研究生: |
王厚入 Wang, Hou-Ru |
---|---|
論文名稱: |
新型高性能3D奈米柱狀結構PIN二極體甲烷(CH4)感測器研製 Studies of high performance 3D nanorod p-i-n diode CH4 gas sensor |
指導教授: |
方炎坤
Fang, Yan-Kuen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 甲烷 、氣體感測器 、3D奈米柱 、二氧化鉿 |
外文關鍵詞: | methane(CH4), gas sensor, 3D nanorod, hfo2 |
相關次數: | 點閱:91 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討整體(3D)奈米柱狀結構之PIN二極體式甲烷(CH4)感測器研製。吾人先利用硝酸銀及氫氟酸之蝕刻溶液於P型(100)矽基板形成奈米柱狀結構,利用射頻濺鍍系統(Sputtering system)成長多晶二氧化鉿( HfO2)薄膜,再濺鍍上各種不同負型之金屬氧化物(WO3、SnO2、ZnO)作為感測層。並利用XRD、AFM及SEM分別量測薄膜結晶及觀察表面結構和厚度來探討這些材料的基本特性及做最佳選。
最後利用熱蒸鍍系統(Thermal evaporation)成長金屬鈀作為催化電極及接觸電極,並在背面成長金屬鋁作為歐姆電極,如此完成整個Pd/n-MOX/i-HfO2/p-Si/Al PIN二極體之製作。共製作四種不同結構元件來研究比較其感測特性:(1)使用不同本質絕緣層材料(P/N、HfO2、SiO2及TiO2),(2)使用不同製程通入氬/氧氣體比例之二氧化鉿薄膜為本質絕緣層,(3)結構為傳統平面薄膜式(2D)及3D奈米柱狀,(4)使用不同材料(ZnO、SnO2、WO3)為感測層。
實驗結果顯示,本質絕緣層為氧化鉿薄膜且製程氬/氧比例為5:1時,可最有效地降低元件之漏電流;且3D奈米柱狀結構者,因可有效增加氣體接觸之面積/體積比,故相較於平面薄膜式者,靈敏度也由498.5%提升至1652%。另外,三種不同金屬氧化物感測層的奈米柱狀結構中也以WO3對甲烷氣體感測能力最佳。在溫度200℃,逆偏壓-3V及甲烷氣體濃度100ppm條件下,其靈敏度為152.9%,大大於SnO2及ZnO之85.5%和21.9%。在反應時間及氣體選擇比方面,WO3奈米柱狀結構者也有較快速的反應時間及對氫氣及二氧化碳的選擇比。
本論文之3D奈米柱狀結構PIN甲烷感測器在溫度200℃、濃度100ppm下,其靈敏度為152.9%、反應時間為20s,相較於已發表文獻Pt/ZnO/Zn之MSM Schottky之靈敏度(18%)及反應時間(52.2s)為佳。
The Pd/MOX/HfO2 p-i-n diodes on Si substrate were developed for methane gas (CH4) sensing applications. Firstly, the p(100) Si substrates were etched by AgNO3 mixed HF solution to form nanorod structure. Then the intrinsic layer HfO2 film was deposited on the Si nanorods with radio frequency sputtering system, and followed by deposition of various metal oxide such as WO3、SnO2、ZnO as sensing elements. The sensing element was examined using XRD、AFM and SEM, respectively for crystallinity, surface roughness and morphology. Finally, Pd metal was deposited thermally on the top as the catalyst and electrode contact to complete the device.
We optimized the CH4 gas sensor performances through the following studies :(1) using different intrinsic layer materials such as p/n、HfO2、SiO2、TiO2 , (2) to deposit HfO2 film with varying O2/Ar flow ratio, (3) comparing the 3D nanorod structure to the conventional 2D thin film p/n diode one , and(4) use of different metal oxides such as WO3、SnO2、ZnO as sensing element.
Experimental results show the intrinsic layer of hafnium oxide with oxygen atomic ratio of 5/1 is best dielectric for reduction of off leakage current. Besides, the 3D p-i-n nanostructure enhances the sensitivity of the sensor, from 498.5% of the conventional 2D thin film type to 1652%. In addition, under 200 oC, 3V reverse bias and 100ppm methane ambient, the WO3 sensing element can attain the highest sensitivity of 152.9%, which is more than 85.5% and 21.9% for SnO2 and ZnO, respectively. Furthermore, the WO3 has the fast response time of 20 sec and the highest selectivity compared with hydrogen and carbon dioxide gases.
