| 研究生: | 藍世欽 Lan, Shyh-Chin | 
|---|---|
| 論文名稱: | 地震前GPS電離層TEC值及超導重力儀訊號擾動之偵測與分析 Detection and Analysis of Pre-seismic Anomalies from GPS Derived Ionospheric TEC and Superconducting Gravimeter Signals | 
| 指導教授: | 余騰鐸 Yu, Teng-To | 
| 學位類別: | 博士 Doctor | 
| 系所名稱: | 工學院 - 資源工程學系 Department of Resources Engineering | 
| 論文出版年: | 2010 | 
| 畢業學年度: | 99 | 
| 語文別: | 中文 | 
| 論文頁數: | 86 | 
| 中文關鍵詞: | 地震前兆 、震前擾動 、電離層擾動 、超導重力儀 | 
| 外文關鍵詞: | Earthquake precursor, Pre-seismic anomaly, Ionospheric Variations, Superconducting gravimeter, an upcoming earthquake rupture | 
| 相關次數: | 點閱:101 下載:2 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
地震是台灣地區常見的自然災害,危險性高卻至今仍無有效的空間或時間之預測方法,近年來由於GPS追蹤站的廣泛建立,GPS訊號解算電離層全電子含量(Total electron content, TEC)之震前擾動研究也日漸增加。因此本研究首先以台灣地區之GPS追蹤站資料解算電離層TEC值之時間及空間分布,從震前電離層觀測結果發現電離層每日高峰值在地震前數日出現降低或異常升高之現象,且震央附近之電離層在擾動期間內TEC值異常升高日也同時出現高濃度電子聚集現象。
本研究除分析震前電離層TEC值之空間及時間擾動外,另外利用超導重力儀(Superconducting gravimeter, SG)在部分地震前出現之持續擾動事件進行分析,經剔除為颱風所造成的擾動後,發現這些震前擾動的最大振幅與距離之反比呈線性關係,利用此關係由多站資料對擾動源進行空間約制,作為預測地震震央可能位置之推估。由震前擾動頻譜分析結果顯示此擾動具有穩定之主要頻率,且在測站離震央較遠之擾動其頻譜中有較多低頻訊號分布,與高頻訊號被大地吸收有關。測站與擾動源間斷層的位態亦會影響震前擾動訊號的偵測,當測站位於平行地震震源傾角方向時,偵測到震前擾動之機率及振幅均較高,因此綜合震前擾動空間約制條件及方向性結果,顯示在選擇SG測站之設置位置時,需兼顧測站間距及板塊邊界之方位才能獲得較佳之偵測效果。而比較電離層與超導重力儀之震前擾動時間,發現這兩種擾動可能同時出現,因此有可能是來自同一擾動機制,此機制與震前擾動時空分布特徵分析為本研究之主要工作內容。
Earthquakes are a common natural hazard in Taiwan. Studies on pre-seismic ionospheric total electron content (TEC) anomalies have recently been conducted using GPS data. From the time variance of pre-seismic ionosphereic TEC observations, anomalies can be detected several days before the main shock. An unusual ionospheric TEC increase during the days of pre-seismic anomalies also shows an electron concentration near the epicenter. Pre-seismic anomalies detected by the superconducting gravimeter (SG) for some earthquake events are also analyzed in this study. With anomalies caused by typhoons removed, pre-seismic SG anomalies show a linear correlation between the maximum amplitude and the inverse distance from the epicenter to the SG station. This result can be used to locate the epicenter of an earthquake from multiple SG stations. The spectrum analysis reveals that the perturbation is stable in the frequency domain. The amount of low-frequency energy preserved increases with traveling distance. The attitude from the SG station to the fault plane affects the amplitude of a pre-seismic anomaly and thus the possibility of its detection. The amplitude of a pre-seismic anomaly and the possibility of its detection are relatively high for stations parallel to the dip direction of the fault plane. Spatial constraints and the directional effect should be considered when determining suitable locations for future installations of SG stations. The pre-seismic anomalies of the ionosphere and SG data may be excited at the same moment. This result indicates that those two kinds of pre-seismic anomalies might be caused by the same unknown mechanism which could be linked to the upcoming earthquake.
