| 研究生: |
莊士毅 Chuang, Shih-Yi |
|---|---|
| 論文名稱: |
用於表面增強拉曼基板的製作及電磁模擬 Fabrication and electromagnetic simulation of substrates for Surface-enhanced Raman Scattering |
| 指導教授: |
陳宣燁
Chen, Shiuan-Yeh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 表面增強拉曼散射基板 、快速熱退火 、加熱蒸鍍 |
| 外文關鍵詞: | SERS, annealing, polystyrene, BDT, LSP, SPP |
| 相關次數: | 點閱:91 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
拉曼光譜目前已廣泛地應用在生醫影像、分子檢測…等技術上,但由於拉曼訊號微弱不易被偵測,因此一般會製作金屬結構基板來增強拉曼訊號的產生,本研究使用加熱蒸鍍法製作金奈米多孔薄膜,再利用快速熱退火調控多孔結構的孔隙大小,相較於選擇性化學蝕刻或是電子束微影製作結構,步驟簡約、製程時間短、利於量產。論文中除了提供快速製作拉曼增強基板的方法外,也對這些基板做光學分析並量測不同尺寸的聚乙烯乳膠微米粒子和單層1,4-苯基二硫醇分子在基板上的拉曼光譜,分析孔隙大小對於微米粒子和分子拉曼增強的關係並最佳化基板,提供使用者量測不同物質時選擇適當結構基板的依據。
在光學特性中,平坦的金薄膜在穿透光譜中約506 nm的位置會有峰值產生,隨著金薄膜上的孔隙出現且逐漸擴大,穿透光譜圖中的峰值會逐漸藍移,待孔隙擴大至350 nm以上時,峰值會逐漸消失,穿透光譜整體趨近平坦,而峰值藍移的現象推測是由入射光和金薄膜上不同的表面電漿耦合產生。
在研究中發現,孔隙越小的拉曼增強基板對於分子的拉曼訊號增強效果越好,而表面相對平坦的拉曼增強基板幾乎無法量測到分子訊號,但表面粗糙不含孔隙的拉曼增強基板對於微米粒子的拉曼訊號增強較顯著,推測原因為分子主要藉由區域性表面電漿共振增強拉曼訊號,因此基板孔隙越小的區域電場增強效果越明顯,而微米粒子主要藉由傳遞性表面電漿共振增強拉曼訊號,因此相對平坦的金膜增強效果較佳。
此論文中提供穩定、簡約、快速的方法製作拉曼增強金基板,並分析其對於微米粒子和分子不同的增強效果,對於後續拉曼增強基板的定量分析、提升增強效果、訊號均勻性…等改良,有一定的參考依據。
A fast and efficient method is reported to create SERS substrates. The size of substrate nanogaps could be controlled by tuning the annealing temperature. The gap size of SERS substrate is 20 nm, 175 nm, 250 nm, 350 nm and 550 nm. The transmission peak would blue shift as the gap size increases. Furthermore, it is found that the relation between Raman enhancement and nanogaps size is different for molecules and microparticles due to thelocalized and delocalized
surface plasmon on the gold film. The BDT molecule, 500 nm and 1 μm polystyrene particles were used for detection. The 20 nm gap Au film has the strongest Raman enhancement for BDT molecule. However, the rough but with no gap gold film has the strongest Raman enhancement for microparticles. The reason was assumed that the SPP was generated on the rough surface gold film and the LSP was generated on the 20 nm gap Au film. Because the decay length of SPP is longer than LSP, SPP could affect more substance of polystyrene than LSP and the Ramans signal would be enhanced greatly.
[1] Jeanmaire, David L., and Richard P. Van Duyne. "Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84.1 (1977): 1-20.
[2] Fang, Cheng, et al. "DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label." Biosensors and Bioelectronics 24.2 (2008): 216-221.
[3] Lussier, Félix, et al. "Dynamic-SERS Optophysiology: A nanosensor for monitoring cell secretion events." Nano letters (2016).
[4] Das, Gobind, et al. "Nano-patterned SERS substrate: application for protein analysis vs. temperature." Biosensors and Bioelectronics 24.6 (2009): 1693-1699.
[5] Qian, L. H., A. Inoue, and M. W. Chen. "Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold." Applied Physics Letters 92.9 (2008): 093113.
[6] Baca, Alfred J., et al. "Mosaic-like Silver Nanobowl Plasmonic Crystals as Highly Active Surface-Enhanced Raman Scattering Substrates." The Journal of Physical Chemistry C 119.31 (2015): 17790-17799.
[7] Li, Ma, et al. "Improved light extracion efficiency in AlGaInP-Based Diodes (LEDs) by applying a nanohole structure on GaP window layer." Journal of Physics: Conference Series. Vol. 276. No. 1. IOP Publishing, 2011.
[8] Lang, X. Y., et al. "Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios." Applied Physics Letters 94.21 (2009): 213109.
[9] Masson, Jean-François, Marie-Pier Murray-Méthot, and Ludovic S. Live. "Nanohole arrays in chemical analysis: manufacturing methods and applications." Analyst 135.7 (2010): 1483-1489.
[10] Sun, Xin, and Hao Li. "Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy." Nanotechnology 24.35 (2013): 355706.
[11] Sun, Yugang, and Younan Xia. "Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium." Journal of the American Chemical Society 126.12 (2004): 3892-3901.
[12] Mulvihill, Martin J., et al. "Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS." Journal of the American Chemical Society 132.1 (2009): 268-274.
[13] Sun, Xin, Nan Wang, and Hao Li. "Deep etched porous Si decorated with Au nanoparticles for surface-enhanced Raman spectroscopy (SERS)." Applied Surface Science 284 (2013): 549-555.