In this work, under 200 oC and 100ppm ambient, the developed 3D nanorod p-i-n CH4 sensor has the best performance of 152.9% and 20 sec, respectively for sensitivity and response time. The performances are better than that of 18% and 52.2 sec for the reported Pt/ZnO/Zn MSM Schottky diode under same conditions.
[1] 台灣醫界2011,Vol.54,No7
[2] 蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會,第150期六月1999
[3] Suzuki T, Kunihara K, Kobayashi M, Tabata S, Higaki K and Ohnishi H, “A micromachined gas sensor based on a catalytic thick film/SnO2 thin film bilayer and thin film heater - Part 1: CH4 sensing” Sensors And Actuators B-Chemical, ,vol 109, 2005 , pp.185-189
[4] Liao L, Zhang Z, Yan B , Zheng Z, Bao QL , Wu T , Li CM, Shen ZX, Zhang JX, Gong H, Li JC ,Yu T, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors” Nano Technology ,vol 20, 2009
[5] S.C.Chang, “Thin-film semiconductor NOx sensor” , IEEE Transactions on Electron Devices ,vol 26, 1979 , pp.1875-1880
[6] “甲烷氣體”,維基百科
[7] Ghahremaninezhad.A , Asselin.E “Electrodeposition and Growth Mechanism of Copper Sulfide Nanowires” , Journal of Physical Chemistry C,vol.115,2011,pp.9320-9334.
[8] Li LS, Walda J, Manna L, Alivisatos AP. “Semiconductor nanorod liquid crystals” Nano Letters ,vol 6, 2002 , pp.557-560
[9] Peng KQ, Zhu J , “Simultaneous gold deposition and formation of silicon nanowire arrays” Journal of Electroanalytical Chemistry ,vol 558, 2003 , pp.35-39
[10] Peng KQ, Xu Y, Wu Y, Yan YJ, Lee ST, Zhu J, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications” Small ,vol 1, 2005 , pp.1062-1067
[11] Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles” Advanced Functional Materials ,vol 16, 2006 , pp.387-394
[12] Peng KQ, Yan YJ, Gao SP, Zhu J,“Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry” Advanced Materials ,vol 14, 2002 , pp.1164-1167
[13] Peng KQ, Yan YJ, Gao SP, Zhu J, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition” Advanced Functional Materials ,vol 13, 2003 , pp.127-132
[14] Qiu T, Wu XL, Yang X, Huang GS, Zhang ZY, “Self-assembled growth and optical emission of silver-capped silicon nanowires” Applied Physics Letters ,vol 84, 2004 , pp.3867-3869
[15] S. M. Sze, “Physics of semiconductor devices”, wiley, New York, 1980.
[16] Neamen, “Semiconductor physics and device”,McGraw-Hill, 1992.
[17] F. R. Juang, Y. K. Fang, Y. T. Chiang, T. H. Chou, C. I. Lin and C. W. Lin, “The Low Temperature Polysilicon (LTPS) Thin Film MOS Schottky Diode on GlassSubstrate for Low Cost and High Performance CO Sensing Applications,” Sens Actuator B-Chem., vol. 156, no. 1, pp. 338-342, Aug. 2011.
[18] G. B. Barbi, J. P. Santos, P. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes,“Ultrafine grain-size tin-oxide films for carbon monoxide monitoring in urban environments,” Sens. Actuator B-Chem., vol. 25, no. 1-3, pp. 559-563, Apr. 1995.
[19] P. K. Basu, N. Saha, S. K. Jana, H. Saha, A. Lloyd Spetz, and S. Basu,” Schottky JunctionMethane Sensors Using Electrochemically
Grown Nanocrystalline-Nanoporous ZnO Thin Films”, Journal of Sensors Volume 2009
[20] Wen-I Hsu , Shui-Jinn Wang “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching ” , National Cheng Kung University , 2008
[21] 賴耿陽,“IC 製程之濺射技術”,復漢出版社 1997年。
[22] 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204。
[23] 莊達人,”VLSI製造技術”,高立圖書股份有限公司,1995年。
[24] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering,”Journal of Applied Physical., vol. 46, p. 3381, 1975.
[25] Won Joon Choi, Eun Joung Lee, Kap Soo Yoon, Jung Yup Yang, Jong Hyun Lee, Chae Ok Kim and Jin Pyo Hong,” Annealing Effects of HfO2 Gate Thin Films Formed by Inductively Coupled Sputtering Technique at Room Temperature”, Journal of the Korean Physical Society, Vol. 45
[26] Wenting Liu , Zhengtang Liu, Feng Yan, Tingting Tan, Hao Tian,” Influence of O2/Ar flow ratio on the structure and optical properties of sputtered hafnium dioxide thin films”, Surface & Coatings Technology 205 (2010)
[27] Wen-I Hsu , Shui-Jinn Wang “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching ” , National Cheng Kung University , 2008
[28] Lee CY, Chang CC, Lo YM “Fabrication of a Flexible Micro CO Sensor for Micro Reformer Applications” , Sensors ,vol 10, 2010
[29] E. Bachari, G. Baud, S. Amor, and M. Jacquet, “Structure and optical properties of sputtered ZnO films”, Thin Solid Films, vol. 348, no. 1, pp. 165-172, 1999.
[30] 王宏文,淺談表面聲波感應器,工業材料--精密陶瓷專輯89期,民國95年。
[31] L. Pereira, P. Barquinha, E. Fortunato, R. Martins,” Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide”, materials Science and Engineering B 118 (2005)
[32] Hiroya Ikeda, Tomokazu Goto, Mitsuo SASakashita, Akira Sakai, Shigeaki Zaima and Yukio Yasuda,” Local Leakage Current of HfO2 Thin Films Characterized by Conducting Atomic Force Microscopy”, Japan Journal of Applied Physical Vol. 42 (2003)
[33] P. Mitra and A.K. Mukhopadhyay,” ZnO thin film as methane sensor”, Technical Science Vol. 55, No. 3, 2007
[34] Michael N. Jones,” Leakage Current Behavior of reactive RF Sputtered HfO2 thin films”, University of Florida 2003
[35] Bedair Sm , Mcdermott Bt , Reid Kg , Neudeck Pg , Cooper Ja , Melloch Mr “Extremely Low-Leakage GaAs P-I-N Junctions And Memory Capacitors Grown By Atomic Layer Epitaxy”, IEEE Electron Device Letters,vol.11,1990,pp.261-263.
[36] P.W. Atkins ,“Physical Chemistry Fifth edition” ,Oxford,1994,pp877-p878.
[37] K.Kim , Y.Song , “Fabrication And Characterization Of Ga-Doped Zno Nanowire Gas Sensor For The Detection Of CO” , Thin Solid Films,vol.518,2009,pp.1190-1193.
[38] Y. Nakamura ,H. Yoshioka ,M. Miyayama , “Selective Co Gas Sensing Mechanism With Cuo/Zno Heterocontact” , Journal Of The Electrochemical Society ,vol.137,1990,pp.940-943.
[39] S. M. Sze, Semiconductor sensors, John Wiley & Sons, New York, chap.8, pp. 383- (1994).
[40] Nathaniel J. Quitoriano, Miro Belov, Stephane Evoy, and Theodore I. Kamins,” Single-Crystal, Si Nanotubes, and Their Mechanical Resonant Properties”, Nano Letter, 2009
[41] M. Zubertn, L. Starzak, G. Jablonski, M. Napieralska, M. Janicki, T. Pozniak, A. Napieralski,” An accurate electro-thermal model for merged SiC PiN Schottky diodes”, Microelectronics Journal 43 (2012) 312–320
[42] J. Robertson,” High dielectric constant oxides”, Eur. Phys. J. Appl. Phys. 28, 265–291 (2004)
[43] P. Bhattacharyy, P.K. Basu, H. Saha, S. Basu,” Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol–gel method”, Sensors and Actuators B 124 (2007) 62–67
[44] S K Gupta, Aditee Joshi and Manmeet Kaur,” Development of gas sensors using ZnO nanostructures”, J. Chem. Sci., Vol. 122, No. 1, January 2010, pp. 57–62
[45] You-Pin Gong, Ai-Dong Li, Xu Qian, Chao Zhao and Di Wu,” Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol–gel method”, J. Phys. D: Appl. Phys. 42 (2009)
[46] Tingting Tan, Zhengtang Liu, Hongcheng Lu, Wenting Liu, Hao Tian,” Structure and optical properties of HfO2 thin films on silicon after rapid thermal annealing”, Optical Materials 32 (2010)