| 研究生: |
謝慶堂 Hsieh, Chin-Tang |
|---|---|
| 論文名稱: |
場發射體材料之製備採用熱蒸鍍與化學氣相沉積法 Field Emitter Materials prepared using thermal evaporation and chemical vapor deposition |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 183 |
| 中文關鍵詞: | 鎢膜 、鉬膜 、奈米碳線(管) 、微尖端形狀 、場發射體 、場發射顯示器 、熱化學氣相沉積法 、優選方向 、熱燈絲化學氣相沉積法 |
| 外文關鍵詞: | Field emission display, field emitter, Spindt type, HFCVD, Tungsten films, Molybdenum films, thermal CVD, Carbon nanotube/nanowire, Preferred orientation |
| 相關次數: | 點閱:181 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
I
摘要
在目前眾多場發射顯示器研究與開發中考慮作為陰極場發射體之候選
(candidate)材料中,包括金屬、非金屬以及不同的金屬矽化物等,都是形成場
發射電極的材料。而傳統的鎢與鉬等高熔點材料皆以製作成Spindt type 三極結
構為主的場發射體,但是以Thin Film type 方式製作成場發射體的文獻較為缺
乏且利用Spindt type 製程亦較為複雜。因此,本研究將以簡易的製程方式研究
採用Thin Film type 的方式成長以鎢膜、鉬膜與碳基等材料之二極場發射體,
研究此場發射體之結構與電子場發射之相關特性。其中之碳基將採用奈米碳線
(管)加入前述之陰極場發射體材料比較。
本實驗中採用鎳薄膜為催化劑並以不同甲烷與氫氣比成長出混有奈米碳
線與奈米碳管,其中伴隨沉積一層中介層出現,該層為碳產物與奈米碳線(管)
所夾雜而成。奈米碳線(管)在不同CH4/H2 氣體混合比時,成長在不同催化劑
厚度,催化劑有無前處理及燈絲與基板高度等參數下,奈米碳線(管)基本上生
成長度趨勢是相似。惟,氣體混合比在0.25 與表面催化劑經高密度微波電漿蝕
刻後,其成長長度明顯有別於其它參數之試片。再者,由ID/IG與FWHM 來分
析,該奈米碳線(管)以石墨化無序結構為主。而較佳場發射性質是CH4/H2 氣
體混合比0.1 時,成長在催化劑厚度85 nm,催化劑無前處理及燈絲與基板高
度2 mm等參數下,最重要的是無中介層沉積情況下,有低的啟始場2.78 V/um
與高的電流密度約在31.23 mA/cm2。
在鎢薄膜討論部份,本實驗中採用矽裸晶片(Bare Su wafer)先行做不同時
間的乾式蝕刻(採高密度微波電漿蝕刻10、20 與30 分鐘),使用鎢燈絲為蒸鍍
源並利用HFCVD 沉積鎢膜,成長出明顯具有具有優選方向(200)的錐狀晶面與
低啟始電場1.25 V/um的α 相鎢薄膜。這些場發射體需具有明顯的錐狀表面及
柱狀結構,就好似有眾多的似尖端狀的場發射體在此表面聚集電荷並發射到真
空中。另外,本實驗亦發現優選方向強度百分比愈高,其場發射性質愈佳。添
加甲烷裂解出的碳沉積在鎢膜仍為具有優選方向(200)。控制基板座溫度可以成
長β 相鎢薄膜且仍具有優選方向(321)與低啟始電場2.8 V/um。然而,直接將
Bare Si wafer 沉積鎢膜(矽基板並沒有經過任何前處理)並添加微量甲烷沉積在
不同時間與變更基板座時,可以成長出明顯具有(110)錐狀晶面的α 相鎢薄膜。
另外,從HRTEM 中可了解不同沉積時間其鎢膜成長模式。
最後,在鉬薄膜實驗中採用Bare Si wafer以鉬燈絲為蒸鍍源並利用HFCVD
直接沉積Mo 薄膜(矽基板並沒有經過任何前處理),經成長發現為Mo5Si3與低
啟始電場4.6 V/um薄膜。一般成長的Mo5Si3是須經兩階段成長(Mo/Si powder
milling,再經燒結等等)。另有幾篇文獻利用Mo/Si 多層膜經擴散所形成
Mo5Si3。然而,本研究結果發現,可以直接沉積Mo5Si3薄膜可能原因乃是蒸鍍
時除了燈絲產生的高溫並以熱輻射方式傳給基板座,讓基板座產生一定的溫度
與沉積在長時間情況下,讓鉬原子與矽基板的矽原子共同擴散形成。目前文獻
利用Mo/Si 多層膜經擴散所形成Mo5Si3的溫度約400~750 ℃,而本實驗之基
板溫將高於400 ℃與上述文獻是非常相似。另外,當Mo5Si3在0.45 um 厚度
時,有場發射性質出現。就目前文獻中尚無任何文獻報告討論使用thermal CVD
一次成長即可獲得Mo5Si3薄膜以及Mo5Si3薄膜為場發射體做場發射性質之研
究。
III
Abstract
There has been an extensive research and development effort devoted in Field
Emission Display. They are considered to be important cold cathode materials; for
instance, the metal, nonmetal and metal-silicide are important refractory metals and
have very high melting points, relatively low work function, high electrical
conductivity and robustness. Therefore, these field emitter are all of spindt type
which use complex microfabricated field emitter array. In our study, the field
emitters were synthesized by a very simple process of thin film growth using
tungsten, molybdenum and carbon nanotubes or nanowires. Their characteristic
structure and field emission properties are correlated with cold cathode materials, as
a comparison, hot-filament assisted chemical vapor deposition (CVD) for the
growth of carbon nanotubes/nanowires (CNTs/CNWs)
First, growth characteristics of carbon nanotubes/nanowires (CNTs/CNWs),
using the Ni films as catalyst materials is discussed. The CNTs/CNWs were grown
on Ni catalyst films using various gas mixture( CH4 and H2) by hot filament
chemical vapor deposition (HFCVD) technique. However, the growth is an
interlayer between the Si substrate and carbon nanotubes/nanowires as well as the
interlayer consists of the carbon nanotubes/nanowires and other carbon species
produced in this process. The Raman analysis shows that the grown CNTs/CNWs
exhibit disordered structure as demonstrated by ID/IG ratio and full width at half
maximum (FWHM) of G-band. The interlayer is found to have a strong influence
on the performance of field emission properties. The presence of interlayer
adversely affects the current density and turn on voltage. The current density and
turn on voltage in case of interlayer was 1.11 mA/cm2 and 3.02 V/µm while in the
absence of interlayer current density and turn on voltage was found to be 31.2
mA/cm2 and 2.78 V/µm, respectively.
Secondly, tungsten thin films were deposited on bare Si wafer for various
deposition and microwave pre-treatment times using a thermal evaporation
technique. A tungsten source was resistively heated to a temperature between 1810
and 2010°C. The substrate was heated by the tungsten source to a temperature
between 520 and 670 °C due to the proximity. In general, the substrate temperature
is proportional to the source temperature. The tungsten film deposition time was 15
min. As-received Si wafers and etched Si wafers were used as the substrates. Si
substrates were etched by hydrogen plasma in a microwave reactor for 10, 20, and
30 min. From the surface morphology study it is obvious that it has a pyramidal
shaped rod-like structure and the cross section has columnar structure. The field
emission properties were found to depend on the microstructure, which is controlled
by the source temperature and the substrate condition, as mentioned above. It
appears that a film with a higher degree of preferred orientation and/or a smaller
average grain size, meaning more rods in a film, exhibits better field emission
properties (turn on field at 1.25 V/um).