[14] Jiao, Yang, et al. "Patterned nanoporous gold as an effective SERS template." Nanotechnology 22.29 (2011): 295302.
[15] Qian, L. H., et al. "Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements." Applied Physics Letters 90.15 (2007): 153120-153120.
[16] Kucheyev, S. O., et al. "Surface-enhanced Raman scattering on nanoporous Au." Applied physics letters 89.5 (2006): 053102.
[17] Kuwano-Nakatani, Satoko, et al. "Environment-sensitive thermal coarsening of nanoporous gold." Materials Transactions 56.4 (2015): 468-472.
[18] Suzuki, Sho, et al. "Effect of the Molecule–Metal Interface on the Surface-Enhanced Raman Scattering of 1, 4-Benzenedithiol." The Journal of Physical Chemistry C 120.2 (2016): 1038-1042.
[19] Zhang, Ling, et al. "Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement." ACS nano 5.6 (2011): 4407-4413.
[20] Fu, Chi‐Cheng, et al. "Tunable nanowrinkles on shape memory polymer sheets." Advanced Materials 21.44 (2009): 4472-4476.
[21] Ferraro, John R. Introductory raman spectroscopy. Academic press, 2003.
[22] Kelly, K. Lance, et al. "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment." The Journal of Physical Chemistry B 107.3 (2003): 668-677.
[23] Haynes, Christy L., Adam D. McFarland, and Richard P. Van Duyne. "Surface-enhanced Raman spectroscopy." Analytical Chemistry 77.17 (2005): 338-A.
[24] Otto, A., et al. "Surface-enhanced Raman scattering." Journal of Physics: Condensed Matter 4.5 (1992): 1143.
[25] Kneipp, Katrin, et al. "Surface-enhanced Raman scattering and biophysics." Journal of Physics: Condensed Matter 14.18 (2002): R597.
[26] 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,初版,五南圖書出版社,2005
[27] 王建義, et al. "薄膜工程學." (2006).
[28] 羅吉宗. 薄膜科技與應用. 全華圖書, 2009.
[29] 楊永盛, and 楊慶宗. 電子顯微鏡: 原理與應用. 文京圖書, 1984.
[30] 蔡毓楨,原子力顯微鏡實作訓練教材,初版,五南圖書出版社,2007
[31] Masters, Barry R. "Fundamentals of Light Microscopy and Electronic Imaging." Journal of Biomedical Optics 18.2 (2013): 029901.
[32] Semaltianos, N. G., and E. G. Wilson. "Investigation of the surface morphology of thermally evaporated thin gold films on mica, glass, silicon and calcium fluoride substrates by scanning tunneling microscopy." Thin Solid Films 366.1 (2000): 111-116.
[33] Buffat, Ph, and Jean Pierre Borel. "Size effect on the melting temperature of gold particles." Physical review A 13.6 (1976): 2287.
[34] Gao, Hanwei, Joel Henzie, and Teri W. Odom. "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays." Nano letters 6.9 (2006): 2104-2108.
[35] Corti, Christopher, and Richard Holliday, eds. Gold: science and applications. CRC Press, 2009.
[36] Ebbesen, Thomas W., et al. "Extraordinary optical transmission through sub-wavelength hole arrays." Nature 391.6668 (1998): 667-669.
[37] Kibler, Ludwig A. "Preparation and characterization of noble metal single crystal electrode surfaces." International Society of Electrochemistry (2003).
[38] Joo, Sang Woo, Sang Woo Han, and Kwan Kim. "Adsorption of 1, 4-benzenedithiol on gold and silver surfaces: surface-enhanced Raman scattering study." Journal of colloid and interface science 240.2 (2001): 391-399.
[39] Suzuki, Sho, et al. "Effect of the Molecule–Metal Interface on the Surface-Enhanced Raman Scattering of 1, 4-Benzenedithiol." The Journal of Physical Chemistry C 120.2 (2016): 1038-1042.
[40] Venkatachalam, R. S., et al. "Surface‐enhanced Raman scattering from bilayers of polystyrene, diglycidyl ether of bisphenol‐A, poly (4‐vinyl pyridine), and poly (4‐styrene sulfonate)." Journal of Polymer Science Part B: Polymer Physics 26.12 (1988): 2447-2461.
[41] Seal, K., et al. "Coexistence of localized and delocalized surface plasmon modes in percolating metal films." Physical review letters 97.20 (2006): 206103.
[42] Seal, Katyayani, et al. "Near-field intensity correlations in semicontinuous metal-dielectric films." Physical review letters 94.22 (2005): 226101.
[43] Palonpon, Almar F., et al. "Raman and SERS microscopy for molecular imaging of live cells." Nature protocols 8.4 (2013): 677.
[44] Somekawa, Toshihiro, et al. "Raman spectroscopy measurements of CO2 dissolved in water and CO2 bubbles for laser remote sensing in water." Proc. of SPIE. Vol. 9240. 2014.
[45] Barnes, William L. "Surface plasmon–polariton length scales: a route to sub-wavelength optics." Journal of optics A: pure and applied optics 8.4 (2006): S87.
[46] Detsi, Eric, et al. "On the localized surface plasmon resonance modes in nanoporous gold films." Journal of Applied Physics 115.4 (2014): 044308.
[47] Chen, Chen, and Zhi-Mei Qi. "Nanoporous gold films prepared by sputtering-dealloying combination for total internal reflection SERS measurement." Optical Materials Express 6.5 (2016): 1561-1569.
[48] Sarychev, Andrey K., and Vladimir M. Shalaev. Electrodynamics of metamaterials. World Scientific, 2007.