1.Aburjania, G. D. and G. Z. Machabeli (1998), Generation of electromagnetic perturbations by acoustic waves in the ionosphere, Journal of Geophysical Research-Space Physics, 103(A5), pp. 9441-9447.
2.Aceves, R. L. and S. K. Park (1997), Cannot earthquakes be predicted?, Science, 278(5337), pp. 488-488.
3.Anderson, D. L. and J. W. Given (1982), Absorption Band Q Model for the Earth, Journal of Geophysical Research, 87(B5), pp. 3893-3904.
4.Beynon, W. J. G. and E. S. O. Jones (1965), Seasonal Variations in the Lower and Upper Atmosphere, Nature, 206(4990), pp. 1243-1245.
5.Calais, E. and J. B. Minster (1998), GPS, earthquakes, the ionosphere, and the Space Shuttle, Physics of The Earth and Planetary Interiors, 105(3-4), pp. 167-181.
6.Coco, D. S., C. Coker, S. R. Dahlke and J. R. Clynch (1991), Variability of GPS satellite differential group delay biases, Ieee Transactions on Aerospace and Electronic Systems, 27(6), pp. 931-938.
7.Davies, K. (1990), Ionospheric radio, London, United Kingdom, Peter Peregrinus Ltd.
8.Davies, K. and D. M. Baker (1965), Ionospheric Effects Observed around the Time of the Alaskan Earthquake of March 28, 1964, Journal of Geophysical Research, 70(9), pp. 2251-2253.
9.Doornbos, D. J. (1983), Observable effects of the seismic absorption band in the Earth, Geophysical Journal of the Royal Astronomical Society, 75(3), pp. 693-711.
10.Dragert, H., K. Wang and G. Rogers (2004), Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone, Earth Planets and Space, 56(12), pp. 1143-1150.
11.Dragert, H., K. L. Wang and T. S. James (2001), A silent slip event on the deeper Cascadia subduction interface, Science, 292(5521), pp. 1525-1528.
12.Fidani, C. (2010), The earthquake lights (EQL) of the 6 April 2009 Aquila earthquake, in Central Italy, Natural Hazards and Earth System Sciences, 10(5), pp. 967-978.
13.Fraser, A. C. Smith, A. Bernardi, P. R. McGill, M. E. Ladd, R. A. Helliwell and O. G. Villard, Jr. (1990), Low?frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake, Geophysical Research Letters, 17(9), pp. 1465-1468.
14.Fujinawa, Y. and K. Takahashi (1998), Electromagnetic radiations associated with major earthquakes, Physics of The Earth and Planetary Interiors, 105(3-4), pp. 249-259.
15.Fujinawa, Y., K. Takahashi, T. Matsumoto and N. Kawakami (1997), Experiments to locate sources of earthquake-related VLF electromagnetic signals, Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 73(3), pp. 33-38.
16.Geller, R. J., D. D. Jackson, Y. Y. Kagan and F. Mulargia (1997), Geoscience - Earthquakes cannot be predicted, Science, 275(5306), pp. 1616-1617.
17.Gokhberg, M. B., V. A. Morgounov, T. Yoshino and I. Tomizawa (1982), Experimental Measurement of Electromagnetic Emissions Possibly Related to Earthquakes in Japan, Journal of Geophysical Research, 87(B9), pp. 7824-7828.
18.Goodkind, J. M. (1999), The superconducting gravimeter, Review of Scientific Instruments, 70(11), pp. 4131-4152.
19.Hsiao, C. C., J. Y. Liu, K. I. Oyama, N. L. Yen, Y. H. Wang and J. J. Miau (2009), Ionospheric electron density anomaly prior to the December 26, 2006 M7.0 Pingtung earthquake doublet observed by FORMOSAT-3/COSMIC, Physics and Chemistry of the Earth, Parts A/B/C, 34(6-7), pp. 474-478.
20.Hwang, C., R. Kao, C.-C. Cheng, J.-F. Huang, C.-W. Lee and T. Sato (2009), Results from parallel observations of superconducting and absolute gravimeters and GPS at the Hsinchu station of Global Geodynamics Project, Taiwan, Journal of Geophysical Research, 114.