Finally, the molybdenum thin films were deposited on bare Si wafer using a
thermal evaporation technique. In general, the Mo5Si3 composition powder was
commonly prepared by milling the mixtures of Mo and Si powders, and then
followed by hot pressing or Sintering. The process developed for the growth of
Mo5Si3 films is unique which has not found in any other reported literature. In the
experiment, our initial objective was to deposit Mo films on Si substrate in single
step and understanding the field emission properties. But, this result indicates that
the high temperature of molybdenum filament source directly and Si substrate
reaction grown Mo5Si3 films by thermal evaporated method. The surface
morphology of the deposited film shows that the grain sizes was in nano scale and it
has a columnar structures. The Mo5Si3 film obtained in this study gives a high
turn-on filed of 4.6 V/µm which is not reported in the published literature of MoSi
system.
165
參考文獻
1 C. A. Spindt, “A Thin-Film Field-Emission Cathode”, J. Appl. Phys. 39, 3504 (1968).
2 C. A. Spindt, I. Brodie, L. Humphrey, and E.R. Westerberg, “PHYSICAL PROPERTIES OF THIN-FILM
FIELD EMISSION CATHODES WITH MOLYBDENUM CONES”, J. Appl. Phys. 47, 5248 (1976).
3 H.F. Gray, G.J. Campisi, and R.F. Greene, “A vacuum field effect transistor using silicon field emission
arrays”, in Technical Digest of IEDM, Washington, D.C. p. 776, 1986.
4 A. Ghis, R. Meyer, P. Rambaud, F. Levy, and T. Leroux, “Sealed vacuum devices: fluorescent microtip
displays”, IEEE Trans. Electron Devices 38, (1991)2320.
5 R.H. Fowler and L.W. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. Roy. Soc. (London),
A 119, (1928) 173-181.
6 L. Nordheim, “The Effect of the Image Force on the Emission and Reflexion of Electrons by Metals”, Proc.
Roy. Soc. (London), A 121, (1928) 626-639.
7 Wei Zhu, “Vacuum Microelectronics”, WIELY, 2001.
8 Source: Micron Display at http://www.micron.com/mdt/tech/tech.htm on September 15, 1999.
9 C. A. Spindt, “A Thin-Film Field-Emission Cathode”, J. Appl. Phys. 39, (1968) 3504.
10 R.N. Thomas, R.A. Wickstrum, D.K. Schroder, and H.C. Nathanson, “Historical Overview”, Solid State
Electron 17, (1974) 155.
11 H.F. Gray, G.J. Campisi, and R.F. Greene, “A vacuum field effect transistor using silicon field emission
arrays”, in Technical Digest of IEDM, Washington, D.C. p. 1, 1992.
12 R. Meyer, A. Ghis, P. Ramband, and F. Muller, “Development of matrix array of cathode emitters on a
glass substrate for flat display applications”, in Proc. 1st IVMC, Williamsburg, VA, P. 10, 1988.
13 Interviews with PixTech executives on June 25, 1996.
14 E.L. Murphy and R.H. Good, Jr., “Thermionic Emission Field Emission and the Transition Region”, Phys.
Rec. 102, (1956) 1464.
15 R.H. Fowler and L.W. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. Roy. Soc.
(London), A 119, (1928) 173-181.
16 L.W. Nordheim, “The effect of the image force on the emission and reflection of electrons by metals”,
Proc. R. Soc. (London) A 121, (1928) 626–639.
17 L.W. Nordheim, “Die theorie der elektronenemission der metalle“, Z. Physik 30 (7) (1929) 177–196.
18 R.E. Burgess, H. Kroemer and J.M. Houston, “Corrected Values of Fowler-Nordheim Field Emission
Functions v(y) and s(y)”, Phys. Rec. 90, (1953) 515.
19 W.P. Dyke and J.K. Trolan, “Field Emission:Large Current Densities Space Charge and the Vacuum Arc”,
Phys. Rev. 89(4), (1953)799-808.
20 G.N. Fursey, V.E. Ptitsyn, and D.N. Krotevich, “Spontaneous migration of the surface atoms at maximum
current densities of the field-electron emission initiating vacuum breakdown”, Proc. 11th ISDEIV, 1,
(1984)69-71.
21 D.N. Krotevich, V.E. Ptitsyn, G.N. Fursey, “Spontaneous build-up of a field-emission cathode at
maximum current densities”, Zh. Tekh. Fiz. 55(3), (1985)625-627.
166
22 G.N. Fursey, and I.D. Tolkacheva, “High field emission current and the effects preceding vacum
breakdown for Ta and Mo emitters”, Radiotekhnika I Elekronika 8(7), (1963)1210-1221.
23 G.N. Fursey, “Impulse field emission from rhenium”, Zh. Tekh. Fiz. 34(7), (1964)1312-1316.
24 Woo-Oh Chang, Chun-Gyoo Lee, Byung Gook Park, “Fabrication of metal field emitter arrays for low
voltage and high current operation”, J. Vac. Sci. Technol B, 16(2), (1998) 807-810.
25 M.R. Rakhshandaroo, S.W. Pang, “Fabrication of self-aligned silicon field emission devices and effects of
surface passivation on emission current”, J. Vac. Sci. Technol. B, 16(2) ,(1998)765-767.
26 J.R. Jessing, “Fabrication and characterization of gated porous silicon cathode field emission arrays”, J.
Vac. Sci. Technol B, 16(2), (1998)777-779.
27 Vladimir I. Merkulov, Douglas H. Lowndes, Larry R. Baylor, Sukill Kang, “Field emission properties of
different forms of carbon”, Solid-State Electronics 45 (2001)949-956.
28 J. Robertson, “Electron affinity of carbon systems”, Diam. Relat. Mater. 5, (1996)797-801.
29 J. Robertson, “Recombination and photoluminescence mechanism in hydrogenated amorphous carbon”,
Phys. Rev. B 53, (1993)16302.
30 J. Rinstein, J. Schafer, and L. Ley, “Effective correlation energies for defects in a-C/H from a comparison
of photelectron yield and electron spin resonance experiments”, Diam. Relat. Mater. 4, (1995)508.
31 B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, “Field emission from tetrahedral amorphous
carbon”, J. Appl. Phys. 71, (1997)1430.
32 D.R. Tallant, J.E. Parmeter, M.P. Siegal, and R.L. Simpson, “The thermal stability of diamond-like
carbon”, Diam. Relat. Mater. 4, (1995)191-199.
33 G.A.J. Amaratunga and S.R.P. Silva, “Nitrogen containing hydrogenated amorphous carbon for thin-film
field emission cathodes”, Appl. Phys. Lett. 68, (1996)2529.
34 V.S. Veersamy, J. Yuan, G.A.J. Amaratunga, W.I. Milne, K.W.R. Gilkes, M. Weilner, and L.M. Brown,
“Nitrogen doping of highly tetrahedral amorphous carbon”, Phys. Rev. B 48, (1993)17954.
35 M.W. Geis, N.N. Efrenow, K.E. Krohn, J.C. Twichell, T.M. Lyszcarz, R. Kalish, J.A. Greer, and M.D.
Tabat, “A new surface electron-emission mechanism in diamond cathodes”, Nature 393, (1998)431.
36 N. Kumar, H.K. Schmidt, and C. Xie,”Diamond-based field emission flat panel displays”, Solid State
Technol. 38, (1995)71.
37 C. Wang, A. Garcia, D.C. Ingram, M. Lake, M.E. Kordesch, “Cold field emission from CVD diamond
films observed in emission electron microscopy”, Electron. Lett. 27, (1991)1459.
38 N.S. Xu, R.V. Latham, “Similarities in the cold electron emission characteristics of diamond coated
molybdenum electrodes and polished bulk graphite surfaces”, J. Phys. D 26 ,(1993)1776.
39 J. Liu, V.V. Zhirnov, A.F. Myers, W.B. Choi, G.J. Wojak, J.J. Hren, in: Proceedings of 1994 Tri-Service /
NASA Cathode Workshop, Cleveland, OH, USA, March, 1994p. 99.
40 B.B. Pate, P.M. Stefan, C. Binns, P.J. Jupiter, M.L. Shek, I. Lindau, and W.E. Spicer, “Formation of
surface states on the (111) surface of diamond”, J. Vac. Sci. Technol. 19, (1981)349-354.
41 K. Okano, S. Koizum, S.R.P. Silva, G.A.J. Amaratunga, “Low-threshold cold cathodes made of
nitrogen-doped chemical-vapour-deposited diamond”, Nature 381, (1996)140.
167
42 C.F. Shih, K.S. Liu, I.-N. Lin, “Effect of nitrogen doping on the electron field emission properties of
chemical vapor deposited diamond films”, Diamond Relat. Mater. 9, (2000)1591.
43 M.W. Geis, J.C. Twichell, J. Macaulay, and K. Okano, “Electron field emission from diamond and other
carbon materials after H2O2 and Cs treatment”, Appl. Phys. Lett. 67, (1995)1328.
44 M.W. Geis, J.C. Twichell, N.N. Efremow, K. Krohn, and T.M. Lyszczarz, “Comparison of electric field
emission from nitrogen-doped type Ib diamond and boron-doped diamond”, Appl. Phys. Lett. 68,
(1996)2294.
45 K. Okano, S. Koizumi, S.R.P. Silva, and G.J.A. Amaratunga, “Low-threshold cold cathodes made of
nitrogen-doped chemical-vapour-deposited diamond”, Nature 381, (1996)140.
46 K. Okano, T. Yamada, H. Ishihara, S. Koizumi, and J. Itho, “Electron emission from nitrogen-doped
pyramidal-shape diamond and its battery operation”, Appl. Phys. Lett. 70, (1997)2201.
47 A.T. Sowers, B.L. Ward, S.E. English, and R.J. Nemanich, “Field emission properties of nitrogen-doped
diamond films”, J. Appl. Phys. 86, (1999)3973.
48 W. Zhu, G.P. Kochanski, S. Jin, and L. Seibles, “Defect-enhanced electron field emission from chemical
vapor deposited diamond”, J. Appl. Phys. 78, (1995)2707.
49 W. Zhu, G.P. Kochanski, and S. Jin, “Low-Field Electron Emission from Undoped Nanostructured
Diamond”, Science 282, (1998)1471.
50 D. Zhou, A.R. Krauss, L.C. Qin, T.G. McCauley, D.M. Greun, T.D. Corrigan, R.P.H. Chang, and H.
Gnaser, “Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2CH4
microwave plasmas”, J. Appl. Phys. 82, (1997)4546.
51 D.M. Gruen, “NANOCRYSTALLINE DIAMOND FILMS”, Annu. Rev. Mater. Sci. 29, (1999)211.
52 O. Groning, O.M. Kuttel, P. Groning, and L. Schlapbach, “Field emission properties of nanocrystalline
chemically vapor deposited-diamond films”, J. Vac. Sci. Technol B(5), 17 ,(1999)1970.
53 C. Wang, A. Garcia, D.C. Ingram, M. Lake, and M.E. Kordesch, “Cold field emission from CVD diamond
films observed in emission electron microscopy”, Electron Lett. 27, (1991)1459.
54 N.S. Xu, Y. Tzeng, and R.V. Latham, “Similarities in the 'cold' electron emission characteristics of
diamond coated molybdenum electrodes and polished bulk graphite surfaces”, J. Phys. D:Appl. Phys. 26,
(1993)1776-1780.
55 N.S. Xu, R.V. Latham, and Y. Tzeng, “Field-dependence of the area-density of cold electron emission
sites on broad-area CVD diamond films”, Electron Lett. 28, (1993)1596.
56 N.S. Xu, Y. Tzeng, and R.V. Latham, “A diagnostic study of the field emission characteristics of
individual micro-emitters in CVD diamond films”, J. Phys. D:Appl. Phys. 27, (1994)1988-1991.
57 R.V. Latham, High Voltage Vacuum Insulation, Academic Press : San Diego, 1995.
58 A. Talin, L.S. Pan, K.F. McCarthy, T.E. Felter, H.J. Doerr, and R.F. Bushah, “The relationship between
the spatially resolved field emission characteristics and the raman spectra of a nanocrystalline diamond
cold cathode”, Appl. Phys. Lett. 69, (1996)3842.
59 F.S. Baker, A.R. Osborn, and J. Williams, “Field Emission from Carbon Fibres : A New Electron Source”,
Nature, Lond. 239 (1972)96-97.
168
60 F.S. Baker, A.R. Osborn, and J. Williams, “The carbon-fibre field emitter”, J. Phys. D: Appl. Phys., vol. 7,
(1974)2105-2115.
61 Colin Lea, “Field emission from carbon fibres”, J. Phys. D: Appl. Phys., vol. 6, (1973)1105-1114.
62 Mahendra A. More and Dilip S. Joag, “Spectral analysis of field emission current fluctuations from a
carbon fibre field emitter”, J. Phys. D: Appl. Phys., vol. 25, (1992)1844-1847.
63 M.S. Mousa, “Electron emission from carbon fibre tips”, Applied Surface Science, 94/95, (1996)129-135.
64 C.H.P. Poa, S.J. Henley, G.Y. Chen, A.A.D.T. Adikaari, C.E. Giusca, and S.R.P. Silva, “Growth and field
emission properties of vertically aligned carbon nanofibers”, JOURNAL OF APPLIED PHYSICS 97,
(2005)114308.
65 Qilong Wang, Hui Mu, Xiaobing Zhang, Wei Lei, Jinchan Wang, Hongping Zhao, “Field emitters with
low turn on electric field based on carbon fibers”, Applied Surface Science 253, (2007)5980-5984.
66 S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354/6348:56-58.
67 T.W. Ebbesen(ED), “Carbon Nanotubes:Preparation and Properties”, CRC:Cleveland, OH, 1997.
68 R. Saito, G. Dresselhaus, and M.S. Dresselhaus, ”Physical Properties of Carbon Nanotubes”, Imperial
College Press:London, 1998.
69 Y. Saito , S. Uemura, “Carbon”, Carbon 38, (2000) 169– 182.
70 J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, “Electronic structure of
atomically resolved carbon nanotubes”, Nature 391, (1998)59.
71 T.W. Odum, J.L. Huang, P. Kim, and C.M. Lieber, “Atomic structure and electronic properties of
single-walled carbon nanotubes”, Nature 391, (1998)62.
72 S. Frank, P. Poncharal, Z.L. Wang, and W.A. de Heer, “Carbon Nanotube Quantum Resistors”, Science
280, (1998)1744-1746.
73 M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, “Science of Fullerenes and Carbon Nanotubes”,
Academic:New York, 1996.
74 S. Suzuki, C. Bower, Y. Watanabe, “Work functions and valence band states of pristine and
Cs-intercalated single-walled carbon nanotube bundles”, Appl. Phys. Lett. 76, (2000)4007.
75 H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, and R.H. Friend, “Work
Functions and Surface Functional Groups of Multiwall Carbon Nanotubes”, J. Phys. Chem. B 103,
(1999)8116.
76 A.G Rinzler, J.H. Hafner, P. Nikolaec, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, and
R.E. Smalley, “Unraveling Nanotubes:Field Emission from an Atomic Wire”, Science 269,
(1995)1550-1553.
77 J.M. Bonard., J.P. Salvetat, T. Stöckli, L. Forr´o, A. Châtelain, “Field emission from carbon nanotubes :
perspectives for applications and clues to the emission mechanism”, Appl. Phys. A 69, (1999)245–254.
78 W.A. de Heer, A. Chatelain, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source”,
Science 270, (1995)1179-80.
169
79 P.G. Collins and A. Zettl, “A simple and robust electron beam source from carbon nanotubes”, Appl. Phys.
Lett. 69, (1996)1969.
80 X. Xu and G.R. Brandes, “A method for fabricating large-area patterned carbon nanotube field emitters”,
Appl. Phys. Lett. 74, (1999)2549.
81 O.M. Kuttel, O. Grogening, C. Emmenegger, and L. Schlapbach, “Electron field emission from phase pure
nanotube films grown in a methane hydrogen plasma”, Appl. Phys. Lett. 73, (1998)2113.
82 Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio, “Synthesis of Large
Arrays of Well-Aligned Carbon Nanotubes on Glass”, Science 282, (1998)1105.
83 S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Casell, and H. Dai, “Self-Oriented Regular
Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science 283, (1999)512.
84 C. Bower, W. Zhou, S. Jin, and O. Zhou, “Plasma-induced alignment of carbon nanotubes”, Appl. Phys.
Lett. 77, (2000)830-832.
85 C. Bower, W. Zhou, D.J. Werder, S. Jin, and O. Zhou, “Nucleation and growth of carbon nanotubes by
microwave plasma chemical vapor deposition”, Appl. Phys. Lett. 77, (2000)2767-2769.
86 H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, “Field emission from well-aligned patterned
carbon nanotube emitters”, Appl. Phys. Lett. 76, (2000)1776.
87 L. Nilsson, O. Groening, C. Emmenegger, O. Kuttel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard,
and K. Kerm, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett. 76,
(2000)2071.
88 R.H. Baughman, A.V. Zakhidov, and W.A. de Heer, “Carbon Nanotubes:the Route Toward Applications”,
Science 297, (2002)787.
89 Debasish Banerjee, Sung Ho Jo, and Zhi Feng Ren, “Enhanced Field Emission of ZnO Nanowires”, Adv.
Mater. 16, (2004)2028-2032.
90 S.H. Jo, D. Banerjee, and Z.F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth”, Appl.
Phys. Lett. 85, (2004)1407-1409.
91 Gengmin Zhang, Qifeng Zhang, Yi Pei, Liang Chen, “Field emission from nonaligned zinc oxide
nanowires”, Vacuum 77, (2004)53-56.
92 Cheng-Liang Hsu, Shoou-Jinn Chang, Hui-Chuan Hung, Yan-Ru Lin, Chorng-Jye Huang, Yung-Kuan
Tseng, and I-Cherng Chen, “Vertical single-crystal ZnO nanowires grown on ZnO:Gaglass templates”,
IEEE TRANSACTIONS ON NANOTECHNOLOGY, Vol. 4, No. 6, (2005)649-653.
93 L. Liao, J.C. Li, D.F. Wang, C. Liu, C.S. Liu, Q. Fu, and L.X. Fan, “Field emission property improvement
of ZnO nanowires coated with amorphous carbon and carbon nitride films”, Nanotechnology 16,
(2005)985-989.
94 H.Y. Yang, S.P. Lau, S.F. Yu, L. Huang, M. Tanemura, J. Tanaka, T. Okita, and H.H. Hng, “Field
emission from zinc oxide nanoneedles on plastic substrates”, Nanotechnology 16, (2005)1300-1303.
95 Y.H. Yang, B. Wang, N.S. Xu, and G.W. Yang, “Field emission of one-dimensional micro- and
nanostructures of zinc oxide”, Appl. Phys. Lett. 89, (2006)043108.
96 Y.B. Li, Y. Bando, and D. Golberg, Appl. Phys. Lett. 84, (2004)3063-3605.
170
97 Q. Zhao, H.Z. Zhang, Y.W. Zhu, S.Q. Feng, X.C. Sun, J. Xu, and D.P. Yu, “Morphological effects on the
field emission of ZnO nanorod arrays”, Appl. Phys. Lett. 86, (2005)203115.
98 Ke Yu, Yongsheng Zhang, Rongli Xu, Desheng Jiang, Laiqiang Luo, Qiong Li, Ziqiang Zhu, Wei Lu,
“Field emission behavior of cuboid zinc oxide nanorods on zinc-filled porous silicon”, Solid State
Communications 133, (2005)43-47.
99 Z.Z. Ye, F. Yang, Y.F. Lu, M.J. Zhi, H.P. Tang, L.P. Zhu, “ZnO nanorods with different morphologies
and their field emission properties”, Solid State Communications 142, (2007)425-428.
100 Lei Wei, Xiaobing Zhang, and Zhu Zuoya, “Application of ZnO nanopins as field emitters in a
field-emission-display device”, J. Vac. Sci. Technol B, 25(2), (2007) 608-610.
101 R.C. Wang, C.P. Liu, J.L. Huang, S.L. Chen, Y.K. Tseng, and S.C. Kung, “ZnO nanopencils:Efficient
field emitters”, Appl. Phys. Lett. 87, (2005)013110.
102 Seung-Youl kang, Jin Ho Lee, Yoon-Ho Song, “Emission characteristics of TiN-coated silicon field
emitter arrays”, J. Vac. Sci. Technol B, 16(2), (1998) 871-873.
103 A.H. Jayatissa, “Field emission properties of BN coated Si tips by pulsed ArF laser deposition”, J. Vac.
Sci. Technol B, 17(1), (1999) 237-240.
104 Y. Taniyasu, M. Kasu, T. Makimoto, “Field emission properties of heavily Si-doped AlN in triode-type
display structure”, Appl. Phys. Lett. 84,(2004) 2115.
105 A.F. Belyanin, P.V. Pashchenko, B.V. Spitsyn, A.N. Blaut-Bachev, L.L. Bouilov, V.V. Zhirnov, L.V.
Bormatova, “Field emitters based on Si tips with AlN coating”, Diamond Relat. Mater. 2-5, (1998) 692.
106 Y. B. Tang, H. T. Cong, Z. G. Zhao, H. M. Cheng, “Field emission from AlN nanorod array”, Appl. Phys.
Lett. 86, (2005)153104.
107 Jr Hau He, Rusen Yang, Yu Lun Chueh, Li Jen Chou, Lih Juann Chen, and Zhong Lin Wang, “Aligned
AlN Nanorods with Multi-tipped Surfaces : Growth Field-Emission and Cathodoluminescence
Properties”, Adv. Mater. 18, (2006)650-654.
108 C. Liu, Z. Hu, Q. Wu, X. Z. Wang, Y. Chen, H. Sang, J. M. Zhu, S. Z. Deng, N. S. Xu, “Vapor-Solid
Growth and Characterization of Aluminum Nitride Nanocones”, J. Am. Chem. Soc. 127, (2005)1318.
109 S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen,L. C. Chen, “Growth of
Single-Crystalline Wurtzite Aluminum Nitride Nanotips with a Self-Selective Apex Angle”, Adv. Funct.
Mater. 15, (2005) 781.
110 Q. Zhao, J. Xu, X. Y. Xu, Z. Wang, D. P. Yu, “Field emission from AlN nanoneedle arrays“, Appl. Phys.
Lett. 85, (2004)5331.
111 L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, D. Golberg, “Growth and Field Emission of
Hierarchical Single-Crystalline Wurtzite AlN Nanoarchitectures”, Adv. Mater. 17, (2005)110.
112 T. Kozawa, J. Vac. Sci. Technol B, 16(2), (1998) 833-835.
113 S. Hasegawa, S. Nishida, T. Yamashita, H. Asahi, “Polycrystalline GaN for light emitter and field
electron emitter applications”, Thin Solid Films 487 (2005)260-267.
171
114 F. Ducroquet, P. Kropfeld, O. Yaradou, “Fabrication and emission characteristics of GaAs tip and
wedge-shaped field emitter arrays by wet etching”, J. Vac. Sci. Technol B, 16(2), (1998) 787-789.
115 M. Nagao, K. Utsumi, Y. Gotoh, H. Tsuji, J. Ishikawa, T. Nakatani, T. Sakashita, K. Betsui,
“Dependence of emission characteristics of Spindt-type field emitters on cathode material”, Applied
Surface Science, 146, (1999)182-186.
116 M. S. Aouadi, R. R. Parsons, P. C. Wong, and K. A. R. Mitchell, “Characterization of sputter deposited
tungsten films for x-ray multilayers”, J. Vac. Sci. Technol. A 10(2) , (1992) 273-280.
117 I.A. Weerasekera, S. I. Shah, D.V. Baxter and K.M. Unruh, Appl. Phys. Lett. 64, (1994) 3231-3233.
118 P. Petroff, T. T. Sheng, A. K. Sinha, G.. A. Rozgonyi, and F. B. Alexander, “Microstructure growth
resistivity and stresses in thin tungsten films deposited by rf sputtering”, J. Appl. Phys.,Vol. 44, (1973)
2545-2554.
119 A.Bensaoula, J. C. Wolfe, A. Ignatiev, F-O. Fong, and T-S. Leung, “Direct-current-magnetron deposition
of molybdenum and tungsten with rf-substrate bias”, J. Vac. Sci. Technol. A 2(2) , (1984) 389-392.
120 C. C. Tang and D. W. Hess, “PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION OF beta
-TUNGSTEN, A METASTABLE PHASE”, Appl. Phys. Lett. 45, (1984) 633-635.
121 A.M. Haghiri-Gosnet, F.R. Ladan, C. Mayeux, H. Launois, M.C. Joncour, “Stress and microstructure in
tungsten sputtered thin films”, J. Vac. Sci. Technol. A 7(4) , (1989) 2663-2669.
122 P. Colpo,T. Meziani, N. Gibson, G. Ceccone, F. Rossi, “Tungsten deposition by dual-frequency
inductively coupled plasma-assisted CVD”, Surface and Coatings Technology 116–119 (1999) 863–867
123 Y.G. Shen and Y.M. Mai, “Influences of oxygen on the formation and stability of A15 β-W thin films”,
Mater. Sci. Eng., A 284, (2000) 176-183.
124 Y.G. Shen and Y.M. Mai, “Structure and properties of stacking faulted A15 tungsten thin films”, J.
Mater. Sci. 36, (2001)93-98.
125 Tansel Karabacak, Anupama Mallikarjunan, Jitendra P. Singh, Dexian Ye, Gwo-Ching Wang, and
Toh-Ming Lu, ”b-phase tungsten nanorod formation by oblique-angle sputter deposition”, J Appl. Phys.
Lett. 83, (2003) 3096-3098.
126 J.G. Flming, S.Y. Lin, I. EI-Kady, R. Biswas, and K.M. Ho, “All-metallic three-dimensional photonic
crystals with a large infrared bandgap”, Nature (London) 417, (2002) 52.
127 K.Y. Ahn, “A comparison of tungsten film deposition techniques for very large scale integration
technology”, Thin Solid Films 153, (1987) 469-478.
128 S.M. Rossnagel, I.C. Noyan, and C. Cabral Jr., “Phase transformation of thin sputter-deposited tungsten
films at room temperature”, J. Vac. Sci. Technol. B 20, (2002) 2047.
129 M. Itoh, M. Hori, and S. Nadahara, “The origin of stress in sputter-deposited tungsten films for x-ray
masks”, J. Vac. Sci. Technol. B 9, (1991) 149.
130 M.S. Aouadi, R.R. Parsons, P.C. Wong, and K.A.R Mitchell, “Characterization of sputter deposited
tungsten films for x-ray multilayers”, J. Vac. Sci. Technol. A 10, (1992) 273.
172
131 Yun-Hi Lee, Chang-Hoon Choi, Yoon-Taek Jang, Eun-Kyu Kim, Byeong-Kwon Ju, Nam-Ki Min, and
Jin-Ho Ahn, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett. 81,
(2002) 745-747.
132 J. P. Singh, F. Tang, T. Karabacak, T. M. Lu and G. C. Wang, “Enhanced cold field emission from 100
oriented b–W nanoemitters”, J. Vac. Sci. Technol., B 22, (2004) 1048-1051.
133 Yunho Baek, Yoonho Song, and Kijung Yong, “A Novel Heteronanostructure System Hierarchical W
Nanothorn Arrays on WO3 Nanowhiskers”, Adv. Mater. 18,(2006) 3105–3110.
134 A.J. Learn and D.W. Foster, “Resistivity grain size and impurity effects in chemically vapor-deposited
tungsten films”, J. Appl. Phys. 58, (1985) 2001.
135 A.M. Haghiri-Gosnet, F.R. Ladan, C. Mayeux, and H. Launois, “Stress and microstructure in tungsten
sputtered thin films”, J. Vac. Sci. Technol. A 7, (1989) 2663.
136 K.K. Shih, D.A. Smith, and J.R. Crowe, “Properties of hard tungsten films prepared by sputtering”, J.
Vac. Sci. Technol. A 6, (1988) 1681.
137 I.A. Weerasekera, S. lsmat Shah, David V. Baxter, K. M. Unruh, “Structure and stability of sputter
deposited beta-tungsten thin films”, Appt. Phys. Lett. 64 (24), 13, (1994)3231-3233.
138 I-Shun Chang, Min-Hsiung Hon, “Growth characteristics and electrical resistivity of chemical
vapor-deposited tungsten film”, Thin Solid Films 333, (1998) 108-113.
139 Y.G. Shen, Y.W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, and W.E. McBride, Appl. ”Residual
stress, microstructure, and structure of tungsten thin films”, J. Appl. Phys. 87, (2000) 177-187.
140 J.H. Souk, J.F. O’Hanlon, and J. Angillelo, “Characterization of electron-beam deposited tungsten films
on sapphire and silicon”, J. Vac. Sci. Technol. A 3, (1985) 2289.
141 E.K. Broadbent, “Nucleation and growth of chemically vapor deposited tungsten on various substrate
materials : A review”, J. Vac. Sci. Technol. B 4, (1987) 1661.
142 Y. Pauleau, Ph. Lami, A. Tissier, R. Pantel, and J.C. Oberlin, “Tungsten Films Produced by Selective
Deposition onto Silicon Wafers”, Thin Solid Films 143 (3), (1986)259-67.
143 Ken K. Laia, H. Henry Lamb, “Tungsten chemical vapor deposition using tungsten hexacarbonyl-
microstructure of as-deposited and annealed films”, Thin Solid Films 370, (2000) 114-121
144 P. Colpo, T. Meziani, N. Gibson, G. Ceccone, F. Rossi, “Tungsten deposition by dual-frequency
inductively coupled plasma-assisted CVD”, Surface and Coatings Technology 116–119, (1999) 863–867
145 H.S. Witham, P. Chindandom, I. An, R.W. Collins, R. Messier, and K. Vedam, “Effect of preparation
conditions on the morphology and electrochromic properties of amorphous tungsten oxide films”, J. Vac.
Sci. Technol. A 11, (1993) 1881 .
146 S. Basavaiah and S.R. Pollack, “Superconductivity in b -Tungsten Films”, J. Appl. Phys. 39, (1968)
5548 .
147 N. Susa, S. Ando, and S. Adachi, “Properties of Tungsten Film Deposited on GaAs by RF Magnetron
Sputtering”, J. Electrochem. Soc. 132, (1985) 2245.
173
148 M. Arita and I. Nishida, “Tungsten Films with the A15 Structure”, Jpn. J. Appl. Phys., Part 1 32, (1993)
1759.
149 M. J. O’Keefe, J. T. Grant, “Phase transformation of sputter deposited tungsten thin films with A-15
structure”, J. Appl. Phys. 79 (12), (1996)9134-9141.
150 L.E. Toth, ” Transition Metal Carbides and Nitrides”, Academic, New York, 1971.
151 PC Bettler and F M Charbonier, “Activation Energy for the Surface Migration of Tungsten in the
Presence of a High-Electric Field”, Phys Rev, 119, (1960)85.
152 Y. M. Gong and R Gomer, “Thermal roughening on stepped tungsten surfaces I The zone
(011)–(112)”, .I Chem Phys, 88, (1988)1359.
153 M.Q. Ding, A.F. Myers, W.B. Choi, R.D. Vispute, S.M. Caphausen, J. Narayan, J.J. Cuomo, and J.J.
Hren, “Field emission from amorphous diamond coated Mo tip emitters by pulsed laser deposition”, J.
Vat. Sci. Technol. B 15 (4), (1997) 840.
154 Jae Hoon Jung, Byeong Kwon Ju, Yun Hi Lee, Kyu Chang Park, Jin Jang, Yu Ho Jung, Chul Ju Kim, and
Myung Hwan Oh, “Emission stability of DLC coated metal-tips FEA”, 9th International Vacuum
Microelectronics Conference, St. Petersburg,(1996) 231.
155 Jae Hoon Jung, Byeong Kwon Ju, Hoon Kim, Myung Hwan Oh, Suk Jae Chung, and Jin Jang, “Effect of
N doping on the electron emission properties of diamondlike carbon film on a 2-in Mo field emitter array
panel”, J. Vat. Sci. Technol. B 16 (2), (1998) 705.
156 Jae Hoon Jung, Byeong Kwon Ju, Member, IEEE, Hoon Kim, Yun Hi Lee, Suk Jae Chung, Jin Jang and
Jin Jang, “Effect of diamond-like carbon coating on the emission characteristics of molybdenum field
emitter arrays”, IEEE TRANSACTIONS ON ELECTRON SEVICES, vol. 45, (1998) 2232.
157 Chin-Maw Lim, Shoou-Jinn Chang, Meiso Yokoyama, I-Nan Lin, Feng-Yu Chuang, Chun-Hui Tasi, and
Wen-Chun Wang, “Enhancement of Electron Emission Characteristics of Platform-shaped Mo Emitters
by Diamond-like Carbon Coatings”, Jpn. J. Appl. Phys. Vol. 38, (1999) 3700-3704.
158 Jae Hoon Jung, Nam Yang Lee, Jin Jang, Myung Hwan Oh, Saeyoung Ahn, “Electron emission
performance of nitrogen-doped hydrogen-free diamond-like carbon coating on Mo-Tip field emitter
arrays”, J. Vat. Sci. Technol. B 18 (2), (2000) 933.
159 R. Schlesser, M.T. McClure, B.L. McCarson, Z. Sitar, “Mechanisms of field emission from diamond
coated Mo emitters”, Diamond and Related Materials 2-5, (1998) 636-639.
160 T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi and M. Murakami, “Diffusion barrier
property of TaN between Si and Cu”, Appl. Surf. Sc.i 99 (1996), p. 265.
161 C.Y. Yang, J.S. Jeng and J.S. Chen, “Grain growth, agglomeration and interfacial reaction of copper
interconnects”, Thin Solid Films 420–421 (2002), p. 398-402.
162 M. Stavrev, D. Fischer, C. Wenzel, K. Drescher and N. Mattern, “Crystallographic and morphological
characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films”, Thin Solid Films 307 (1997), p.
79-88.
163 Y.J. Lee, B.S. Suh, S.K. Rha and C.O. Park, “Structural and chemical stability of Ta–Si–N thin film
174
between Si and Cu”, Thin Solid Films 320 (1998), p. 141-146.
164 V.P. Anitha. S. Major, D. Chandrashekhwam. M. Bhatnagar, “Deposition of molybdenum nitride thin
films by r.f. reactive magnetron sputtering”, Surf. Coat. Technol. 79, (1996) 50.
165 V.P. Anitha, A. Bhattachaqa, N.G. Patil, S. Major, “Study of sputtered molybdenum nitride as a diffusion
barrier”, Thin Solid Films 236, (1993) 306-310..
166 V.P. A&ha. S. Vitta, S. Major, “Structure and properties of reactivity sputtered γ-Mo2N hard coatings”,
Thin Solid Films 245, (1994) 1-3.
167 K.-L, Lin, Y.-J. Ho, “Deposition and properties of Mo–N films”, J. Vat. Sci. Technol. A 13 (6), (1995)
2872.
168 S.Q. Wang, S. Suthar, C. Hoeflich, B.J. Burrow, “Diffusion barrier properties of TiW between Si and
Cu”, J. Appl. Phys. 73 (5), (1993) 2301.
169 CA. Chang, “Reaction between Cu and PtSi with CrTiW and C barrier layers”, J. Appi. Phys. 67 (10),
(1990) 6184.
170 D.Y. Shih, C.A. Chang, J. Paraszczak, S. Nunes, J. Cataldo, “Thin film interdiffusions in CuPdCuPt
CuNi CuNiB CuCo CuCr CuTi and CuTiN bilayer films:Correlations of sheet resistance with Rutherford
backscattering spectrometries”, J. Appl. Phys. 70 (6), (1991) 3052.
171 H. Ono, T. Nakano, T. Ohta, “Diffusion barrier effects of transition metals for CuMSi multilayers (M=Cr
Ti Nb Mo Ta W)”, Appl. Phys. Lett. 64 (12), (1994) 1511.
172 L.C. Lane, T.C. Nason, G.R. Yang, TM. Lu, H. Bakhru, “Secondary ion mass spectrometry study of the
thermal stability of Curefractory metalSi structures”, J. Appl. Phys. 69 (9), (1991) 6719.
173 Jui-Chang Chuang, Shuo-Lun Tu, Mao-Chieh Chen, “Sputter-deposited MO and reactively
sputter-deposited MO-N films as barrier layers against Cu diffusion”, Thin Solid Films 346, (1999)
299-306.
174 J. Valli, U.M. MXkell, “Tribological properties of MoNx coatings in contact with copper”, J. Vat. Sci
TechnoL A 4 (6), (1986) 2850.
175 J.-Y. Lee. J.W. Park, “Diffusion Barrier Property of Molybdenum Nitride Films for Copper
Metallization”, Jpn. J. Appl. Phys. 35,(1996) 4280.
176 C. Ahrens, D. Depta, F. Schitthelm, S. Wilhelm, “Electrical characterization of conductive and
non-conductive barrier layers for Cu-metallization”, Appl. Surf. Sci. 91, (1995) 285.
177 F. Klabunde, M. Lo¨hmann, J. Bla¨sing, T. Dru¨sedau, “The influence of argon pressure on the structure
of sputtered molybdenum:From porous amorphous to a new type of highly textured film“, J. Appl.Phys. 80,
(1996) 6266.
178 J.D. Wu, C.Z. Wu, Z.M. Song, F.M. Li, “Preparation of molybdenum nitrides by laser-promoted
nitridation reaction”, Thin Solid Films 311, (1997) 62-66.
179 J.C. Chuang, S.L. Tu, M.C. Chen, “Sputter-deposited MO and reactively sputter-deposited MO-N films
as barrier layers against Cu diffusion”, Thin Solid Films 346, (1999) 299-306.
175
180 O. P. Karpenko, J. C. Bilello, and S. M. Yalisove, ”Combined transmission electron microscopy and
x-ray study of the microstructure and texture in sputtered Mo films”, J. Appl. Phys. 76, (1994) 4610.
181 M.A. Martínez., C. Guillén, “Comparison between large area dc-magnetron sputtered and e-beam
evaporated molybdenum as thin film electrical contacts”, Journal of Materials Processing Technology
143–144 (2003) 326–331.
182 Y.G. Shen, “Effect of deposition conditions on mechanical stresses and microstructure of
sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films”, Materials
Science and Engineering A, Vol 359, 1-2, (2003) 158-167.
183 G. Gordillo, M. Griza´ lez, L.C. Hernandez, “Structural and electrical properties of DC sputtered
molybdenum films”, Solar Energy Materials and Solar Cells 51 ,(1998) 327–337.
184 A.K. Vasud´evan, J.J. Petrovic, “A Comparative Overview of Molybdenum Disilicide Composites”,
Mater. Sci. Eng. A 155, (1992) 1–17.
185 J.J. Petrovic, “Mechanical behavior of MoSi2 and MoSi2 composites”, Mater. Sci. Eng. A 192/193,
(1995) 31–37.
186 R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, C.J. Maggiore, “Synthesis of Molybdenum Disilicide by
Mechanical Alloying”, Mater. Sci. Eng. A 155, (1992) 75–83.
187 R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovitz, A. Basu, H. Chang, D.P. Mason, W. Yang,
“Mechanical Behavior and Interface Design of MoSi2-Based Alloys and Composites, " Mater. Sci. Eng.
A 155, (1992) 147–158.
188 W. P. Dyke and W. W. Dolan, “Field Emission”, Advances in Electronics and Electron Physics Vol. 8,
Academic, New York, (1956).
189 R. Gomer, “Field Emission and Field Ionization”, Harvard University Press, Cambridge, MA,
(1961)Chap. 4.
190 R. Gomer, “Velocity Distribution of Electrons in Field Emission Resolution in the Projection
Microscope”, J. Chem. Phys. 20, (1952)1772.
191 D. J. Rose, “On the Magnification and Resolution of the Field Emission Electron Microscope”, J. Appl.
Phys. 27, (1956)215.
192 L. W. Swanson and N. A. Martin, “Field electron cathode stability studies = Zirconium tungsten
thermal-field cathode”, J. Appl. Phys. 46, (1975)2029.
193 A. V. Crewe, D. N. Eggenberger, J. Wall, and L. M. Welter, “Electron Gun Using a Field Emission
Source”, Rev. Sci. Instrum. 39, (1968)576.
194 Ch. Kleint, “Surface diffusion model of adsorption-induced field emission flicker noise I. Theory”, Surf.
Sci. 25, (1971)394-410.
195 Ch. Kleint, “Electron emission noise ” , Surf. Sci. 200, (1988)472-489.
196 K. Ashihara, H. Nakane, and H. Adachi, “Experimental study of field emission characteristics as a
function of the emitter to anode distance”, J. Vac. Sci. Technol. B 16, (1998)1180.
176
197 K. Pelhos, T.E. Madey, R. Blaszczyszyn, “Faceting and steady-state shape of Rh- and Pd-covered W
field emitter tips”, Surface Science 426, (1999)61–68.
198 G. Antczak, R. Bszczyszyn, T.E. Madey, “Pt-induced faceting of W field emitter tips”, Progress in
Surface Science 74,(2003)81–95.
199 R. Bryl, R. Baszczyszyn, “Surface diffusion of water on clean and Au-covered tungsten field emitter
tips”, Vacuum 54, (1999)103–112.
200 Jingguo Liu, Zhengjun Zhang, Ye Zhao, Xin Su, Shuang Liu, and Enge Wang, “Tuning the
Field-Emission Properties of Tungsten Oxide Nanorods”, Communications 1, No. 3, (2005)310-313.
201 R.B. Sharma, N. Pradeep, D.S. Joag, Surendra Pal, G.C. Dubey, “Studies of field emission current from
amorphous silicon deposited on a tungsten tip”, Ultramicroscopy 79, (1999)131-134.
202 Raghunandan Seelaboyina, JunHuang, Jucheol Park, Dong Hun Kang and Won Bong Choi1, “Multistage
field enhancement of tungsten oxide nanowires and its field emission in various vacuum conditions”,
Nanotechnology 17, (2006) 4840–4844
203 Jun Zhou, Li Gong, Shao Zhi Deng, Jun Chen, Jun Cong She, and Ning Sheng Xu, Rusen Yang and
Zhong Lin Wang, “Growth and field-emission property of tungsten oxide nanotip arrays”, Appl. Phys.
Lett. 871, (2005)223108.
