 3-3 全場與散射場(Total field and Scatter field) 25 3-4 完美匹配層(Perfectly matched layer) 28 3-5 模擬空間架構 31 第四章 模擬結果與分析 32 4-1 石墨烯電導率 32 4-2 單層石墨烯的穿透反射率 35 4-3 利用FDTD模擬石墨烯 38 4-4 FDTD模擬極薄金屬吸收效果與其完全吸收 45 4-5 FDTD模擬單層無窮延伸石墨烯的完全吸收 54 4-6 FDTD模擬單層石墨烯奈米帶的完全吸收 64 第五章 結論與未來展望 78 5-1 結論 78 5-2 未來展望 79 參考文獻 81

    [1]. Kohlschütter, V., and P. Haenni, "Zur Kenntnis des graphitischen Kohlenstoffs und der Graphitsäure," Zeitschrift für anorganische und allgemeine Chemie 105(1), 121 (1919)
    [2]. P. R. Wallace, "The band theory of graphite," Physical Review 71(9), 622 (1947)
    [3]. Ruess, G., and F. Vogt, "Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd," Monatshefte für Chemie/Chemical Monthly 78(3), 222 (1948)
    [4]. Geim, A. K., and K. S. Novoselov, "The rise of graphene,"
    Nanoscience and Technology: A Collection of Reviews from Nature Journals, 11 (2010)
    [5]. Novoselov, K. S., et al. "Electric field effect in atomically thin carbon films," science 306(5696), 666 (2004)
    [6]. Lemme, Max C., et al. "A graphene field-effect device," IEEE Electron Device Letters 28(4), 282 (2007)
    [7]. Alaee, Rasoul, et al. "A perfect absorber made of a graphene micro-ribbon metamaterial," Optics express 20(27), 28017 (2012)
    [8]. Wood, Robert Williams, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum, " Proceedings of the Physical Society of London 18(1), 269 (1902)
    [9]. Fano, Ugo., "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," JOSA 31(3), 213 (1941)
    [10]. Hessel, A., and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Applied optics 4(10), 1275 (1965)
    [11]. Wood, Robert W., "Anomalous diffraction gratings," Physical Review 48(12), 928 (1935)
    [12]. Jana, Jayasmita, Mainak Ganguly, and Tarasankar Pal., "Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application," RSC Advances 6(89), 86174 (2016)
    [13]. Zhou, Chao, et al. "Graphene’s cousin: the present and future of graphene,"
    Nanoscale research letters 9(1), 26 (2014)
    [14]. Meyer, Jannik C., et al. "The structure of suspended graphene sheets,"
    Nature 446(7131), 60 (2007)
    [15]. Rana, Kuldeep, Jyoti Singh, and Jong-Hyun Ahn, "A graphene-based transparent electrode for use in flexible optoelectronic devices," Journal of Materials Chemistry C 2(15), 2646 (2014)
    [16]. Mittendorff, Martin, et al. "Ultrafast graphene-based broadband THz detector," Applied Physics Letters 103(2), 021113 (2013)
    [17]. De Sanctis, Adolfo, et al. "Graphene-based light sensing: fabrication, characterisation, physical properties and performance," Materials 11(9), 1762 (2018)
    [18]. Behura, Sanjay K., et al. "Graphene–semiconductor heterojunction sheds light on emerging photovoltaics," Nature Photonics 13, 312 (2019)
    [19]. Mikhailov, Sergey A., and Klaus Ziegler, "New electromagnetic mode in graphene," Physical review letters 99(1), 016803 (2007)
    [20]. Falkovsky, L. A., "Optical properties of graphene," Journal of Physics: Conference Series 129(1), 012004 (2008)
    [21]. Piper, Jessica R., and Shanhui Fan, "Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance," Acs Photonics 1(4), 347 (2014)
    [22]. Hadley, Lawrence N., and D. M. Dennison, "Reflection and transmission interference filters part I. Theory," JOSA 37(6), 451 (1947)
    [23]. Botten, L. C., et al. "Periodic models for thin optimal absorbers of electromagnetic radiation," Physical Review B 55(24), 16072 (1997)
    [24]. Tischler, Jonathan R., M. Scott Bradley, and Vladimir Bulović, "Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film," Optics letters 31(13), 2045 (2006)
    [25]. Yee, K. "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on antennas and propagation 14(3), 302 (1966)
    [26]. Taflove, A. "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," IEEE Transactions on electromagnetic compatibility (3), 191 (1980)
    [27]. Berenger, Jean-Pierre, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of computational physics 114(2), 185 (1994)
    [28]. Potter, Mike, and Jean-Pierre Bérenger, "A Review of the Total Field/Scattered Field Technique for the FDTD Method," FERMAT 19, 1 (2017)
    [29]. Roden, J. Alan, and Stephen D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media," Microwave and optical technology letters 27(5), 334 (2000)
    [30]. Gedney, Stephen D., and Bo Zhao, "An auxiliary differential equation formulation for the complex-frequency shifted PML," IEEE Transactions on Antennas and Propagation 58(3), 838 (2009)
    [31]. Hanson, George W. "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics 103(6), 064302 (2008)
    [32]. Mock, Adam. "Padé approximant spectral fit for FDTD simulation of graphene in the near infrared," Optical Materials Express 2(6), 771 (2012)

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE