簡易檢索 / 詳目顯示

研究生: 謝慶堂
Hsieh, Chin-Tang
論文名稱: 場發射體材料之製備採用熱蒸鍍與化學氣相沉積法
Field Emitter Materials prepared using thermal evaporation and chemical vapor deposition
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 183
中文關鍵詞: 鎢膜鉬膜奈米碳線(管)微尖端形狀場發射體場發射顯示器熱化學氣相沉積法優選方向熱燈絲化學氣相沉積法
外文關鍵詞: Field emission display, field emitter, Spindt type, HFCVD, Tungsten films, Molybdenum films, thermal CVD, Carbon nanotube/nanowire, Preferred orientation
相關次數: 點閱:181下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • I
    摘要
    在目前眾多場發射顯示器研究與開發中考慮作為陰極場發射體之候選
    (candidate)材料中,包括金屬、非金屬以及不同的金屬矽化物等,都是形成場
    發射電極的材料。而傳統的鎢與鉬等高熔點材料皆以製作成Spindt type 三極結
    構為主的場發射體,但是以Thin Film type 方式製作成場發射體的文獻較為缺
    乏且利用Spindt type 製程亦較為複雜。因此,本研究將以簡易的製程方式研究
    採用Thin Film type 的方式成長以鎢膜、鉬膜與碳基等材料之二極場發射體,
    研究此場發射體之結構與電子場發射之相關特性。其中之碳基將採用奈米碳線
    (管)加入前述之陰極場發射體材料比較。
    本實驗中採用鎳薄膜為催化劑並以不同甲烷與氫氣比成長出混有奈米碳
    線與奈米碳管,其中伴隨沉積一層中介層出現,該層為碳產物與奈米碳線(管)
    所夾雜而成。奈米碳線(管)在不同CH4/H2 氣體混合比時,成長在不同催化劑
    厚度,催化劑有無前處理及燈絲與基板高度等參數下,奈米碳線(管)基本上生
    成長度趨勢是相似。惟,氣體混合比在0.25 與表面催化劑經高密度微波電漿蝕
    刻後,其成長長度明顯有別於其它參數之試片。再者,由ID/IG與FWHM 來分
    析,該奈米碳線(管)以石墨化無序結構為主。而較佳場發射性質是CH4/H2 氣
    體混合比0.1 時,成長在催化劑厚度85 nm,催化劑無前處理及燈絲與基板高
    度2 mm等參數下,最重要的是無中介層沉積情況下,有低的啟始場2.78 V/um
    與高的電流密度約在31.23 mA/cm2。
    在鎢薄膜討論部份,本實驗中採用矽裸晶片(Bare Su wafer)先行做不同時
    間的乾式蝕刻(採高密度微波電漿蝕刻10、20 與30 分鐘),使用鎢燈絲為蒸鍍
    源並利用HFCVD 沉積鎢膜,成長出明顯具有具有優選方向(200)的錐狀晶面與
    低啟始電場1.25 V/um的α 相鎢薄膜。這些場發射體需具有明顯的錐狀表面及
    柱狀結構,就好似有眾多的似尖端狀的場發射體在此表面聚集電荷並發射到真
    空中。另外,本實驗亦發現優選方向強度百分比愈高,其場發射性質愈佳。添
    加甲烷裂解出的碳沉積在鎢膜仍為具有優選方向(200)。控制基板座溫度可以成
    長β 相鎢薄膜且仍具有優選方向(321)與低啟始電場2.8 V/um。然而,直接將
    Bare Si wafer 沉積鎢膜(矽基板並沒有經過任何前處理)並添加微量甲烷沉積在
    不同時間與變更基板座時,可以成長出明顯具有(110)錐狀晶面的α 相鎢薄膜。
    另外,從HRTEM 中可了解不同沉積時間其鎢膜成長模式。
    最後,在鉬薄膜實驗中採用Bare Si wafer以鉬燈絲為蒸鍍源並利用HFCVD
    直接沉積Mo 薄膜(矽基板並沒有經過任何前處理),經成長發現為Mo5Si3與低
    啟始電場4.6 V/um薄膜。一般成長的Mo5Si3是須經兩階段成長(Mo/Si powder
    milling,再經燒結等等)。另有幾篇文獻利用Mo/Si 多層膜經擴散所形成
    Mo5Si3。然而,本研究結果發現,可以直接沉積Mo5Si3薄膜可能原因乃是蒸鍍
    時除了燈絲產生的高溫並以熱輻射方式傳給基板座,讓基板座產生一定的溫度
    與沉積在長時間情況下,讓鉬原子與矽基板的矽原子共同擴散形成。目前文獻
    利用Mo/Si 多層膜經擴散所形成Mo5Si3的溫度約400~750 ℃,而本實驗之基
    板溫將高於400 ℃與上述文獻是非常相似。另外,當Mo5Si3在0.45 um 厚度
    時,有場發射性質出現。就目前文獻中尚無任何文獻報告討論使用thermal CVD
    一次成長即可獲得Mo5Si3薄膜以及Mo5Si3薄膜為場發射體做場發射性質之研
    究。

    III
    Abstract
    There has been an extensive research and development effort devoted in Field
    Emission Display. They are considered to be important cold cathode materials; for
    instance, the metal, nonmetal and metal-silicide are important refractory metals and
    have very high melting points, relatively low work function, high electrical
    conductivity and robustness. Therefore, these field emitter are all of spindt type
    which use complex microfabricated field emitter array. In our study, the field
    emitters were synthesized by a very simple process of thin film growth using
    tungsten, molybdenum and carbon nanotubes or nanowires. Their characteristic
    structure and field emission properties are correlated with cold cathode materials, as
    a comparison, hot-filament assisted chemical vapor deposition (CVD) for the
    growth of carbon nanotubes/nanowires (CNTs/CNWs)
    First, growth characteristics of carbon nanotubes/nanowires (CNTs/CNWs),
    using the Ni films as catalyst materials is discussed. The CNTs/CNWs were grown
    on Ni catalyst films using various gas mixture( CH4 and H2) by hot filament
    chemical vapor deposition (HFCVD) technique. However, the growth is an
    interlayer between the Si substrate and carbon nanotubes/nanowires as well as the
    interlayer consists of the carbon nanotubes/nanowires and other carbon species
    produced in this process. The Raman analysis shows that the grown CNTs/CNWs
    exhibit disordered structure as demonstrated by ID/IG ratio and full width at half
    maximum (FWHM) of G-band. The interlayer is found to have a strong influence
    on the performance of field emission properties. The presence of interlayer
    adversely affects the current density and turn on voltage. The current density and
    turn on voltage in case of interlayer was 1.11 mA/cm2 and 3.02 V/µm while in the
    absence of interlayer current density and turn on voltage was found to be 31.2
    mA/cm2 and 2.78 V/µm, respectively.
    Secondly, tungsten thin films were deposited on bare Si wafer for various
    deposition and microwave pre-treatment times using a thermal evaporation
    technique. A tungsten source was resistively heated to a temperature between 1810
    and 2010°C. The substrate was heated by the tungsten source to a temperature
    between 520 and 670 °C due to the proximity. In general, the substrate temperature
    is proportional to the source temperature. The tungsten film deposition time was 15
    min. As-received Si wafers and etched Si wafers were used as the substrates. Si
    substrates were etched by hydrogen plasma in a microwave reactor for 10, 20, and
    30 min. From the surface morphology study it is obvious that it has a pyramidal
    shaped rod-like structure and the cross section has columnar structure. The field
    emission properties were found to depend on the microstructure, which is controlled
    by the source temperature and the substrate condition, as mentioned above. It
    appears that a film with a higher degree of preferred orientation and/or a smaller
    average grain size, meaning more rods in a film, exhibits better field emission
    properties (turn on field at 1.25 V/um).
    Finally, the molybdenum thin films were deposited on bare Si wafer using a
    thermal evaporation technique. In general, the Mo5Si3 composition powder was
    commonly prepared by milling the mixtures of Mo and Si powders, and then
    followed by hot pressing or Sintering. The process developed for the growth of
    Mo5Si3 films is unique which has not found in any other reported literature. In the
    experiment, our initial objective was to deposit Mo films on Si substrate in single
    step and understanding the field emission properties. But, this result indicates that
    the high temperature of molybdenum filament source directly and Si substrate
    reaction grown Mo5Si3 films by thermal evaporated method. The surface
    morphology of the deposited film shows that the grain sizes was in nano scale and it
    has a columnar structures. The Mo5Si3 film obtained in this study gives a high
    turn-on filed of 4.6 V/µm which is not reported in the published literature of MoSi
    system.

    目錄 摘要…………………………………………………………………………Ⅰ Abstract………………………………………………………………………Ⅲ 目錄…………………………………………………………………………Ⅵ 表目錄………………………………………………………………………Ⅹ 圖目錄………………………………………………………………………ⅩI 第一章緒論…………………………………………………………………1 §1-1 前言………………………………………………………………………1 §1-2 研究動機與目的…………………………………………………………8 第二章文獻回顧…………………………………………………………………9 §2-1 場發射之介紹…………………………………………………………10 Folwer-Nordheim 方程式………………………………………………10 §2-2 場發射體的種類………………………………………………………14 微尖端型………………………………………………………………14 薄膜型…………………………………………………………………15 §2-3 場發射體的特性………………………………………………………17 §2-4 場發射體之材料及其作………………………………………………18 2-4-1 非金屬場發射材料……………………………………………………19 矽基場發射材料………………………………………………………19 碳基場發射材料………………………………………………………20 類鑽碳及非晶碳場發射材料…………………………………………20 鑽石及奈米鑽石場發射材料…………………………………………21 碳纖維場發射材料……………………………………………………23 碳奈米管場發射材料…………………………………………………24 氧化鋅場發射材料……………………………………………………28 氮化物場發射材料……………………………………………………29 其它場發射材料………………………………………………………30 2-4-2 金屬場發射材料………………………………………………………30 其它場發射材料………………………………………………………30 §2-5 鎢薄膜之製作、特性與應用……………………………………………31 §2-6 鉬薄膜之製作、特性與應用……………………………………………37 §2-7 鎢薄膜、鉬薄膜場發射體………………………………………………40 鎢場發射材料…………………………………………………………41 鉬場發射材料…………………………………………………………43 §2-8 金屬與非金屬的場發射體啟始電場與電流密度比較………………46 第三章實驗分析與步驟…………………………………………………48 §3-1 實驗流程………………………………………………………………48 §3-2 實驗系統建立…………………………………………………………49 §3-3 實驗材料………………………………………………………………50 3-3-1 基板材料………………………………………………………………50 3-3-2 反應氣體………………………………………………………………50 §3-4 基板前處理……………………………………………………………50 §3-5 成長碳奈米線、鉬薄膜與鎢薄膜之步驟………………………………52 §3-6 分析與鑑定……………………………………………………………52 3-6-1 薄膜結晶結構分析(XRD)……………………………………………52 3-6-2 薄膜表面型態分析與成份分析(SEM/EDS)…………………………54 3-6-3 電子微探儀分析(EPMA)……………………………………………55 3-6-4 薄膜微結構分析(TEM)………………………………………………55 3-6-5 薄膜表面粗糙度分析(AFM)…………………………………………64 3-6-6 片電阻量測(Four Point)………………………………………………65 3-6-7 顯微拉曼量測(Micro-Raman)………………………………………66 3-6-8 場發射性質量測(Field Emission)……………………………………68 第四章奈米碳管與奈米碳線(CNT/CNW)結果與討論………………………69 §4-1 鎳催化劑薄膜成長奈米碳線……………………………………………69 4-1-1 不同製程參數之成長效應分析..............................69 4-1-2 奈米碳線(管)之拉曼分析……………………………………………85 4-1-3 奈米碳線(管)之場發射效應…………………………………………98 第五章鎢薄膜結果與討論……………………………………………………103 §5-1 基板效應………………………………………………………………103 5-1-1 基板表面處理………………………………………………………103 5-1-2 薄膜結構之分析……………………………………………………104 5-1-3 薄膜表面形態之分析………………………………………………105 5-1-4 薄膜微結構之分析…………………………………………………108 5-1-5 薄膜電性之分析……………………………………………………110 5-1-6 場發射性質之量測…………………………………………………111 §5-2 添加微量的甲烷氣體…………………………………………………113 5-2-1薄膜結構之分析………………………………………………………113 5-2-2 薄膜表面形態之分析………………………………………………119 5-2-3 薄膜微結構之分析…………………………………………………124 5-2-4 甲烷在不同濃度裂解之表面形態分析……………………………127 §5-3 鎢膜的成長模式………………………………………………………129 5-3-1薄膜結構之分析………………………………………………………133 5-3-2 薄膜表面形態之分析………………………………………………136 5-3-3 薄膜微結構之分析…………………………………………………139 5-3-4 薄膜顯微拉曼之分析………………………………………………146 第六章鉬-矽薄膜結果與討論………………………………………………149 §6-1 熱蒸鍍法成長鉬-矽薄膜………………………………………………149 §6-2 薄膜結構之分析………………………………………………………151 §6-3 薄膜表面形態之分析…………………………………………………154 §6-4 薄膜微結構之分析……………………………………………………158 §6-5 薄膜場發射性質之量測………………………………………………161 第七章結論……………………………………………………………………163 參考文獻…………………………………………………………………………165 著作………………………………………………………………………………184 自述………………………………………………………………………………185 表目錄 Table 1-1.真空微電子的歷史。.........................................3 Table 1-2.比較場發射顯示器與其它的平面顯示器。.......................5 Table 2-1.比較鎢膜的製程與討論方向。................................34 Table 2-2.比較不同製程方法的物理特性對鎢薄膜應用於半導體擴散阻隔 層。.......................................................36 Table 2-3.比較薄膜型場發射體之(金屬與非金屬)文獻中的啟始電場與電流密 度。.......................................................46 Table 4-1.奈米碳線成長在鎳催化劑薄膜的拉曼光譜量測資料表。(成長條件為 鎳催化劑薄膜,燈絲溫度1687、1829、1858、1876、1826 ℃,基板溫 度433、397、391、375、358 ℃,燈絲與試片距離約9 mm,成長時 間15 分鐘,工作壓力保持在20 Torr。氣體比例CH4/CH4+H2分別為 0.025、0.05、0.1、0.2與0.25 等。) ...............................92 Table 4-2.奈米碳線成長在鎳催化劑薄膜的拉曼光譜量測資料表。(成長條件為 鎳催化劑薄膜,燈絲溫度1804、1753、1802、1827、1826 ℃,基板溫 度387、390、398、363、397 ℃,燈絲與試片距離約2 mm,成長時 間15 分鐘,工作壓力保持在20 Torr。氣體比例CH4/CH4+H2分別為 0.025、0.05、0.1、0.2與0.25 等。) ...............................97 Table 5-1.薄膜製程參數如成長時間、燈絲溫度以及基板溫度。............135 圖目錄 Fig.1-1.日本索尼(Sony)19.2吋場發射顯示器原型機。......................2 Fig.1-2.場發射顯示器。...............................................6 Fig.1-3.場發射顯示器的構造:(A)尖端體型與(B)薄膜體型。................7 Fig.2-1.電子的位能U(x) (in eV) 該函數是距璃離x (in Å)從金屬表面。–e2/4xl 是鏡像力位能;–e2Fx 是外在應用位能;U(x)是總位能;Up 在適當金屬 深度的總位能; Φ 是功函數; F 是電場強 度。........................................................13 Fig.2-2.場發射顯示器,陰極電極有(A)尖端體型與(B)薄膜體型。...........16 Fig.2-3.使用圓錐體型的三極驅動發射體結構。..........................16 Fig.2-4.碳奈米管合成的方法有(A)電弧法、(B)脈衝雷射熔融法和(C)化學沉積 法。........................................................26 Fig.2-5.(A)(B)碳奈米管的前端是開放或是封閉將會影響其場發射的電流密 度。........................................................27 Fig.2-6.五鉬化三矽(Mo5Si3)是D8m單位晶胞,它是由16k 與4b 過渡金屬位置 與和8 h 與4a的矽位置所共同組成。...........................39 Fig.2-7.鉬基材料係利用微影蝕刻製程做成三極結構的場發射體與場發射電流 量測。......................................................40 Fig.2-8.(A)鎢奈米線的場發射性能曲線圖,(B)鎢奈米棒的場發射性能曲線圖, (C)鎢奈米線的SEM 平面影像圖,(D)鎢奈米棒的SEM 平面影像 圖。..................................................42 Fig.2-9.(A)Beta 相鎢鎢奈米棒SEM 平面影像圖與橫截面影像圖,(B)鎢奈米棒 的場發射性能曲線圖與F-N 特性。..............................43 Fig.2-10.鉬奈米線與鉬氧化奈米線的場發射啟始電場。...............45 Fig.3-1.實驗流程圖。............................................48 Fig.3-2.實驗設備圖。............................................49 Fig.3-3.基板前處理流程。............................................51 Fig.3-4.多晶薄膜低掠角X光繞射儀。..................................53 Fig.3-5.X 光對晶體繞射圖。..........................................53 Fig.3-6.場發射式電子顯微鏡。........................................54 Fig.3-7.穿透式電子顯微鏡(FEI Tecnai G220 S-Twin)。....................56 Fig.3-8.於觀察之Cross Sectional View試片厚度。........................57 Fig.3-9.研磨試片之尺寸大小。........................................57 Fig.3-10.試片清洗。.................................................58 Fig.3-11.以N7號鑷子夾試片清洗。....................................58 Fig.3-12.以G1 glue對黏試片。........................................59 Fi g. 3-13. ( A)先在夾子上貼上標籤紙,( B )最後以長尾夾加壓夾住試 片。....................................................59 Fig.3-14.(A)以crystal bond 在120 ℃下將試片黏接於研磨之模具上,(B)為(A) 圖之上視圖。...............................................60 Fig.3-15.#400~#600 的砂紙時,厚度大約是<100 μm。..................61 Fig.3-16.#1200 的砂紙時,試片的兩端會圓掉,厚度大約是<50 μm。.......61 Fig.3-17.試片的兩端圓掉,會有干射條紋出現,厚度大約是<1 μm。.........61 Fig.3-18.(A)用載玻片去沾黏銅環,(B)在立體OM 的觀察下將AB 膠均勻推開, 並將銅環黏上。.............................................62 Fig.3-19.試片浸泡於丙酮溶液中約為10~20 分鐘。.......................62 Fig.3-20.AFM 的基本操作模式。.............................64 Fig.3-21.Contact mode AFM 掃瞄原理。................................64 Fig.3-22.顯微拉曼光譜。.............................................67 Fig.3-23.場發射性質量測冶具圖。.................................68 Fig.4-1.奈米碳線(管)成長在鎳催化劑薄膜的SEM 橫截面影像,成長條件為鎳 催化劑薄膜無蝕刻和厚度25 nm,燈絲溫度1690~1880 ℃,基板溫度 360~435 ℃,燈絲與試片距離約9 mm,成長時間15 分鐘,工作壓力保 持在20 Torr。氣體比例CH4/CH4+H2 分別為(A)0.025, (B)0.05, (C)0.1, (D)0.2 與(E)0.25 等,(F)為(C)之黃色虛線方塊區域的放大圖,催化劑顆 粒(依箭頭所示)。........................................70 Fig.4-2.奈米碳線成長在鎳催化劑薄膜的TEM 明視野影像,成長條件為鎳催化 劑薄膜無蝕刻和厚度25 nm,燈絲溫度1858 ℃,基板溫度391 ℃,燈 絲與試片距離約9 mm,成長時間15 分鐘,工作壓力保持在20 Torr, 氣體比例CH4/CH4+H2為0.1。(A)奈米碳線(管),(B)鎳催化劑明視野影 像圖(右上插圖為TEM-SAD 圖),(C)奈米碳線HR-TEM 影像圖與(D) 奈米碳管HR-TEM 影像圖明視野影像圖(右上插圖為TEM-SAD 圖)。.......................................................72 Fig.4-3.奈米碳線成長在鎳催化劑薄膜的SEM 橫截面影像,成長條件為鎳催化 劑薄膜無蝕刻和厚度85 nm,燈絲溫度1690~1880 ℃,基板溫度360~435 ℃,燈絲與試片距離約9 mm,成長時間15 分鐘,工作壓力保持在20 Torr。氣體比例CH4/CH4+H2分別為(A)0.025, (B)0.05,(C)0.1,(D)0.2 與(E)0.25 等。................................................74 Fig.4-4.(A)奈米碳線(管)成長在鎳催化劑薄膜的TEM 明視野影像,成長條件為 鎳催化劑薄膜無蝕刻和厚度85 nm,燈絲溫度1858 ℃,基板溫度391 ℃,燈絲與試片距離約9 mm,成長時間15 分鐘,工作壓力保持在20 Torr,氣體比例CH4/CH4+H2為0.1。(B)奈米碳管HR-TEM 影像圖明視 野影像圖(右上插圖為TEM-SAD圖)。...........................76 Fig.4-5.奈米碳線(管)成長條件為鎳催化劑薄膜有蝕刻(微波功率500W,氫氣壓 力20 torr,蝕刻時間5 分鐘與溫度為288 ℃)和厚度25 nm,燈絲溫度 1868 ℃,基板溫度364 ℃,燈絲與試片距離約9 mm,成長時間15 分 鐘,工作壓力保持在20 Torr。氣體比例CH4/CH4+H2為0.1。(A) SEM 橫截面影像,(B)為(A)之黃色虛線方塊區域的放大圖,(C) 奈米碳線(管) 之TEM 明視野影像。.........................................78 Fig.4-6.奈米碳線(管)成長條件為鎳催化劑薄膜有蝕刻(微波功率500W,氫氣壓 力20 torr,蝕刻時間5 分鐘與溫度為288 ℃)和厚度85 nm,燈絲溫度 1868 ℃,基板溫度364 ℃,燈絲與試片距離約9 mm,成長時間15 分 鐘,工作壓力保持在20 Torr。氣體比例CH4/CH4+H2為0.1。(A) SEM 橫截面影像,(B)為(A)之黃色虛線區塊的放大圖。..................79 Fig.4-7.奈米碳線(管)成長條件為鎳催化劑薄膜有蝕刻(微波功率500W,蝕刻時 間5 分鐘與溫度為288 ℃)和厚度85 nm,燈絲溫度1868 ℃,基板溫度 364 ℃,燈絲與試片距離約9 mm,成長時間15 分鐘,工作壓力保持在 20 Torr。氣體比例CH4/CH4+H2為0.1。(A)鎳催化劑明視野影像圖(右上 插圖為TEM-SAD 圖),(B)奈米碳管之HR-TEM 明視野影像(右上插圖 為TEM-SAD 圖),(C)奈米碳線之HR-TEM 明視野影像(右上插圖為 TEM-SAD 圖)。..............................................81 Fig.4-8.奈米碳線成長在鎳催化劑薄膜的SEM 橫截面影像,成長條件為鎳催化 劑薄膜無蝕刻和厚度25 nm,燈絲溫度1802 ℃,基板溫度398 ℃(本實 驗各組參數之燈絲溫度1804、1753、1802、1827 與1826 ℃,基板溫度 387、390、398、363、397 ℃),燈絲與試片距離約2 mm,成長時間15 分鐘,工作壓力保持在2 0 T o r r,氣體比例CH4 /CH4+H2 為 0.1。........................................................82 Fig.4-9.奈米碳管成長條件為鎳催化劑薄膜無蝕刻和厚度85 nm,燈絲溫度1802 ℃,基板溫度398 ℃,燈絲與試片距離約2 mm,成長時間15 分鐘,工 作壓力保持在20 Torr,氣體比例CH4/CH4+H2為0.1。(A)SEM 橫截面影 像,(B)奈米碳管之TEM 明視野影像,(C)多壁奈米碳管之HR-TEM 明 視野影像(右上插圖為TEM-SAD圖)。...........................84 Fig.4-10.奈米碳線成長在鎳催化劑薄膜的拉曼光譜圖,成長條件為鎳催化劑薄 膜無蝕刻和厚度25 nm,燈絲溫度1858℃,基板溫度391℃,燈絲與試 片距離約9 mm,成長時間15 分鐘,工作壓力保持在20 Torr。(A)氣體 比例CH4/CH4+H2為0.025,(B)氣體比例CH4/CH4+H2為0.1。.........87 Fig.4-11.奈米碳線成長在鎳催化劑薄膜的拉曼光譜圖,成長條件為鎳催化劑薄 膜無蝕刻和厚度85 nm,燈絲溫度1858℃,基板溫度391℃,燈絲與試 片距離約9 mm,成長時間15 分鐘,工作壓力保持在20 Torr。(A)氣體 比例CH4/CH4+H2為0.025,(B)氣體比例CH4/CH4+H2為0.2。.........88 Fig.4-12.ID/IG比值與G band 的FWHM 隨著不同CH4/CH4+H2氣體比例變化之 關係。......................................................90 Fig.4-13.奈米碳線成長在鎳催化劑薄膜的拉曼光譜圖,成長條件為鎳催化劑薄 膜無蝕刻和厚度85 nm,燈絲溫度1802℃,基板溫度398℃,燈絲與試 片距離約2 mm,成長時間15 分鐘,工作壓力保持在20 Torr。(A)氣體 比例CH4/CH4+H2為0.1,(B)氣體比例CH4/CH4+H2為0.2,(C)氣體比例 CH4/CH4+H2為0.25。..........................................95 Fig.4-14.ID/IG比值與G band 的FWHM 隨著不同CH4/CH4+H2氣體比例變化之 關係。(奈米碳線成長在鎳催化劑薄膜的拉曼光譜圖,成長條件為鎳催 化劑薄膜無蝕刻和厚度85 nm,燈絲溫度1802℃,基板溫度398℃,燈 絲與試片距離約2 mm,成長時間15 分鐘,工作壓力保持在20 Torr。 氣體比例CH4/CH4+H2為0.05,0.1,0.2,0.25。).....................96 Fig.4-15.奈米碳線成長在鎳催化劑薄膜的場發射量測(在右圖上為SEM 橫截面 影像圖),成長條件均為鎳催化劑薄膜無蝕刻和厚度85 nm,燈絲溫度 1805℃,基板溫度390℃,燈絲與試片距離約2 mm,成長時間15 分鐘, 工作壓力保持在20 Torr,氣體比例CH4/CH4+H2為0.1。............100 Fig.4-16.奈米碳線成長在鎳催化劑薄膜的場發射量測(在右圖上為SEM 橫截面 影像圖),成長條件均為鎳催化劑薄膜無蝕刻和厚度85 nm,燈絲溫度 1827℃,基板溫度363℃,燈絲與試片距離約2 mm,成長時間15 分鐘, 工作壓力保持在20 Torr,氣體比例CH4/CH4+H2為0.2。............101 Fig.4-17.奈米碳線成長在鎳催化劑薄膜的場發射量測(在右圖上為SEM 橫截面 影像圖),成長條件均為鎳催化劑薄膜無蝕刻和厚度85 nm,燈絲溫度 1826℃,基板溫度397℃,燈絲與試片距離約2 mm,成長時間15 分鐘, 工作壓力保持在20 Torr,氣體比例CH4/CH4+H2為0.25。...........101 Fig.4-18.電流密度與量測數次隨不同氣體比例CH4/CH4+H2 之變化關係圖,成 長條件均為鎳催化劑薄膜無蝕刻和厚度85 nm,氣體比例CH4/CH4+H2 分別為0.1、0.2、0.25,燈絲溫度1802、1827、1826 ℃,基板溫度398、 363、397 ℃,燈絲與試片距離約2 mm,成長時間15 分鐘,工作壓力 保持在20 Torr。電流密度分別為31.23 mA/cm2、2.67 mA/cm2、1.11 mA/cm2。..................................................102 Fig.5-1.矽基板經不同時間(蝕刻時間分別為0 分鐘,10 分鐘,20 分鐘,30 分鐘) 做高密度微波電漿做乾式蝕刻成長鎢薄膜的X 光繞射光譜。.......104 Fig.5-2.SEM 表面影像圖。(A)燈絲溫度為1810 ℃,基板表面無蝕刻(B)燈絲溫 度為1810 ℃,基板表面蝕刻10 分鐘,(C)燈絲溫度為1810 ℃,基板表 面蝕刻20 分鐘,(D)燈絲溫度為1810 ℃,基板表面蝕刻30 分鐘,(E) 鎢膜之SEM 橫截面影像圖。..................................106 Fig.5-3.鎢膜沉積的成長速率與晶粒尺寸與有蝕刻之變化關係圖。.........107 Fig.5-4.原子力顯微鏡(掃描範圍10 x 10 mm)鎢膜沉積在不同蝕刻時間,(A)基板 無蝕刻,Ra=127.5 nm,(B)基板蝕刻30 分鐘,Ra=156.8 nm。.........107 Fig.5-5.通入氫氣成長的鎢膜(A)TEM 橫截面明視野影像,(B)鎢膜選區繞射影 像,(C)鎢膜繞射環影像。矽基板表面乾式無蝕刻,熱燈絲的反應腔體 抽真空到10-3 Torr,通入氫氣流量為100 sccm,工作壓力保持在20 Torr; 燈絲功率約在1300 W和蒸鍍時間為15分鐘;燈絲溫度約1810 ℃和基板 座溫度約520 ℃。...........................................109 Fig.5-6.鎢薄膜的片電阻與晶粒尺寸在不同蝕刻時間變化關係圖。.........110 Fig.5-7.場發射電流密度與電場在不同蝕刻時間(0、10、20、30 分鐘)之變化關 係圖。(啟始電場分別在1.25、3.38、4.6 及2.28 V/mm;其電流密度分別 為0.163、0.176、0.022及0.299 mA/cm2。)........................112 Fig.5-8.鎢膜成長在添加不同濃度甲烷與表面作乾式蝕刻的XRD 光譜繞射圖。 (A)燈絲溫度在2010℃,(B)燈絲溫度在1850℃。..................115 Fig.5-9.優選方向強度百分比與不同甲烷濃度百分比在不同蝕刻時間變化之關 係圖。.....................................................116 Fig.5-10.添加不同濃度甲烷,基板蝕刻與控制在不同基板座溫度下成長α-與β- 鎢膜的XRD 光譜繞射圖。....................................118 Fig.5-11.SEM 表面影像圖。(A)燈絲溫度為2010 ℃,基板表面無蝕刻(B)燈絲 溫度為2010 ℃,基板表面蝕刻10 分鐘,(C)燈絲溫度為2010 ℃,基板 表面蝕刻20 分鐘,(D)燈絲溫度為2010 ℃,基板表面蝕刻30 分鐘,(E) 鎢膜之SEM 橫截面影像圖。..................................120 Fig.5-12.SEM 表面影像圖。(A)燈絲溫度為1850 ℃,基板表面無蝕刻(B)燈絲 溫度為1850 ℃,基板表面蝕刻10 分鐘,(C)燈絲溫度為1850 ℃,基板 表面蝕刻20 分鐘,(D)燈絲溫度為1850 ℃,基板表面蝕刻30 分鐘,(E) 鎢膜之SEM 橫截面影像圖。..................................121 Fig.5-13.無添加甲烷在不同基板座溫度成長的不同結晶相之鎢薄膜,(A)α-W 之 SEM 平面影像圖,(B)β-W 之SEM 平面影像圖,(C) α-W 之SEM 橫截 面影像圖,(D) β-W 之SEM 橫截面影像圖。......................123 Fig.5-14.通入甲烷(1%)混入氫氣成長的鎢膜(A)TEM 橫截面明視野影像,(B)非 晶質碳膜繞射環影像,(C)鎢膜繞射環影像。.....................125 Fig.5-15.通入甲烷(2%)混入氫氣成長的鎢膜(A)TEM 平面明視野影像,(B)鎢膜 繞射環影像。..............................................126 Fig.5-16.通入甲烷(2%)混入氫氣成長的鎢膜晶界之HR-TEM 平面明視野影 像。.......................................................126 Fig.5-17.添加不同甲烷與氫氣(CH4/H2)百分比(A)0.005,(B)0.02,(C)0.03, (D)0.25,(E)0.43,(F)0.67,(G)1,總流量為100 sccm。...........128 Fig.5-18. 由矽基板處剝離α-鎢膜背面做XRD光譜繞射圖。..............130 Fig.5-19. 鎢膜在不同氫氣與甲烷比,沉積時間在15 分鐘的SEM 表面與橫截面 之影相圖。氫氣與甲烷比分別為: ( A ) C H 4 / C H 4 + H 2 = 0, (B)CH4/CH4+H2=0.01,(C)CH4/CH4+H2=0.02,(D)CH4/CH4+H2=0, (E)CH4/CH4+H2=0.01,(F)CH4/CH4+H2=0.02。.....................132 Fig.5-20. α 相鎢膜(CH4/CH4+H2=0)背面由矽基板上剝離的電子掃描式平面影像 圖。........................................................132 Fig.5-21.鎢膜沉積在固定甲烷與氫混合氣比在0.02 時,不同沉積時間的X 光繞 射圖譜變化:(A)沉積時間2 min,(B)沉積時間3 min,(C)沉積時間4 min,(D)沉積時間5 min,(E)沉積時間7 min,(F)沉積時間9 min,(G) 沉積時間11 min,(H)沉積時間13 min,(I)沉積時間15 min,(J)沉積時 間17 min,以及(K)沉積時間20 min.。...........................134 Fig.5-22 燈絲溫度與基板溫度對沉積時間之變化關係圖。................134 Fig.5-23.鎢膜沉積在固定甲烷與氫混合氣比在0.02 時,不同沉積時間的SEM 表面影像圖之變化:(A)沉積時間2 min,(B)沉積時間3 min,(C)沉積時 間4 min,(D)沉積時間5 min,(E)沉積時間7 min,(F)沉積時間9 min, (G)沉積時間11 min,(H)沉積時間13 min,(I)沉積時間15 min,(J)沉積 時間17 min,以及(K)沉積時間20 min.。.........................137 Fig.5-24.鎢薄膜的晶粒尺寸對基板溫度與沉積時間之變化關係作圖。......138 Fig.5-25.鎢薄膜的成長速率與厚度對沉積時間之變化關係作圖。..........138 Fig.5-26.鎢膜沉積在固定甲烷與氫混合氣比在0.02 時,不同沉積時間的TEM 與HR-TEM 之橫截面明視野繞射影像變化:(A)2 分鐘的TEM 橫截面影 像,(B)2 分鐘的HR-TEM 橫截面影像,(C)3 分鐘的TEM 橫截面影像, (D)3 分鐘的HR-TEM 橫截面影像,(E)4 分鐘的TEM 橫截面影像,(F)4 分鐘的HR-TEM 橫截面影像,(G)5 分鐘的TEM 橫截面影像,(H)5 分鐘 的HR-TEM 橫截面影像,(I)7 分鐘的TEM 橫截面影像,(J)7 分鐘的 HR-TEM 橫截面影像,(K)9 分鐘的TEM 橫截面影像,(L)9 分鐘的 HR-TEM 橫截面影像,(M)11 分鐘的TEM 橫截面影像,(N)11 分鐘的 HR-TEM 橫截面影像,(O)13 分鐘的TEM 橫截面影像,(P)13 分鐘的 HR-TEM 橫截面影像,(Q)15 分鐘的TEM 橫截面影像,(R)15 分鐘的 XVIII HR-TEM 橫截面影像,(S)17 分鐘的TEM 橫截面影像,(T)17 分鐘的 HR-TEM 橫截面明視野繞射影像。.............................144 Fig.5-27.鎢膜成長在20 分鐘的TEM 橫截面明視野影像與鎢膜繞射環影 像。.......................................................145 Fig.5-28. a-鎢薄膜成長在矽基板無前處理與氫氣甲烷比固定在2%之拉曼分 析。不同沉積時間分別為: (A) 2 min,(B) 3 min,(C) 4 min,(D) 5 min, (E) 7 min,(F) 9 min,(G) 11 min,(H) 13 min,(I) 15 min,(J) 17 min, and (K) 20 min. .............................................148 Fig.6-1.五鉬化三矽(Mo5Si3)是D8m單位晶胞,它是由16k 與4b 過渡金屬位置 與和8 h 與4a的矽位置所共同組成。...........................150 Fig.6-2.鉬-矽薄膜在不同沉積時間的XRD 繞射圖。.....................153 Fig.6-3.鉬薄膜成長在30 nm厚的SiO2薄膜,沉積時間為20 分鐘的XRD 繞射 圖。........................................................153 Fig.6-4.Mo5Si3薄膜在不同沉積時間的SEM 表面與橫截面影像圖,(A)沉積30 分鐘,平均晶粒尺寸為35 nm,(C)沉積45 分鐘,平均晶粒尺寸為40 nm, (E)沉積60 分鐘,平均晶粒尺寸為60 nm,(B)沉積30 分鐘,平均膜厚 為0.1 mm,(D)沉積45 分鐘,平均膜厚為0.275 mm,(F)沉積60 分鐘, 平均膜厚為0.45 mm。........................................155 Fig.6-5.Mo 薄膜成長在厚度為30 nm 的SiO2表面,沉積時間為20 分鐘的SEM 影像圖,(A) SEM 表面影像圖,(B) SEM 橫截面影像圖(厚度約7.8 um)。......................................................156 Fig. 6-6.Mo5 Si3 薄膜在不同沉積時間的成長速率與晶粒尺寸變化關係 圖。......................................................157 Fig.6-7.Mo5Si3薄膜電子穿透顯微鏡橫截面明視野影像圖,無添加甲烷,沉積時 間45 分鐘:(A)電子穿透顯微鏡橫截面明視野影像,(B)Mo5Si3薄膜繞射 環分析,(C)為(A)之黃色虛線區塊的放大圖(HR-TEM)。............159 Fig.6-8.Mo5Si3薄膜電子穿透顯微鏡橫截面明視野影像圖,無添加甲烷,沉積時 間60 分鐘:(A)電子穿透顯微鏡橫截面明視野影像,(B)Mo5Si3薄膜繞射 環分析,(C)為(A)之黃色虛線區塊的放大圖(HR-TEM)。............160 Fig.6-9.五鉬化三矽在沉積60 分鐘的場發射結果。啟始電場在4.6 V/um和電流 密度約在0.05 mA/cm2。.......................................162

    165
    參考文獻
    1 C. A. Spindt, “A Thin-Film Field-Emission Cathode”, J. Appl. Phys. 39, 3504 (1968).
    2 C. A. Spindt, I. Brodie, L. Humphrey, and E.R. Westerberg, “PHYSICAL PROPERTIES OF THIN-FILM
    FIELD EMISSION CATHODES WITH MOLYBDENUM CONES”, J. Appl. Phys. 47, 5248 (1976).
    3 H.F. Gray, G.J. Campisi, and R.F. Greene, “A vacuum field effect transistor using silicon field emission
    arrays”, in Technical Digest of IEDM, Washington, D.C. p. 776, 1986.
    4 A. Ghis, R. Meyer, P. Rambaud, F. Levy, and T. Leroux, “Sealed vacuum devices: fluorescent microtip
    displays”, IEEE Trans. Electron Devices 38, (1991)2320.
    5 R.H. Fowler and L.W. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. Roy. Soc. (London),
    A 119, (1928) 173-181.
    6 L. Nordheim, “The Effect of the Image Force on the Emission and Reflexion of Electrons by Metals”, Proc.
    Roy. Soc. (London), A 121, (1928) 626-639.
    7 Wei Zhu, “Vacuum Microelectronics”, WIELY, 2001.
    8 Source: Micron Display at http://www.micron.com/mdt/tech/tech.htm on September 15, 1999.
    9 C. A. Spindt, “A Thin-Film Field-Emission Cathode”, J. Appl. Phys. 39, (1968) 3504.
    10 R.N. Thomas, R.A. Wickstrum, D.K. Schroder, and H.C. Nathanson, “Historical Overview”, Solid State
    Electron 17, (1974) 155.
    11 H.F. Gray, G.J. Campisi, and R.F. Greene, “A vacuum field effect transistor using silicon field emission
    arrays”, in Technical Digest of IEDM, Washington, D.C. p. 1, 1992.
    12 R. Meyer, A. Ghis, P. Ramband, and F. Muller, “Development of matrix array of cathode emitters on a
    glass substrate for flat display applications”, in Proc. 1st IVMC, Williamsburg, VA, P. 10, 1988.
    13 Interviews with PixTech executives on June 25, 1996.
    14 E.L. Murphy and R.H. Good, Jr., “Thermionic Emission Field Emission and the Transition Region”, Phys.
    Rec. 102, (1956) 1464.
    15 R.H. Fowler and L.W. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. Roy. Soc.
    (London), A 119, (1928) 173-181.
    16 L.W. Nordheim, “The effect of the image force on the emission and reflection of electrons by metals”,
    Proc. R. Soc. (London) A 121, (1928) 626–639.
    17 L.W. Nordheim, “Die theorie der elektronenemission der metalle“, Z. Physik 30 (7) (1929) 177–196.
    18 R.E. Burgess, H. Kroemer and J.M. Houston, “Corrected Values of Fowler-Nordheim Field Emission
    Functions v(y) and s(y)”, Phys. Rec. 90, (1953) 515.
    19 W.P. Dyke and J.K. Trolan, “Field Emission:Large Current Densities Space Charge and the Vacuum Arc”,
    Phys. Rev. 89(4), (1953)799-808.
    20 G.N. Fursey, V.E. Ptitsyn, and D.N. Krotevich, “Spontaneous migration of the surface atoms at maximum
    current densities of the field-electron emission initiating vacuum breakdown”, Proc. 11th ISDEIV, 1,
    (1984)69-71.
    21 D.N. Krotevich, V.E. Ptitsyn, G.N. Fursey, “Spontaneous build-up of a field-emission cathode at
    maximum current densities”, Zh. Tekh. Fiz. 55(3), (1985)625-627.
    166
    22 G.N. Fursey, and I.D. Tolkacheva, “High field emission current and the effects preceding vacum
    breakdown for Ta and Mo emitters”, Radiotekhnika I Elekronika 8(7), (1963)1210-1221.
    23 G.N. Fursey, “Impulse field emission from rhenium”, Zh. Tekh. Fiz. 34(7), (1964)1312-1316.
    24 Woo-Oh Chang, Chun-Gyoo Lee, Byung Gook Park, “Fabrication of metal field emitter arrays for low
    voltage and high current operation”, J. Vac. Sci. Technol B, 16(2), (1998) 807-810.
    25 M.R. Rakhshandaroo, S.W. Pang, “Fabrication of self-aligned silicon field emission devices and effects of
    surface passivation on emission current”, J. Vac. Sci. Technol. B, 16(2) ,(1998)765-767.
    26 J.R. Jessing, “Fabrication and characterization of gated porous silicon cathode field emission arrays”, J.
    Vac. Sci. Technol B, 16(2), (1998)777-779.
    27 Vladimir I. Merkulov, Douglas H. Lowndes, Larry R. Baylor, Sukill Kang, “Field emission properties of
    different forms of carbon”, Solid-State Electronics 45 (2001)949-956.
    28 J. Robertson, “Electron affinity of carbon systems”, Diam. Relat. Mater. 5, (1996)797-801.
    29 J. Robertson, “Recombination and photoluminescence mechanism in hydrogenated amorphous carbon”,
    Phys. Rev. B 53, (1993)16302.
    30 J. Rinstein, J. Schafer, and L. Ley, “Effective correlation energies for defects in a-C/H from a comparison
    of photelectron yield and electron spin resonance experiments”, Diam. Relat. Mater. 4, (1995)508.
    31 B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, “Field emission from tetrahedral amorphous
    carbon”, J. Appl. Phys. 71, (1997)1430.
    32 D.R. Tallant, J.E. Parmeter, M.P. Siegal, and R.L. Simpson, “The thermal stability of diamond-like
    carbon”, Diam. Relat. Mater. 4, (1995)191-199.
    33 G.A.J. Amaratunga and S.R.P. Silva, “Nitrogen containing hydrogenated amorphous carbon for thin-film
    field emission cathodes”, Appl. Phys. Lett. 68, (1996)2529.
    34 V.S. Veersamy, J. Yuan, G.A.J. Amaratunga, W.I. Milne, K.W.R. Gilkes, M. Weilner, and L.M. Brown,
    “Nitrogen doping of highly tetrahedral amorphous carbon”, Phys. Rev. B 48, (1993)17954.
    35 M.W. Geis, N.N. Efrenow, K.E. Krohn, J.C. Twichell, T.M. Lyszcarz, R. Kalish, J.A. Greer, and M.D.
    Tabat, “A new surface electron-emission mechanism in diamond cathodes”, Nature 393, (1998)431.
    36 N. Kumar, H.K. Schmidt, and C. Xie,”Diamond-based field emission flat panel displays”, Solid State
    Technol. 38, (1995)71.
    37 C. Wang, A. Garcia, D.C. Ingram, M. Lake, M.E. Kordesch, “Cold field emission from CVD diamond
    films observed in emission electron microscopy”, Electron. Lett. 27, (1991)1459.
    38 N.S. Xu, R.V. Latham, “Similarities in the cold electron emission characteristics of diamond coated
    molybdenum electrodes and polished bulk graphite surfaces”, J. Phys. D 26 ,(1993)1776.
    39 J. Liu, V.V. Zhirnov, A.F. Myers, W.B. Choi, G.J. Wojak, J.J. Hren, in: Proceedings of 1994 Tri-Service /
    NASA Cathode Workshop, Cleveland, OH, USA, March, 1994p. 99.
    40 B.B. Pate, P.M. Stefan, C. Binns, P.J. Jupiter, M.L. Shek, I. Lindau, and W.E. Spicer, “Formation of
    surface states on the (111) surface of diamond”, J. Vac. Sci. Technol. 19, (1981)349-354.
    41 K. Okano, S. Koizum, S.R.P. Silva, G.A.J. Amaratunga, “Low-threshold cold cathodes made of
    nitrogen-doped chemical-vapour-deposited diamond”, Nature 381, (1996)140.
    167
    42 C.F. Shih, K.S. Liu, I.-N. Lin, “Effect of nitrogen doping on the electron field emission properties of
    chemical vapor deposited diamond films”, Diamond Relat. Mater. 9, (2000)1591.
    43 M.W. Geis, J.C. Twichell, J. Macaulay, and K. Okano, “Electron field emission from diamond and other
    carbon materials after H2O2 and Cs treatment”, Appl. Phys. Lett. 67, (1995)1328.
    44 M.W. Geis, J.C. Twichell, N.N. Efremow, K. Krohn, and T.M. Lyszczarz, “Comparison of electric field
    emission from nitrogen-doped type Ib diamond and boron-doped diamond”, Appl. Phys. Lett. 68,
    (1996)2294.
    45 K. Okano, S. Koizumi, S.R.P. Silva, and G.J.A. Amaratunga, “Low-threshold cold cathodes made of
    nitrogen-doped chemical-vapour-deposited diamond”, Nature 381, (1996)140.
    46 K. Okano, T. Yamada, H. Ishihara, S. Koizumi, and J. Itho, “Electron emission from nitrogen-doped
    pyramidal-shape diamond and its battery operation”, Appl. Phys. Lett. 70, (1997)2201.
    47 A.T. Sowers, B.L. Ward, S.E. English, and R.J. Nemanich, “Field emission properties of nitrogen-doped
    diamond films”, J. Appl. Phys. 86, (1999)3973.
    48 W. Zhu, G.P. Kochanski, S. Jin, and L. Seibles, “Defect-enhanced electron field emission from chemical
    vapor deposited diamond”, J. Appl. Phys. 78, (1995)2707.
    49 W. Zhu, G.P. Kochanski, and S. Jin, “Low-Field Electron Emission from Undoped Nanostructured
    Diamond”, Science 282, (1998)1471.
    50 D. Zhou, A.R. Krauss, L.C. Qin, T.G. McCauley, D.M. Greun, T.D. Corrigan, R.P.H. Chang, and H.
    Gnaser, “Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2CH4
    microwave plasmas”, J. Appl. Phys. 82, (1997)4546.
    51 D.M. Gruen, “NANOCRYSTALLINE DIAMOND FILMS”, Annu. Rev. Mater. Sci. 29, (1999)211.
    52 O. Groning, O.M. Kuttel, P. Groning, and L. Schlapbach, “Field emission properties of nanocrystalline
    chemically vapor deposited-diamond films”, J. Vac. Sci. Technol B(5), 17 ,(1999)1970.
    53 C. Wang, A. Garcia, D.C. Ingram, M. Lake, and M.E. Kordesch, “Cold field emission from CVD diamond
    films observed in emission electron microscopy”, Electron Lett. 27, (1991)1459.
    54 N.S. Xu, Y. Tzeng, and R.V. Latham, “Similarities in the 'cold' electron emission characteristics of
    diamond coated molybdenum electrodes and polished bulk graphite surfaces”, J. Phys. D:Appl. Phys. 26,
    (1993)1776-1780.
    55 N.S. Xu, R.V. Latham, and Y. Tzeng, “Field-dependence of the area-density of cold electron emission
    sites on broad-area CVD diamond films”, Electron Lett. 28, (1993)1596.
    56 N.S. Xu, Y. Tzeng, and R.V. Latham, “A diagnostic study of the field emission characteristics of
    individual micro-emitters in CVD diamond films”, J. Phys. D:Appl. Phys. 27, (1994)1988-1991.
    57 R.V. Latham, High Voltage Vacuum Insulation, Academic Press : San Diego, 1995.
    58 A. Talin, L.S. Pan, K.F. McCarthy, T.E. Felter, H.J. Doerr, and R.F. Bushah, “The relationship between
    the spatially resolved field emission characteristics and the raman spectra of a nanocrystalline diamond
    cold cathode”, Appl. Phys. Lett. 69, (1996)3842.
    59 F.S. Baker, A.R. Osborn, and J. Williams, “Field Emission from Carbon Fibres : A New Electron Source”,
    Nature, Lond. 239 (1972)96-97.
    168
    60 F.S. Baker, A.R. Osborn, and J. Williams, “The carbon-fibre field emitter”, J. Phys. D: Appl. Phys., vol. 7,
    (1974)2105-2115.
    61 Colin Lea, “Field emission from carbon fibres”, J. Phys. D: Appl. Phys., vol. 6, (1973)1105-1114.
    62 Mahendra A. More and Dilip S. Joag, “Spectral analysis of field emission current fluctuations from a
    carbon fibre field emitter”, J. Phys. D: Appl. Phys., vol. 25, (1992)1844-1847.
    63 M.S. Mousa, “Electron emission from carbon fibre tips”, Applied Surface Science, 94/95, (1996)129-135.
    64 C.H.P. Poa, S.J. Henley, G.Y. Chen, A.A.D.T. Adikaari, C.E. Giusca, and S.R.P. Silva, “Growth and field
    emission properties of vertically aligned carbon nanofibers”, JOURNAL OF APPLIED PHYSICS 97,
    (2005)114308.
    65 Qilong Wang, Hui Mu, Xiaobing Zhang, Wei Lei, Jinchan Wang, Hongping Zhao, “Field emitters with
    low turn on electric field based on carbon fibers”, Applied Surface Science 253, (2007)5980-5984.
    66 S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354/6348:56-58.
    67 T.W. Ebbesen(ED), “Carbon Nanotubes:Preparation and Properties”, CRC:Cleveland, OH, 1997.
    68 R. Saito, G. Dresselhaus, and M.S. Dresselhaus, ”Physical Properties of Carbon Nanotubes”, Imperial
    College Press:London, 1998.
    69 Y. Saito , S. Uemura, “Carbon”, Carbon 38, (2000) 169– 182.
    70 J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, “Electronic structure of
    atomically resolved carbon nanotubes”, Nature 391, (1998)59.
    71 T.W. Odum, J.L. Huang, P. Kim, and C.M. Lieber, “Atomic structure and electronic properties of
    single-walled carbon nanotubes”, Nature 391, (1998)62.
    72 S. Frank, P. Poncharal, Z.L. Wang, and W.A. de Heer, “Carbon Nanotube Quantum Resistors”, Science
    280, (1998)1744-1746.
    73 M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, “Science of Fullerenes and Carbon Nanotubes”,
    Academic:New York, 1996.
    74 S. Suzuki, C. Bower, Y. Watanabe, “Work functions and valence band states of pristine and
    Cs-intercalated single-walled carbon nanotube bundles”, Appl. Phys. Lett. 76, (2000)4007.
    75 H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, and R.H. Friend, “Work
    Functions and Surface Functional Groups of Multiwall Carbon Nanotubes”, J. Phys. Chem. B 103,
    (1999)8116.
    76 A.G Rinzler, J.H. Hafner, P. Nikolaec, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, and
    R.E. Smalley, “Unraveling Nanotubes:Field Emission from an Atomic Wire”, Science 269,
    (1995)1550-1553.
    77 J.M. Bonard., J.P. Salvetat, T. Stöckli, L. Forr´o, A. Châtelain, “Field emission from carbon nanotubes :
    perspectives for applications and clues to the emission mechanism”, Appl. Phys. A 69, (1999)245–254.
    78 W.A. de Heer, A. Chatelain, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source”,
    Science 270, (1995)1179-80.
    169
    79 P.G. Collins and A. Zettl, “A simple and robust electron beam source from carbon nanotubes”, Appl. Phys.
    Lett. 69, (1996)1969.
    80 X. Xu and G.R. Brandes, “A method for fabricating large-area patterned carbon nanotube field emitters”,
    Appl. Phys. Lett. 74, (1999)2549.
    81 O.M. Kuttel, O. Grogening, C. Emmenegger, and L. Schlapbach, “Electron field emission from phase pure
    nanotube films grown in a methane hydrogen plasma”, Appl. Phys. Lett. 73, (1998)2113.
    82 Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio, “Synthesis of Large
    Arrays of Well-Aligned Carbon Nanotubes on Glass”, Science 282, (1998)1105.
    83 S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Casell, and H. Dai, “Self-Oriented Regular
    Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science 283, (1999)512.
    84 C. Bower, W. Zhou, S. Jin, and O. Zhou, “Plasma-induced alignment of carbon nanotubes”, Appl. Phys.
    Lett. 77, (2000)830-832.
    85 C. Bower, W. Zhou, D.J. Werder, S. Jin, and O. Zhou, “Nucleation and growth of carbon nanotubes by
    microwave plasma chemical vapor deposition”, Appl. Phys. Lett. 77, (2000)2767-2769.
    86 H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, “Field emission from well-aligned patterned
    carbon nanotube emitters”, Appl. Phys. Lett. 76, (2000)1776.
    87 L. Nilsson, O. Groening, C. Emmenegger, O. Kuttel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard,
    and K. Kerm, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. 76,
    (2000)2071.
    88 R.H. Baughman, A.V. Zakhidov, and W.A. de Heer, “Carbon Nanotubes:the Route Toward Applications”,
    Science 297, (2002)787.
    89 Debasish Banerjee, Sung Ho Jo, and Zhi Feng Ren, “Enhanced Field Emission of ZnO Nanowires”, Adv.
    Mater. 16, (2004)2028-2032.
    90 S.H. Jo, D. Banerjee, and Z.F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth”, Appl.
    Phys. Lett. 85, (2004)1407-1409.
    91 Gengmin Zhang, Qifeng Zhang, Yi Pei, Liang Chen, “Field emission from nonaligned zinc oxide
    nanowires”, Vacuum 77, (2004)53-56.
    92 Cheng-Liang Hsu, Shoou-Jinn Chang, Hui-Chuan Hung, Yan-Ru Lin, Chorng-Jye Huang, Yung-Kuan
    Tseng, and I-Cherng Chen, “Vertical single-crystal ZnO nanowires grown on ZnO:Gaglass templates”,
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, Vol. 4, No. 6, (2005)649-653.
    93 L. Liao, J.C. Li, D.F. Wang, C. Liu, C.S. Liu, Q. Fu, and L.X. Fan, “Field emission property improvement
    of ZnO nanowires coated with amorphous carbon and carbon nitride films”, Nanotechnology 16,
    (2005)985-989.
    94 H.Y. Yang, S.P. Lau, S.F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita, and H.H. Hng, “Field
    emission from zinc oxide nanoneedles on plastic substrates”, Nanotechnology 16, (2005)1300-1303.
    95 Y.H. Yang, B. Wang, N.S. Xu, and G.W. Yang, “Field emission of one-dimensional micro- and
    nanostructures of zinc oxide”, Appl. Phys. Lett. 89, (2006)043108.
    96 Y.B. Li, Y. Bando, and D. Golberg, Appl. Phys. Lett. 84, (2004)3063-3605.
    170
    97 Q. Zhao, H.Z. Zhang, Y.W. Zhu, S.Q. Feng, X.C. Sun, J. Xu, and D.P. Yu, “Morphological effects on the
    field emission of ZnO nanorod arrays”, Appl. Phys. Lett. 86, (2005)203115.
    98 Ke Yu, Yongsheng Zhang, Rongli Xu, Desheng Jiang, Laiqiang Luo, Qiong Li, Ziqiang Zhu, Wei Lu,
    “Field emission behavior of cuboid zinc oxide nanorods on zinc-filled porous silicon”, Solid State
    Communications 133, (2005)43-47.
    99 Z.Z. Ye, F. Yang, Y.F. Lu, M.J. Zhi, H.P. Tang, L.P. Zhu, “ZnO nanorods with different morphologies
    and their field emission properties”, Solid State Communications 142, (2007)425-428.
    100 Lei Wei, Xiaobing Zhang, and Zhu Zuoya, “Application of ZnO nanopins as field emitters in a
    field-emission-display device”, J. Vac. Sci. Technol B, 25(2), (2007) 608-610.
    101 R.C. Wang, C.P. Liu, J.L. Huang, S.L. Chen, Y.K. Tseng, and S.C. Kung, “ZnO nanopencils:Efficient
    field emitters”, Appl. Phys. Lett. 87, (2005)013110.
    102 Seung-Youl kang, Jin Ho Lee, Yoon-Ho Song, “Emission characteristics of TiN-coated silicon field
    emitter arrays”, J. Vac. Sci. Technol B, 16(2), (1998) 871-873.
    103 A.H. Jayatissa, “Field emission properties of BN coated Si tips by pulsed ArF laser deposition”, J. Vac.
    Sci. Technol B, 17(1), (1999) 237-240.
    104 Y. Taniyasu, M. Kasu, T. Makimoto, “Field emission properties of heavily Si-doped AlN in triode-type
    display structure”, Appl. Phys. Lett. 84,(2004) 2115.
    105 A.F. Belyanin, P.V. Pashchenko, B.V. Spitsyn, A.N. Blaut-Bachev, L.L. Bouilov, V.V. Zhirnov, L.V.
    Bormatova, “Field emitters based on Si tips with AlN coating”, Diamond Relat. Mater. 2-5, (1998) 692.
    106 Y. B. Tang, H. T. Cong, Z. G. Zhao, H. M. Cheng, “Field emission from AlN nanorod array”, Appl. Phys.
    Lett. 86, (2005)153104.
    107 Jr Hau He, Rusen Yang, Yu Lun Chueh, Li Jen Chou, Lih Juann Chen, and Zhong Lin Wang, “Aligned
    AlN Nanorods with Multi-tipped Surfaces : Growth Field-Emission and Cathodoluminescence
    Properties”, Adv. Mater. 18, (2006)650-654.
    108 C. Liu, Z. Hu, Q. Wu, X. Z. Wang, Y. Chen, H. Sang, J. M. Zhu, S. Z. Deng, N. S. Xu, “Vapor-Solid
    Growth and Characterization of Aluminum Nitride Nanocones”, J. Am. Chem. Soc. 127, (2005)1318.
    109 S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen,L. C. Chen, “Growth of
    Single-Crystalline Wurtzite Aluminum Nitride Nanotips with a Self-Selective Apex Angle”, Adv. Funct.
    Mater. 15, (2005) 781.
    110 Q. Zhao, J. Xu, X. Y. Xu, Z. Wang, D. P. Yu, “Field emission from AlN nanoneedle arrays“, Appl. Phys.
    Lett. 85, (2004)5331.
    111 L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, D. Golberg, “Growth and Field Emission of
    Hierarchical Single-Crystalline Wurtzite AlN Nanoarchitectures”, Adv. Mater. 17, (2005)110.
    112 T. Kozawa, J. Vac. Sci. Technol B, 16(2), (1998) 833-835.
    113 S. Hasegawa, S. Nishida, T. Yamashita, H. Asahi, “Polycrystalline GaN for light emitter and field
    electron emitter applications”, Thin Solid Films 487 (2005)260-267.
    171
    114 F. Ducroquet, P. Kropfeld, O. Yaradou, “Fabrication and emission characteristics of GaAs tip and
    wedge-shaped field emitter arrays by wet etching”, J. Vac. Sci. Technol B, 16(2), (1998) 787-789.
    115 M. Nagao, K. Utsumi, Y. Gotoh, H. Tsuji, J. Ishikawa, T. Nakatani, T. Sakashita, K. Betsui,
    “Dependence of emission characteristics of Spindt-type field emitters on cathode material”, Applied
    Surface Science, 146, (1999)182-186.
    116 M. S. Aouadi, R. R. Parsons, P. C. Wong, and K. A. R. Mitchell, “Characterization of sputter deposited
    tungsten films for x-ray multilayers”, J. Vac. Sci. Technol. A 10(2) , (1992) 273-280.
    117 I.A. Weerasekera, S. I. Shah, D.V. Baxter and K.M. Unruh, Appl. Phys. Lett. 64, (1994) 3231-3233.
    118 P. Petroff, T. T. Sheng, A. K. Sinha, G.. A. Rozgonyi, and F. B. Alexander, “Microstructure growth
    resistivity and stresses in thin tungsten films deposited by rf sputtering”, J. Appl. Phys.,Vol. 44, (1973)
    2545-2554.
    119 A.Bensaoula, J. C. Wolfe, A. Ignatiev, F-O. Fong, and T-S. Leung, “Direct-current-magnetron deposition
    of molybdenum and tungsten with rf-substrate bias”, J. Vac. Sci. Technol. A 2(2) , (1984) 389-392.
    120 C. C. Tang and D. W. Hess, “PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION OF beta
    -TUNGSTEN, A METASTABLE PHASE”, Appl. Phys. Lett. 45, (1984) 633-635.
    121 A.M. Haghiri-Gosnet, F.R. Ladan, C. Mayeux, H. Launois, M.C. Joncour, “Stress and microstructure in
    tungsten sputtered thin films”, J. Vac. Sci. Technol. A 7(4) , (1989) 2663-2669.
    122 P. Colpo,T. Meziani, N. Gibson, G. Ceccone, F. Rossi, “Tungsten deposition by dual-frequency
    inductively coupled plasma-assisted CVD”, Surface and Coatings Technology 116–119 (1999) 863–867
    123 Y.G. Shen and Y.M. Mai, “Influences of oxygen on the formation and stability of A15 β-W thin films”,
    Mater. Sci. Eng., A 284, (2000) 176-183.
    124 Y.G. Shen and Y.M. Mai, “Structure and properties of stacking faulted A15 tungsten thin films”, J.
    Mater. Sci. 36, (2001)93-98.
    125 Tansel Karabacak, Anupama Mallikarjunan, Jitendra P. Singh, Dexian Ye, Gwo-Ching Wang, and
    Toh-Ming Lu, ”b-phase tungsten nanorod formation by oblique-angle sputter deposition”, J Appl. Phys.
    Lett. 83, (2003) 3096-3098.
    126 J.G. Flming, S.Y. Lin, I. EI-Kady, R. Biswas, and K.M. Ho, “All-metallic three-dimensional photonic
    crystals with a large infrared bandgap”, Nature (London) 417, (2002) 52.
    127 K.Y. Ahn, “A comparison of tungsten film deposition techniques for very large scale integration
    technology”, Thin Solid Films 153, (1987) 469-478.
    128 S.M. Rossnagel, I.C. Noyan, and C. Cabral Jr., “Phase transformation of thin sputter-deposited tungsten
    films at room temperature”, J. Vac. Sci. Technol. B 20, (2002) 2047.
    129 M. Itoh, M. Hori, and S. Nadahara, “The origin of stress in sputter-deposited tungsten films for x-ray
    masks”, J. Vac. Sci. Technol. B 9, (1991) 149.
    130 M.S. Aouadi, R.R. Parsons, P.C. Wong, and K.A.R Mitchell, “Characterization of sputter deposited
    tungsten films for x-ray multilayers”, J. Vac. Sci. Technol. A 10, (1992) 273.
    172
    131 Yun-Hi Lee, Chang-Hoon Choi, Yoon-Taek Jang, Eun-Kyu Kim, Byeong-Kwon Ju, Nam-Ki Min, and
    Jin-Ho Ahn, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett. 81,
    (2002) 745-747.
    132 J. P. Singh, F. Tang, T. Karabacak, T. M. Lu and G. C. Wang, “Enhanced cold field emission from 100
    oriented b–W nanoemitters”, J. Vac. Sci. Technol., B 22, (2004) 1048-1051.
    133 Yunho Baek, Yoonho Song, and Kijung Yong, “A Novel Heteronanostructure System Hierarchical W
    Nanothorn Arrays on WO3 Nanowhiskers”, Adv. Mater. 18,(2006) 3105–3110.
    134 A.J. Learn and D.W. Foster, “Resistivity grain size and impurity effects in chemically vapor-deposited
    tungsten films”, J. Appl. Phys. 58, (1985) 2001.
    135 A.M. Haghiri-Gosnet, F.R. Ladan, C. Mayeux, and H. Launois, “Stress and microstructure in tungsten
    sputtered thin films”, J. Vac. Sci. Technol. A 7, (1989) 2663.
    136 K.K. Shih, D.A. Smith, and J.R. Crowe, “Properties of hard tungsten films prepared by sputtering”, J.
    Vac. Sci. Technol. A 6, (1988) 1681.
    137 I.A. Weerasekera, S. lsmat Shah, David V. Baxter, K. M. Unruh, “Structure and stability of sputter
    deposited beta-tungsten thin films”, Appt. Phys. Lett. 64 (24), 13, (1994)3231-3233.
    138 I-Shun Chang, Min-Hsiung Hon, “Growth characteristics and electrical resistivity of chemical
    vapor-deposited tungsten film”, Thin Solid Films 333, (1998) 108-113.
    139 Y.G. Shen, Y.W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, and W.E. McBride, Appl. ”Residual
    stress, microstructure, and structure of tungsten thin films”, J. Appl. Phys. 87, (2000) 177-187.
    140 J.H. Souk, J.F. O’Hanlon, and J. Angillelo, “Characterization of electron-beam deposited tungsten films
    on sapphire and silicon”, J. Vac. Sci. Technol. A 3, (1985) 2289.
    141 E.K. Broadbent, “Nucleation and growth of chemically vapor deposited tungsten on various substrate
    materials : A review”, J. Vac. Sci. Technol. B 4, (1987) 1661.
    142 Y. Pauleau, Ph. Lami, A. Tissier, R. Pantel, and J.C. Oberlin, “Tungsten Films Produced by Selective
    Deposition onto Silicon Wafers”, Thin Solid Films 143 (3), (1986)259-67.
    143 Ken K. Laia, H. Henry Lamb, “Tungsten chemical vapor deposition using tungsten hexacarbonyl-
    microstructure of as-deposited and annealed films”, Thin Solid Films 370, (2000) 114-121
    144 P. Colpo, T. Meziani, N. Gibson, G. Ceccone, F. Rossi, “Tungsten deposition by dual-frequency
    inductively coupled plasma-assisted CVD”, Surface and Coatings Technology 116–119, (1999) 863–867
    145 H.S. Witham, P. Chindandom, I. An, R.W. Collins, R. Messier, and K. Vedam, “Effect of preparation
    conditions on the morphology and electrochromic properties of amorphous tungsten oxide films”, J. Vac.
    Sci. Technol. A 11, (1993) 1881 .
    146 S. Basavaiah and S.R. Pollack, “Superconductivity in b -Tungsten Films”, J. Appl. Phys. 39, (1968)
    5548 .
    147 N. Susa, S. Ando, and S. Adachi, “Properties of Tungsten Film Deposited on GaAs by RF Magnetron
    Sputtering”, J. Electrochem. Soc. 132, (1985) 2245.
    173
    148 M. Arita and I. Nishida, “Tungsten Films with the A15 Structure”, Jpn. J. Appl. Phys., Part 1 32, (1993)
    1759.
    149 M. J. O’Keefe, J. T. Grant, “Phase transformation of sputter deposited tungsten thin films with A-15
    structure”, J. Appl. Phys. 79 (12), (1996)9134-9141.
    150 L.E. Toth, ” Transition Metal Carbides and Nitrides”, Academic, New York, 1971.
    151 PC Bettler and F M Charbonier, “Activation Energy for the Surface Migration of Tungsten in the
    Presence of a High-Electric Field”, Phys Rev, 119, (1960)85.
    152 Y. M. Gong and R Gomer, “Thermal roughening on stepped tungsten surfaces I The zone
    (011)–(112)”, .I Chem Phys, 88, (1988)1359.
    153 M.Q. Ding, A.F. Myers, W.B. Choi, R.D. Vispute, S.M. Caphausen, J. Narayan, J.J. Cuomo, and J.J.
    Hren, “Field emission from amorphous diamond coated Mo tip emitters by pulsed laser deposition”, J.
    Vat. Sci. Technol. B 15 (4), (1997) 840.
    154 Jae Hoon Jung, Byeong Kwon Ju, Yun Hi Lee, Kyu Chang Park, Jin Jang, Yu Ho Jung, Chul Ju Kim, and
    Myung Hwan Oh, “Emission stability of DLC coated metal-tips FEA”, 9th International Vacuum
    Microelectronics Conference, St. Petersburg,(1996) 231.
    155 Jae Hoon Jung, Byeong Kwon Ju, Hoon Kim, Myung Hwan Oh, Suk Jae Chung, and Jin Jang, “Effect of
    N doping on the electron emission properties of diamondlike carbon film on a 2-in Mo field emitter array
    panel”, J. Vat. Sci. Technol. B 16 (2), (1998) 705.
    156 Jae Hoon Jung, Byeong Kwon Ju, Member, IEEE, Hoon Kim, Yun Hi Lee, Suk Jae Chung, Jin Jang and
    Jin Jang, “Effect of diamond-like carbon coating on the emission characteristics of molybdenum field
    emitter arrays”, IEEE TRANSACTIONS ON ELECTRON SEVICES, vol. 45, (1998) 2232.
    157 Chin-Maw Lim, Shoou-Jinn Chang, Meiso Yokoyama, I-Nan Lin, Feng-Yu Chuang, Chun-Hui Tasi, and
    Wen-Chun Wang, “Enhancement of Electron Emission Characteristics of Platform-shaped Mo Emitters
    by Diamond-like Carbon Coatings”, Jpn. J. Appl. Phys. Vol. 38, (1999) 3700-3704.
    158 Jae Hoon Jung, Nam Yang Lee, Jin Jang, Myung Hwan Oh, Saeyoung Ahn, “Electron emission
    performance of nitrogen-doped hydrogen-free diamond-like carbon coating on Mo-Tip field emitter
    arrays”, J. Vat. Sci. Technol. B 18 (2), (2000) 933.
    159 R. Schlesser, M.T. McClure, B.L. McCarson, Z. Sitar, “Mechanisms of field emission from diamond
    coated Mo emitters”, Diamond and Related Materials 2-5, (1998) 636-639.
    160 T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi and M. Murakami, “Diffusion barrier
    property of TaN between Si and Cu”, Appl. Surf. Sc.i 99 (1996), p. 265.
    161 C.Y. Yang, J.S. Jeng and J.S. Chen, “Grain growth, agglomeration and interfacial reaction of copper
    interconnects”, Thin Solid Films 420–421 (2002), p. 398-402.
    162 M. Stavrev, D. Fischer, C. Wenzel, K. Drescher and N. Mattern, “Crystallographic and morphological
    characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films”, Thin Solid Films 307 (1997), p.
    79-88.
    163 Y.J. Lee, B.S. Suh, S.K. Rha and C.O. Park, “Structural and chemical stability of Ta–Si–N thin film
    174
    between Si and Cu”, Thin Solid Films 320 (1998), p. 141-146.
    164 V.P. Anitha. S. Major, D. Chandrashekhwam. M. Bhatnagar, “Deposition of molybdenum nitride thin
    films by r.f. reactive magnetron sputtering”, Surf. Coat. Technol. 79, (1996) 50.
    165 V.P. Anitha, A. Bhattachaqa, N.G. Patil, S. Major, “Study of sputtered molybdenum nitride as a diffusion
    barrier”, Thin Solid Films 236, (1993) 306-310..
    166 V.P. A&ha. S. Vitta, S. Major, “Structure and properties of reactivity sputtered γ-Mo2N hard coatings”,
    Thin Solid Films 245, (1994) 1-3.
    167 K.-L, Lin, Y.-J. Ho, “Deposition and properties of Mo–N films”, J. Vat. Sci. Technol. A 13 (6), (1995)
    2872.
    168 S.Q. Wang, S. Suthar, C. Hoeflich, B.J. Burrow, “Diffusion barrier properties of TiW between Si and
    Cu”, J. Appl. Phys. 73 (5), (1993) 2301.
    169 CA. Chang, “Reaction between Cu and PtSi with CrTiW and C barrier layers”, J. Appi. Phys. 67 (10),
    (1990) 6184.
    170 D.Y. Shih, C.A. Chang, J. Paraszczak, S. Nunes, J. Cataldo, “Thin film interdiffusions in CuPdCuPt
    CuNi CuNiB CuCo CuCr CuTi and CuTiN bilayer films:Correlations of sheet resistance with Rutherford
    backscattering spectrometries”, J. Appl. Phys. 70 (6), (1991) 3052.
    171 H. Ono, T. Nakano, T. Ohta, “Diffusion barrier effects of transition metals for CuMSi multilayers (M=Cr
    Ti Nb Mo Ta W)”, Appl. Phys. Lett. 64 (12), (1994) 1511.
    172 L.C. Lane, T.C. Nason, G.R. Yang, TM. Lu, H. Bakhru, “Secondary ion mass spectrometry study of the
    thermal stability of Curefractory metalSi structures”, J. Appl. Phys. 69 (9), (1991) 6719.
    173 Jui-Chang Chuang, Shuo-Lun Tu, Mao-Chieh Chen, “Sputter-deposited MO and reactively
    sputter-deposited MO-N films as barrier layers against Cu diffusion”, Thin Solid Films 346, (1999)
    299-306.
    174 J. Valli, U.M. MXkell, “Tribological properties of MoNx coatings in contact with copper”, J. Vat. Sci
    TechnoL A 4 (6), (1986) 2850.
    175 J.-Y. Lee. J.W. Park, “Diffusion Barrier Property of Molybdenum Nitride Films for Copper
    Metallization”, Jpn. J. Appl. Phys. 35,(1996) 4280.
    176 C. Ahrens, D. Depta, F. Schitthelm, S. Wilhelm, “Electrical characterization of conductive and
    non-conductive barrier layers for Cu-metallization”, Appl. Surf. Sci. 91, (1995) 285.
    177 F. Klabunde, M. Lo¨hmann, J. Bla¨sing, T. Dru¨sedau, “The influence of argon pressure on the structure
    of sputtered molybdenum:From porous amorphous to a new type of highly textured film“, J. Appl.Phys. 80,
    (1996) 6266.
    178 J.D. Wu, C.Z. Wu, Z.M. Song, F.M. Li, “Preparation of molybdenum nitrides by laser-promoted
    nitridation reaction”, Thin Solid Films 311, (1997) 62-66.
    179 J.C. Chuang, S.L. Tu, M.C. Chen, “Sputter-deposited MO and reactively sputter-deposited MO-N films
    as barrier layers against Cu diffusion”, Thin Solid Films 346, (1999) 299-306.
    175
    180 O. P. Karpenko, J. C. Bilello, and S. M. Yalisove, ”Combined transmission electron microscopy and
    x-ray study of the microstructure and texture in sputtered Mo films”, J. Appl. Phys. 76, (1994) 4610.
    181 M.A. Martínez., C. Guillén, “Comparison between large area dc-magnetron sputtered and e-beam
    evaporated molybdenum as thin film electrical contacts”, Journal of Materials Processing Technology
    143–144 (2003) 326–331.
    182 Y.G. Shen, “Effect of deposition conditions on mechanical stresses and microstructure of
    sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films”, Materials
    Science and Engineering A, Vol 359, 1-2, (2003) 158-167.
    183 G. Gordillo, M. Griza´ lez, L.C. Hernandez, “Structural and electrical properties of DC sputtered
    molybdenum films”, Solar Energy Materials and Solar Cells 51 ,(1998) 327–337.
    184 A.K. Vasud´evan, J.J. Petrovic, “A Comparative Overview of Molybdenum Disilicide Composites”,
    Mater. Sci. Eng. A 155, (1992) 1–17.
    185 J.J. Petrovic, “Mechanical behavior of MoSi2 and MoSi2 composites”, Mater. Sci. Eng. A 192/193,
    (1995) 31–37.
    186 R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, C.J. Maggiore, “Synthesis of Molybdenum Disilicide by
    Mechanical Alloying”, Mater. Sci. Eng. A 155, (1992) 75–83.
    187 R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovitz, A. Basu, H. Chang, D.P. Mason, W. Yang,
    “Mechanical Behavior and Interface Design of MoSi2-Based Alloys and Composites, " Mater. Sci. Eng.
    A 155, (1992) 147–158.
    188 W. P. Dyke and W. W. Dolan, “Field Emission”, Advances in Electronics and Electron Physics Vol. 8,
    Academic, New York, (1956).
    189 R. Gomer, “Field Emission and Field Ionization”, Harvard University Press, Cambridge, MA,
    (1961)Chap. 4.
    190 R. Gomer, “Velocity Distribution of Electrons in Field Emission Resolution in the Projection
    Microscope”, J. Chem. Phys. 20, (1952)1772.
    191 D. J. Rose, “On the Magnification and Resolution of the Field Emission Electron Microscope”, J. Appl.
    Phys. 27, (1956)215.
    192 L. W. Swanson and N. A. Martin, “Field electron cathode stability studies = Zirconium tungsten
    thermal-field cathode”, J. Appl. Phys. 46, (1975)2029.
    193 A. V. Crewe, D. N. Eggenberger, J. Wall, and L. M. Welter, “Electron Gun Using a Field Emission
    Source”, Rev. Sci. Instrum. 39, (1968)576.
    194 Ch. Kleint, “Surface diffusion model of adsorption-induced field emission flicker noise I. Theory”, Surf.
    Sci. 25, (1971)394-410.
    195 Ch. Kleint, “Electron emission noise ” , Surf. Sci. 200, (1988)472-489.
    196 K. Ashihara, H. Nakane, and H. Adachi, “Experimental study of field emission characteristics as a
    function of the emitter to anode distance”, J. Vac. Sci. Technol. B 16, (1998)1180.
    176
    197 K. Pelhos, T.E. Madey, R. Blaszczyszyn, “Faceting and steady-state shape of Rh- and Pd-covered W
    field emitter tips”, Surface Science 426, (1999)61–68.
    198 G. Antczak, R. Bszczyszyn, T.E. Madey, “Pt-induced faceting of W field emitter tips”, Progress in
    Surface Science 74,(2003)81–95.
    199 R. Bryl, R. Baszczyszyn, “Surface diffusion of water on clean and Au-covered tungsten field emitter
    tips”, Vacuum 54, (1999)103–112.
    200 Jingguo Liu, Zhengjun Zhang, Ye Zhao, Xin Su, Shuang Liu, and Enge Wang, “Tuning the
    Field-Emission Properties of Tungsten Oxide Nanorods”, Communications 1, No. 3, (2005)310-313.
    201 R.B. Sharma, N. Pradeep, D.S. Joag, Surendra Pal, G.C. Dubey, “Studies of field emission current from
    amorphous silicon deposited on a tungsten tip”, Ultramicroscopy 79, (1999)131-134.
    202 Raghunandan Seelaboyina, JunHuang, Jucheol Park, Dong Hun Kang and Won Bong Choi1, “Multistage
    field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions”,
    Nanotechnology 17, (2006) 4840–4844
    203 Jun Zhou, Li Gong, Shao Zhi Deng, Jun Chen, Jun Cong She, and Ning Sheng Xu, Rusen Yang and
    Zhong Lin Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys.
    Lett. 871, (2005)223108.
    204 Mu-Tung Chang, Li-Jen Chou,* Yu-Lun Chueh, Yu-Chen Lee, Chin-Hua Hsieh, Chii-Dong Chen,
    Yann-Wen Lan, and Lih-Juann Chen, “Nitrogen-Doped Tungsten Oxide Nanowires Low-Temperature
    Synthesis on Si and Electrical Optical and Field-Emission Properties”, Small 3, No. 4, (2007)658–664.
    205 S.L. Yue, C.Z. Gu, C.Y. Shi, C.Y. Zhi, “Field emission characteristics of oriented-AlN thin film on
    tungsten tip”, Applied Surface Science 251, (2005)215–219.
    206 Xin Bai, Mingsheng Wang, Gengmin Zhang, Jie Yu, Zhaoxiang Zhang, Dengzhu Guo, Xingyu Zhao, and
    Zengquan Xue, “Field emission of individual carbon nanotubes on tungsten tips”, J. Vac. Sci. Technol B,
    25(2) ,(2007)561-565.
    207 J.P. Singh, F. Tang, T. Karabacak, T.M. Lu, and G.C. Wang, “Enhanced cold field emission from (100)
    oriented W nanoemitters”, J. Vac. Sci. Technol., B 22(3), (2004)1408-1051.
    208 Yun-Hi Lee, Chang-Hoon Choi, Yoon-Taek Jang, Eun-Kyu Kim, Byeong-Kwon Ju, Nam-Ki Min, Jin-Ho
    Ahn, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett. 81,
    (2002)745-747.
    209 K.S. Yeong and J.T.L. Thong, Journal of Applied Physics, Vol. 100, (2006) 114325.
    210 Shigeo Itoh, Teruo Watanabe, Kazuyoshi Ohtsu, Masateru Taniguchi, Satoshi Uzawa, and Norio
    Nishimura, “Experimental study of field emission properties of the Spindt-type field emitter”, J. Vac. Sci.
    Technol. B 13(2), (1995) 487-490.
    211 C.A. Spindt and I. Brodie, “MOLYBDENUM FIELD-EMITTER ARRAYS”, IEDM 96-289, 1996.
    177
    212 C.A. Spindt, I. Brodie, L. Humphrey, and E.R. Westerberg, “PHYSICAL PROPERTIES OF THIN-FILM
    FIELD EMISSION CATHODES WITH MOLYBDENUM CONES”, Journal of Applied Physics, Vol.
    47, No.12, 5248-5643.
    213 M.S. Mousa, “Effect of anode temperature on molybdenum field-emitter arrays”, Materials Science and
    Engineering A270 (1999) 97-101.
    214 Byung Chang Shim, “Molybdenum and Cobalt Silicide FEAs”, SMDL Annual Report 2000.
    215 Ambrosio A. Rouse, John B. Bernhard, Edward D. Sosa, and David E. Golden, “Field emission from
    molybdenum carbide”, Appl. Phys. Lett., 76 (2000) 2583-2585.
    216 D. Kang, V.V. Zhirnov, R.C. Sanwald, J.J. Hren, and J.J. Cuomo, “Field emission from ultrathin coatings
    of AlN on Mo emitters”, J. Vac. Sci. Technol B, 19(1) ,(2001) 50-54.
    217 Tianbao Xie, W.A. Mackie, and P.R. Davis, “Field emission from ZrC films on Si and Mo single emitters
    and emitter arrays”, J. Vac. Sci. Technol B, 14(3) ,(1996) 2090-2092.
    218 W.A. Mackie, Tianbao Xie, M.R. Matthews, B.P. Routh, Jr., and P.R. Davis, “Field emission from ZrC
    and ZrC films on Mo field emitters”, J. Vac. Sci. Technol B, 16(4) ,(1998) 2057-2062.
    219 F.M. Charbonnier, W.A. Mackie, T. Xie, P.R. Davis, “Enhanced field emission from carbide-coated field
    emitters and device applications”, Ultramicroscopy 79, (1999)73-82.
    220 Hideaki Nakane, Shinya Satoh, and Hiroshi Adachi, “Reduction of the work function on Mo(100) surface
    covered with ZrO2”, J. Vac. Sci. Technol B, 23(2) ,(2005) 769-771.
    221 V.V. Zhirnov, W.B. Choi, J.J. Cuomo, J.J. Hren, “Diamond coated Si and Mo field emitters:Diamond
    thickness effect”, Applied Surface Science, 94/95, (1996)123-128.
    222 M.T. McClure, R. Schlesser, B.L. McCarson, and Z. Sitar, “Electrical characterization of diamond and
    graphite coated Mo field emitters”, J. Vac. Sci. Technol B, 15(6) ,(1997) 1067-2071.
    223 M.Q. Ding, A.F. Myers, W.B. Choi, R.D. Vispute, S.M. Camphausen, J. Narayan, J.J. Cuomo, J.J. Hren,
    and J. Bruley, “Field emission from amorphous diamond coated Mo tip emitters by pulsed laser
    deposition”, J. Vac. Sci. Technol B, 15(4) ,(1997) 840-844.
    224 R. Schlesser, M.T. McClure, B.L. McCarson, Z. Sitar, “Mechanisms of field emission from diamond
    coated Mo emitters”, Diamond and Related Materials 2-5, (1998)636-639.
    225 Jae Joon Jung, Byeong Kwon Ju, Hoon Kim, Myung Hwan Oh, Suk Jae Chung, and Jin Jang, “Effect of
    N doping on the electron emission properties of diamondlike carbon film on a 2-in Mo field emitter array
    panel”, J. Vac. Sci. Technol B, 16(2) ,(1998) 705-709.
    226 Jae Joon Jung, Byeong Kwon Ju, Hoon Kim, Yun Hi Lee, Suk Jae Chung, Jin Jang, Myung Hwan Oh,
    “Effect of diamond-like carbon coating on the emission characteristics of molybdenum field emitter
    arrays”, IEEE TRANSACTION ON ELECTRON DEVICES, Vol. 45, No. 10, (1998)2232-2237.
    227 Chin-Maw Lin, Shoou-Jinn Chang, Meiso Yokoyama, I-Nan Lin, Feng-Yu Chuang, Chun-Hui Tsai,and
    Wen-Chun Wang, “Enhancement of Electron Emission Characteristics of Platform-shaped Mo Emitters
    by Diamond-like Carbon Coatings”, Jpn. J. Appl. Phys., Vol. 38, (1999)3700-3704.
    178
    228 Jae Joon Jung, Nam Yang Lee, Jin Jang, Myung Hwan Oh, Saeyoung Ahn, “Electron emission
    performance of nitrogen-doped hydrogen-free diamond-like carbon coating on Mo-Tip field emitter
    arrays”, J. Vac. Sci. Technol B, 18(2) ,(2000) 933-936.
    229 Babu R. Chalamala, and Robert H. Reuss, “Studies on the interaction between thin film materials and Mo
    field emitter arrays”, J. Vac. Sci. Technol B, 18(4) ,(2000) 1825-1832.
    230 Jong Duk Lee, Chang Woo Oh, and Byung Gook Park, “Electrical aging of molybdenum field emitters”,
    J. Vac. Sci. Technol B, 21(1) ,(2003) 440-444.
    231 Hoon Kim, Byeong-Kwon Ju, Yun-Hi Lee, Jin Jang and Myung-Hwan Oh, “Effect of the Hybrid Etching
    Methods on the Field Emission Characteristics of Mo-Tip Field Emitter Arrays”, Journal of The
    Electrochemical Society, 147 (12), (2000) 4705-4708.
    232 Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, “Field emission from MoO3 nanobelts”, Appt. Phys. Lett.
    81, 13, (2002)5048-5050.
    233 Jun Zhou, Ning-Sheng Xu, Shao-Zhi Deng, Jun Chen, Jun-Cong She, and Zhong-Lin Wang, “Large-Area
    Nanowire Arrays of Molybdenum and Molybdenum Oxides Synthesis and Field Emission Properties”,
    Adv. Mater. 15,(2003)1835-1840.
    234 X.T. Zhou, N. Wang, F.C.K. Au, H.L. Lai, H.Y. Peng, I. Bello, C.S. Lee and S.T. Lee, “Growth and
    emission properties of β-SiC nanorods”, Mater. Sci. Eng. A 286, (2000), p. 119.
    235 H.C. Lo, D. Das, J. S. Hwang, K.H. Chen, C.H. Hsu, C.F. Chen, L.C. Chen, “SiC-capped nanotip arrays
    for field emission with ultralow turn-on field”, Appt. Phys. Lett. 83, (2003)1420-1422.
    236 W.M. Zhou, Y.J. Wu, Eric Siu-Wai Kong, F. Zhu, Z.Y. Hou, Y.F. Zhang, “Field emission from
    nonaligned SiC nanowires”, Applied Surface Science 253 ,(2006) 2056–2058.
    237 Yonghwan Ryu, Youngjo Tak and Kijung Yong, “Direct growth of core–shell SiC–SiO2 nanowires and
    field emission characteristics”, Nanotechnology 16, (2005) S370–S374.
    238 F.G. Tarntair,C.Y. Wen, L.C. Chen, J.J. Wu, K.H. Chen, P.F. Kuo, S.W. Chang, Y.F. Chen, W.K. Hong
    and H.C. Cheng, “Field emission from quasi-aligned SiCN nanorods”, Appt. Phys. Lett. 76,
    (2000)2630-2632.
    239 M.J. Colgan and M.J. Brett, “Field emission from carbon and silicon films with pillar microstructure”,
    Thin Solid Films (Letter) 389 (2001), p. 1.
    240 X.D. Bai, J.D. Guo, Jie Yu, E.G. Wang, Jun Yuan, Wuzong Zhou, “Synthesis and field-emission
    behavior of highly oriented boron carbonitride nanofibers”, Appt. Phys. Lett. 76, (2000)2624-2626.
    241 Jun Xu, Xiaohui Huang, Wei Li, Li Wang, Xinfan Huang, Kunji Chen, Jianbin Xu and I.H. Wilson,
    “Vacuum electron emission with low turn-on electric field from hydrogenated amorphous carbon thin
    films“ Appl. Phys. Lett. 79 (2001), p. 141.
    242 A.V. Karabutov, V.I. Konov, V.G. Ralchenko, E.D. Obraztsova, V.D. Frolov, S.A. Uglov, H.J. Scheibe,
    V.E. Strelnitskij and V.I. Polyakov, “Comparision of field electron emission from DLC films produced
    by four different deposition techniques“, Diam. Relat. Mater. 6 (1998), p. 802.
    179
    243 N.A. Fox, W.N. Wang, T.J. Davis, J.W. Steeds and P.W. May, “Field emission properties of diamond
    films of different qualities”, Appl. Phys. Lett. 71 (1997), p. 2337.
    244 W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, “Large current density from carbon nanotube field
    emitters”, Appl. Phys. Lett. 75 (1999), p. 873.
    245 S.G. Wang, Qing Zhang, S.F. Yoon, J. Ahn, D.J. Yang, Q. Wang, Q. Zhou and J.Q. Li, “Electron field
    emission from carbon nanotubes and undoped nano-diamond”, Diam. Relat. Mater. 12 (2003), p. 8-14.
    246 S.G. Wang, Qing Zhang, S.F. Yoon, J. Ahn, Q. Zhou, Q. Wang, D.J. Yang and J.Q. Li, “Electron field
    emission enhancement effects of nano-diamond films”, Surf. Coat. Technol. 167, (2003) p. 143.
    247 A.Y. Cao, X.F. Zhang, X. Xiao, M.Q. Ding, D.M. Zhuang, C.L. Xu, B.Q. Wei, J. Liang and D.H. Wu,
    “Field emission behavior of aligned carbon nanofiber arrays”, Mater. Lett. 51 (2001), p. 371.
    248 Chia-Fu Chen, Chien-Liang Lin and Chi-Ming Wang, “Field emission from aligned carbon nanofibers
    grown in situ by hot filament chemical vapor deposition”, Appl. Phys. Lett. 82 (2003), p. 2515.
    249 Jun Chen, S.Z. Deng, N.S. Xu, Weixin Zhang, Xiaogang Wen, and Shihe Yang, “Temperature
    dependence of field emission from cupric oxide nanobelt films”, Appt. Phys. Lett. 83, (2003)746-749.
    250 Chien-Te Hsieh, Jin-Ming Chen,Hung-Hsiao Lin and Han-Chang Shih, “Field emission from various
    CuO nanostructures”, Appt. Phys. Lett. 83, (2003)3383-3385.
    251 Jun Zhou, Shaozhi Deng, Li Gong, Yong Ding, Jian Chen, Jianxing Huang, Jun Chen, Ningsheng Xu,
    and Zhong Lin Wang, „Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature
    Chemical Vapor Deposition Synthesis, Growth Mechanism, and Device Application“, J. Phys. Chem.
    B110, (2006) 10296-10302.
    252 Y.B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties”, Appt. Phys.
    Lett. 82, (2003)1962-1964.
    253 Y.B. Li, Y. Bando, D.Golberg, and K. Kurashima, “Field emission from MoO3 nanobelts”, Appt. Phys.
    Lett. 81, (2003)5048-5050.
    254 Jun Zhou, S.Z. Deng, N.S. Xu, Jun Chen, and J. C. She, “Synthesis and field-emission properties of
    aligned MoO3 nanowires”, Appt. Phys. Lett. 83, (2003)2653-2655.
    255 C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh and H.J. Lee, “Field emission from well-aligned zinc
    oxide nanowires grown at low temperature”, Appt. Phys. Lett. 81, (2002)3648-3650.
    256 Yung-Kuan Tseng, Chorng-Jye Huang, Hsin-Min Cheng, I-Nan Lin, Kuo-Shung Liu, and I-Cherng Chen,
    “Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically
    on Conductive Zinc Oxide Films”, Adv. Funct. Mater. 13, (2003), p. 811.
    257 Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D. P. Yu,
    “Efficient field emission from ZnO nanoneedle arrays”, Appt. Phys. Lett. 83, (2003)144-146.
    258 C.X. Xu and X.W. Sun, “Field emission from zinc oxide nanopins”, Appt. Phys. Lett. 83,
    (2003)3806-3808.
    180
    259 Jun Zhon et al., “Tungsten nanorods: Synthesis and Field emission Characteristics”, Available from:
    <http://ivmc2002.univ-lyon1.fr/Presentations/PP-M1.pdfhttp://ivmc2002.univ-lyon1.fr/Presentations/PPM1.
    pdf>.
    260 Qiang Wu, Zheng Hu, Xizhang Wang, Yinong Lu, Kaifu Huo, Shaozhi Deng, Ningsheng Xu, Bo Shen,
    Rong Zhang and Yi Chen, “Extended vapor–liquid–solid growth and field emission properties of
    aluminium nitride nanowires”, J. Mater. Chem. 13, (2003) 2024–2027.
    261 V.N. Tondare, C. Balasubramanian, S.V. Shende, D.S. Joag, V.P. Godbole, S.V. Bhoraskar, M.
    Bhadbhade, “Field emission from open ended aluminum nitride nanotubes”, Appt. Phys. Lett. 80,
    (2002)4813-4815.
    262 Byeongchul Ha, Sung Ho Seo, Jung Hee Cho, Chong S. Yoon, Jinkyoung Yoo,Gyu-Chul Yi, Chong Yun
    Park,| and Cheol Jin Lee, “Optical and Field Emission Properties of Thin Single-Crystalline GaN
    Nanowires”, J. Phys. Chem. B 109, (2005) 11095-11099.
    263 Hwa-Mok Kim , T.W. Kang , K.S. Chung , J.P. Hong , W.B. Choi, “Field emission displays of
    wide-bandgap gallium nitride nanorod arrays grown by hydride vapor phase epitaxy”, Chemical Physics
    Letters 377, (2003) 491–494.
    264 I. Umezu, K. Kohno, K. Aoki, Y. Kohama, A. Sugimura, M. Inada, “Effects of argon and hydrogen
    plasmas on the surface of silicon”, Vacuum 66, (2002) 453-456.
    265 Johnson NM, Donald C, Ponce F, Walker J, Anderson G, “Hydrogen in crystalline semiconductors A
    review of experimental results”, Physica B (1991);170:3.
    266 Johnson NM, Ponce FA, Street RA, Nemanechi RJ, “Defects in single-crystal silicon induced by
    hydrogenation”, Phys Rev B 35, (1987)4166.
    267 Jeng SJ, Oehrlein GS, Scilla GJ, “Hydrogen plasma induced defects in silicon”, Appl Phys Lett
    (1988);53:1735.
    268 J. Weber, “Defect generation during plasma treatment of semiconductors”, Physica B (1991);170:201.
    269 Kar S, Ashok S, “Investigation of room-temperature ion beam hydrogenation for the removal of traps in
    silicon ion beam damaged metal-oxide-silicon structures”, J Appl Phys (1993);73:2187.
    270 Y.H. Tang, P. Zhang, P.S. Kim, T.K. Sham, Y.F. Hu, X.H. Sun, N.B. Wong, M.K. Fung, Y.F. Zheng, C.S.
    Lee, and S.T. Lee, “Amorphous carbon nanowires investigated by near edge x-ray absorption fine
    structures”, Appl. Phys. Lett. 79, (2001) 3773.
    271 H. Yokomichi, F. Sakai, M. Ichihara, and N. Kishimoto, “Carbon nanotubes and a-C films
    simultaneously fabricated by thermal CVD”, Journal Non-crystalline Solids, 299-302 (2002) 868.
    272 S. Botti, R. Ciardi, M.L. Terranova, S. Piccirillo, V. Sessa, and M. Rossi, “Carbon nanotubes and
    nanowires grown from spherical carbon nano-particles”, Chemical Physics Letters 355, (2002) 395.
    273 R.L. Vander Wal, and L.J. Hall, “Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni
    catalyzed nanofibers:growth mechanisms and consequences”, Chemical Physics Letters 349, (2001) 178.
    181
    274 A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, and M.L. Simpson, “Transition between
    base and tip carbon nanofiber growth modes”, Chemical Physics Letters 356, (2002) 527.
    275 J. Han, J. Yoo, C.Y. Park, H. Kim, G.S. Park, M. Yang, I.T. Han, N. Lee, W. Yi, S.G. Yu, and J.M. Kim,
    “Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor
    deposition”, J. Appl. Phys. 91, (2002) 483.
    276 Endo M, Takeuchi K, K0bori K, “Pyrolytic carbon nanotubes from vapor-grown carbon fibers”, Carbon
    33,(1995) 873.
    277 Kyung Ho Jung , Jin-Hyo Boo , Byungyou Hong, “Synthesis of carbon nanotubes grown by hot filament
    plasma-enhanced chemical vapor deposition method”, Diamond and Related Materials 13 (2004)
    299-304.
    278 P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan, “Temperature-dependent vibrational spectra of
    carbon nanotubes”, Phys. Rev. B 51, (1995) 10048.
    279 Y. Ando, X. Zhao, H. Shimoyama, “Structure analysis of purified multiwalled carbon nanotubes”,
    Carbon 39, (2001) 569.
    280 M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, “Origin of dispersive effects
    of the Raman D band in carbon materials”, Phys. Rev. B 59, (1999) R6585.
    281 B. Marcus, L. Fayette, M. Mermoux, L. Abello, G. Lucazeau, “Analysis of the structure of
    multi-component carbon films by resonant Raman scattering”, J. Appl. Phys. 76, (1994) 3463.
    282 G.T. Vissher, David C. Nesting, John V. Badding, and Patricia A. Bianconi, “Poly(phenylcarbyne):A
    Polymer Precursor to Diamond-Like Carbon”, Science 260, (1993) 1496-1499.
    283 P. Lespade, R. Al-Jishi, M.S. Dresselhaus, “Model for Raman scattering from incompletely graphitized
    carbons”, Carbon 20, (1982) 427.
    284 陳俊雄,“第一原理之計算方法探討奈米碳管在外加電場下電子結構之變化”,物理雙月刊(廿七
    卷四期)2005年8月
    285 Jean-Marc Bonard, Hannes Kind, Thomas Stöckli, Lars-Ola Nilsson, “Field emission from carbon
    nanotubes : the first five years”, Solid-State Electronics 45, (2001) 893-914.
    286 De Heer WA, Châtelain A, Ugarte D, “A Carbon Nanotube Field-Emission Electron Source”, Science
    1995, 270:1179.
    287 W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V.
    Thien Binhc and O. Groeningd, “Carbon nanotubes as field emission sources”, J. Mater. Chem. 14,
    (2004) 933-943.
    288 G. R. Fonda, “Evaporation Characteristics of Tungsten”, Phys Rev. 21, (1923) 343-347.
    289 A.J. Learn and D.W. Foster, “Resistivity, grain size, and impurity effects in chemically vapor deposited
    tungsten films”, J. Appl. Phys. 58, (1985) 2001.
    290 Othon R Monteiro, “Thin Film Synthesis by Energetic Condensation”Annu. Rev. Mater. Res. 2001.
    31:111–37
    291 H.L. Hsiao, H.L. Hwang, A.B. Yang, L.W. Chen, T.R. Yew, “Study on low temperature facetting growth
    182
    of polycrystalline silicon thin films by ECR downstream plasma CVD with differenthydrogen dilution”,
    Applied Surface Science 142, (1999) 316-321.
    292 Y.G. Shen, Y.W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, and W.E. McBride, ”Residual stress
    microstructure and structure of tungsten thin films deposited by magnetron sputtering”, J. Appl. Phys. 87,
    (2000) 177.
    293 Tansel Karabacak, Anupama Mallikarjunan, Jitendra P. Singh, Dexian Ye, Gwo-Ching Wang, and
    Toh-Ming Lu, ”b-phase tungsten nanorod formation by oblique-angle sputter deposition”, J Appl. Phys.
    Lett., 83, (2003) 3096-3098.
    294 X.A. Zhao, C.W. Ong, Y.C. Tsang, “Relationship between the structure and the optical and electrical
    properties of ion beam deposited CN x films”, Thin Solid Film 322, (1998) 245-253.
    295 Y. Lifshitz, G.D. Lempert, E. Grossman, “Substantiation of subplantation model for diamondlike film
    growth by atomic force microscopy”, Phys. Rev. Lett. 72,(1994) 2753.
    296 H. Takenaka, Y. Ishii, K. Kurihara, and H. Kinoshita, “Soft and hard x-ray reflectivities of multilayers
    fabricated by alternating-material sputter deposition”, Proc. SPIE 1345, (1990) 213.
    297 A.K. Vasud´evan, J.J. Petrovic, “A comparative overview of molybdenum disilicide composites”, Mater.
    Sci. Eng. A, 155, (1992) 1–17.
    298 J.J. Petrovic, ”Mechanical behavior of MoSi2 and MoSi2 composites”, Mater. Sci. Eng. A 192/193, (1995)
    31–37.
    299 R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, C.J. Maggiore, ”Synthesis of molybdenum disilicide by
    mechanical alloying”, Mater. Sci. Eng. A, 155, (1992) 75–83.
    300 R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovitz, A. Basu, H. Chang, D.P. Mason, W. Yang,
    “Mechanical behavior and interface design of MoSi2-based alloys and composites”, Mater. Sci. Eng. A,
    155, (1992) 147–158.
    301 Y.L. Jeng, E.J. Lavernia, ”Processing of molybdenum disilicide”, J. Mater. Sci. 29, (1994) 2557–2571.
    302 N.S. Stoloff, “An overview of powder processing of silicides and their composites”, Mater. Sci. Eng. A
    261, (1999) 169–180.
    303 S.C. Deevi, N.N. Thadhani, “Reaction synthesis of high-temperature silicides”, Mater. Sci. Eng. A
    192/193, (1995) 604–611.
    304 Jin-Kook Yoon, Jong-Kwon Lee, Kyung-Hwan Lee, Ji-Young Byun, Gyeung-Ho Kim, Kyung-Tae Hong,
    “Microstructure and growth kinetics of the Mo5Si3 and Mo3Si layers in MoSi2Mo diffusion couple”,
    Intermetallics 11, (2003) 687–696.
    305 C.L. Yeh ., W.H. Chen, “Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites” Journal of
    Alloys and Compounds 438, (2007) 165–170.
    306 Hisataka Takenaka, Tomoaki Kawamura, and Yoshikazu Ishii, “Heat resistance of MoSi MoSi2Si and
    Mo5Si3Si multilayer soft x-ray mirrors”, J. Appl. Phys. 78, (1995) 5227-5230.
    307 A.K. Srivastava, Pragya Tripathi, M. Nayak, G.S. Lodha, and R. V. Nandedkar, “Formation of Mo5Si3
    phase in MoSi multilayers”, Journal of Applied Physics, vol. 92, (2002) 5119-5126.
    308 C.W. Ong, H.Y. Wong, G.K.H. Pang, K.Z. Baba-Kishi, and C.L. Choy, “Relationship between the
    microstructure and nanoindentation hardness of thermally evaporated and magnetron-sputtered
    electrochromic tungsten oxide films”, J. Mater. Res., 16(6), (2001) 1541-1548.
    309 Qingli Meng, Jizhong Zhang, Zhanping Li, Gaobao Li, Runbing Chen, “Synthesis of molybdenum
    silicide by both ion implantation and ion beam assisted deposition”, Applied Surface Science 254, (2008)
    2678-2684.
    310 K.A. Gesheva, T. Ivanova, D. Gogova, G. Beshkov, “Formation of MoSi2 by rapid thermal annealing in
    vacuum of CVD – Mo films on silicon substrate”, Vacuum 58, (2000) 502-508.

    下載圖示 校內:2009-08-07公開
    校外:2009-08-07公開
    QR CODE