21.Ide, S. (2008), A Brownian walk model for slow earthquakes, Geophysical Research Letters, 35(17), pp. L17301.
22.Ide, S. (2010), Quantifying the time function of nonvolcanic tremor based on a stochastic model, Journal of Geophysical Research, 115(B8), pp. B08313.
23.Ide, S., G. C. Beroza, D. R. Shelly and T. Uchide (2007), A scaling law for slow earthquakes, Nature, 447(7140), pp. 76-79.
24.Ide, S., K. Imanishi, Y. Yoshida, G. C. Beroza and D. R. Shelly (2008), Bridging the gap between seismically and geodetically detected slow earthquakes, Geophysical Research Letters, 35(10), pp. L10305.
25.Ito, Y., K. Obara, K. Shiomi, S. Sekine and H. Hirose (2007), Slow Earthquakes Coincident with Episodic Tremors and Slow Slip Events, Science, 315(5811), pp. 503-506.
26.Kanamori, H. and L. Rivera (2006), Energy partitioning during an earthquake in Earthquakes: Radiated Energy and the Physics of Faulting, Geophys.Monogr. Ser., Washington, D. C., AGU.
27.Katsumata, A. and N. Kamaya (2003), Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan, Geophysical Research Letters, 30(1), pp. 1020.
28.Kirschvink, J. L. (2000), Earthquake prediction by animals: Evolution and sensory perception, Bulletin of the Seismological Society of America, 90(2), pp. 312-323.
29.Klobuchar, J. A. (1987), Ionospheric time-delay algorithm for single-frequency GPS users, Ieee Transactions on Aerospace and Electronic Systems, 23(3), pp. 325-331.
30.Komjathy, A. (1997), Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, Technical Report No. 188, Fredericton, N.B. Canada:University of New Brunswick.
31.Lan, S.-C., T.-T. Yu, C. Hwang and R. Kao (2009), "Co-seismic Gravity Change of Mw 7.9 Wenchuan Earthquake and Pre-Seismic Gravity Anomaly Detection by Superconducting Gravimeter at Hsinchu, Taiwan, from April to June 2008",VII Hotine-Marussi Symposium, Rome, Italy.
32.Lan, S.-C., T.-T. Yu, C. Hwang and R. Kao (in press), An Analysis of Mechanical Constraints when Using Superconducting Gravimeters for Far-Field Pre-seismic Anomaly Detection, Terrestrial Atmospheric and Oceanic Sciences.
33.Lanyi, G. E. and T. Roth (1988), A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations, Radio Science, 23(4), pp. 483-492.
34.Liu, J. Y., Y. I. Chen, C. H. Chen, C. Y. Liu, C. Y. Chen, M. Nishihashi, J. Z. Li, Y. Q. Xia, K. I. Oyama, K. Hattori and C. H. Lin (2009), Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake, Journal of Geophysical Research, 114(A4), pp. A04320.
35.Liu, J. Y., Y. I. Chen, Y. J. Chuo and H. F. Tsai (2001), Variations of Ionospheric Total Electron Content During the Chi-Chi Earthquake, Geophysical Research Letters, 28(7), pp. 1383-1386.
36.Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister and T. F. Runge (1998), A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Science, 33(3), pp. 565-582.
37.Nakamula, S. and M. Takeo (2010), Frequency structure of deep low-frequency tremors occurring in western Shikoku region, Japan, Geophysical Journal International, 181(1), pp. 406-416.
38.Obara, K. (2002), Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan, Science, 296(5573), pp. 1679-1681.
39.Park, J., T. R. A. Song, J. Tromp, E. Okal, S. Stein, G. Roult, E. Clevede, G. Laske, H. Kanamori, P. Davis, J. Berger, C. Braitenberg, M. Van Camp, X. Lei, H. P. Sun, H. Z. Xu and S. Rosat (2005), Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science, 308(5725), pp. 1139-1144.
40.Pulinets, S. A., V. A. Alekseev, A. D. Legen'ka and V. V. Khegai (1997), Radon and metallic aerosols emanation before strong earthquakes and their role in atmosphere and ionosphere modification, Advances in Space Research, 20(11), pp. 2173-2176.
41.Rizos, C. (1997), Principles and practice of GPS surveying, Australia, School of Geomatic Engineering, University of New South Wales.
42.Schaer, S. (1999), Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Bern University, Astronomical Institute, Ph.D dissertation.
43.Serway, R. A. (1986), Physics for Scientists and Engineers, Philadelphia, Saunders College Publishing.
44.Shalimov, S. and M. Gokhberg (1998), Lithosphere-ionosphere coupling mechanism and its application to the earthquake in Iran on June 20, 1990. A review of ionospheric measurements and basic assumptions, Physics of The Earth and Planetary Interiors, 105(3-4), pp. 211-218.
45.Shelly, D. R. (2009), Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor, Geophysical Research Letters, 36(17), pp. L17318.
46.Shelly, D. R., G. C. Beroza and S. Ide (2007), Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan, Geochemistry Geophysics Geosystems, 8(10), pp. Q10014.
47.Shelly, D. R., G. C. Beroza and S. Ide (2007), Non-volcanic tremor and low-frequency earthquake swarms, Nature, 446(7133), pp. 305-307.
48.Smylie, D. E. and X. H. Jiang (1993), Core oscillations and their detection in superconducting gravimeter records, Journal of Geomagnetism and Geoelectricity, 45(11-12), pp. 1347-1369.
49.Torr, M. R. and D. G. Torr (1973), The seasonal behaviour of the F2-layer of the ionosphere, Journal of Atmospheric and Terrestrial Physics, 35(12), pp. 2237-2251.
50.Varotsos, C. A. and A. P. Cracknell (2004), New features observed in the 11-year solar cycle, International Journal of Remote Sensing, 25(11), pp. 2141 - 2157.
51.von Biel, H. A. (1990), The geomagnetic time and position of a terrestrial station, Journal of Atmospheric and Terrestrial Physics, 52(9), pp. 687-694.
52.Wahr, J. M. (1985), Deformation induced by polar motion, Journal of Geophysical Research-Solid Earth and Planets, 90(NB11), pp. 9363-9368.
53.Warburton, R. J. and J. M. Goodkind (1977), The influence of barometric-pressure variations on gravity, Geophysical Journal of the Royal Astronomical Society, 48(3), pp. 281-292.
54.Watanabe, T., Y. Hiramatsu and K. Obara (2007), Scaling relationship between the duration and the amplitude of non-volcanic deep low-frequency tremors, Geophysical Research Letters, 34(7), pp. L07305.
55.Wyss , M. (1997), Cannot Earthquakes Be Predicted?, Science, 278(5337), pp. 487-490.
56.Xu, J. Q., H. P. Sun and X. F. Yang (2004), A study of gravity variations caused by polar motion using superconducting gravimeter data from the GGP network, Journal of Geodesy, 78(3), pp. 201-209.
57.Zakharenkova, I. E., I. I. Shagimuratov, N. Y. Tepenitzina and A. Krankowski (2008), Anomalous modification of the ionospheric total electron content prior to the 26 September 2005 Peru earthquake, Journal of Atmospheric and Solar-Terrestrial Physics, 70(15), pp. 1919-1928.
58.Zhang, Y. B., J. Jiang, S. L. Li, D. C. Chen, H. Yang and C. Li (2010), The tropic cyclone aroused the tremor, Chinese Journal of Geophysics-Chinese Edition, 53(2), pp. 335-341.
59.Zhao, B., M. Wang, T. Yu, W. Wan, J. Lei, L. Liu and B. Ning (2008), Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake?, Journal of Geophysical Research, 113(A11), pp. A11304.
60.林老生 (2001),「以GPS觀測量估計GPS人造衛星與接收機L1/L2差分延遲之研究」,測量工程,第43卷第4期,頁5-28。
61.林老生、C. Rizos (1999),「利用GPS觀測量構建即時的區域電離層模型之研究」,測量工程,第41卷第1期,頁5-32。
62.彭德熙、陳國華、楊名 (2008),「台灣區域性電離層模型之估計:應用於單頻精密單點定位」,地籍測量,第27卷第3期,頁1-22。