204 Mu-Tung Chang, Li-Jen Chou,* Yu-Lun Chueh, Yu-Chen Lee, Chin-Hua Hsieh, Chii-Dong Chen,
Yann-Wen Lan, and Lih-Juann Chen, “Nitrogen-Doped Tungsten Oxide Nanowires Low-Temperature
Synthesis on Si and Electrical Optical and Field-Emission Properties”, Small 3, No. 4, (2007)658–664.
205 S.L. Yue, C.Z. Gu, C.Y. Shi, C.Y. Zhi, “Field emission characteristics of oriented-AlN thin film on
tungsten tip”, Applied Surface Science 251, (2005)215–219.
206 Xin Bai, Mingsheng Wang, Gengmin Zhang, Jie Yu, Zhaoxiang Zhang, Dengzhu Guo, Xingyu Zhao, and
Zengquan Xue, “Field emission of individual carbon nanotubes on tungsten tips”, J. Vac. Sci. Technol B,
25(2) ,(2007)561-565.
207 J.P. Singh, F. Tang, T. Karabacak, T.M. Lu, and G.C. Wang, “Enhanced cold field emission from (100)
oriented W nanoemitters”, J. Vac. Sci. Technol., B 22(3), (2004)1408-1051.
208 Yun-Hi Lee, Chang-Hoon Choi, Yoon-Taek Jang, Eun-Kyu Kim, Byeong-Kwon Ju, Nam-Ki Min, Jin-Ho
Ahn, “Tungsten nanowires and their field electron emission properties”, Appl. Phys. Lett. 81,
(2002)745-747.
209 K.S. Yeong and J.T.L. Thong, Journal of Applied Physics, Vol. 100, (2006) 114325.
210 Shigeo Itoh, Teruo Watanabe, Kazuyoshi Ohtsu, Masateru Taniguchi, Satoshi Uzawa, and Norio
Nishimura, “Experimental study of field emission properties of the Spindt-type field emitter”, J. Vac. Sci.
Technol. B 13(2), (1995) 487-490.
211 C.A. Spindt and I. Brodie, “MOLYBDENUM FIELD-EMITTER ARRAYS”, IEDM 96-289, 1996.
177
212 C.A. Spindt, I. Brodie, L. Humphrey, and E.R. Westerberg, “PHYSICAL PROPERTIES OF THIN-FILM
FIELD EMISSION CATHODES WITH MOLYBDENUM CONES”, Journal of Applied Physics, Vol.
47, No.12, 5248-5643.
213 M.S. Mousa, “Effect of anode temperature on molybdenum field-emitter arrays”, Materials Science and
Engineering A270 (1999) 97-101.
214 Byung Chang Shim, “Molybdenum and Cobalt Silicide FEAs”, SMDL Annual Report 2000.
215 Ambrosio A. Rouse, John B. Bernhard, Edward D. Sosa, and David E. Golden, “Field emission from
molybdenum carbide”, Appl. Phys. Lett., 76 (2000) 2583-2585.
216 D. Kang, V.V. Zhirnov, R.C. Sanwald, J.J. Hren, and J.J. Cuomo, “Field emission from ultrathin coatings
of AlN on Mo emitters”, J. Vac. Sci. Technol B, 19(1) ,(2001) 50-54.
217 Tianbao Xie, W.A. Mackie, and P.R. Davis, “Field emission from ZrC films on Si and Mo single emitters
and emitter arrays”, J. Vac. Sci. Technol B, 14(3) ,(1996) 2090-2092.
218 W.A. Mackie, Tianbao Xie, M.R. Matthews, B.P. Routh, Jr., and P.R. Davis, “Field emission from ZrC
and ZrC films on Mo field emitters”, J. Vac. Sci. Technol B, 16(4) ,(1998) 2057-2062.
219 F.M. Charbonnier, W.A. Mackie, T. Xie, P.R. Davis, “Enhanced field emission from carbide-coated field
emitters and device applications”, Ultramicroscopy 79, (1999)73-82.
220 Hideaki Nakane, Shinya Satoh, and Hiroshi Adachi, “Reduction of the work function on Mo(100) surface
covered with ZrO2”, J. Vac. Sci. Technol B, 23(2) ,(2005) 769-771.
221 V.V. Zhirnov, W.B. Choi, J.J. Cuomo, J.J. Hren, “Diamond coated Si and Mo field emitters:Diamond
thickness effect”, Applied Surface Science, 94/95, (1996)123-128.
222 M.T. McClure, R. Schlesser, B.L. McCarson, and Z. Sitar, “Electrical characterization of diamond and
graphite coated Mo field emitters”, J. Vac. Sci. Technol B, 15(6) ,(1997) 1067-2071.
223 M.Q. Ding, A.F. Myers, W.B. Choi, R.D. Vispute, S.M. Camphausen, J. Narayan, J.J. Cuomo, J.J. Hren,
and J. Bruley, “Field emission from amorphous diamond coated Mo tip emitters by pulsed laser
deposition”, J. Vac. Sci. Technol B, 15(4) ,(1997) 840-844.
224 R. Schlesser, M.T. McClure, B.L. McCarson, Z. Sitar, “Mechanisms of field emission from diamond
coated Mo emitters”, Diamond and Related Materials 2-5, (1998)636-639.
225 Jae Joon Jung, Byeong Kwon Ju, Hoon Kim, Myung Hwan Oh, Suk Jae Chung, and Jin Jang, “Effect of
N doping on the electron emission properties of diamondlike carbon film on a 2-in Mo field emitter array
panel”, J. Vac. Sci. Technol B, 16(2) ,(1998) 705-709.
226 Jae Joon Jung, Byeong Kwon Ju, Hoon Kim, Yun Hi Lee, Suk Jae Chung, Jin Jang, Myung Hwan Oh,
“Effect of diamond-like carbon coating on the emission characteristics of molybdenum field emitter
arrays”, IEEE TRANSACTION ON ELECTRON DEVICES, Vol. 45, No. 10, (1998)2232-2237.
227 Chin-Maw Lin, Shoou-Jinn Chang, Meiso Yokoyama, I-Nan Lin, Feng-Yu Chuang, Chun-Hui Tsai,and
Wen-Chun Wang, “Enhancement of Electron Emission Characteristics of Platform-shaped Mo Emitters
by Diamond-like Carbon Coatings”, Jpn. J. Appl. Phys., Vol. 38, (1999)3700-3704.
178
228 Jae Joon Jung, Nam Yang Lee, Jin Jang, Myung Hwan Oh, Saeyoung Ahn, “Electron emission
performance of nitrogen-doped hydrogen-free diamond-like carbon coating on Mo-Tip field emitter
arrays”, J. Vac. Sci. Technol B, 18(2) ,(2000) 933-936.
229 Babu R. Chalamala, and Robert H. Reuss, “Studies on the interaction between thin film materials and Mo
field emitter arrays”, J. Vac. Sci. Technol B, 18(4) ,(2000) 1825-1832.
230 Jong Duk Lee, Chang Woo Oh, and Byung Gook Park, “Electrical aging of molybdenum field emitters”,
J. Vac. Sci. Technol B, 21(1) ,(2003) 440-444.
231 Hoon Kim, Byeong-Kwon Ju, Yun-Hi Lee, Jin Jang and Myung-Hwan Oh, “Effect of the Hybrid Etching
Methods on the Field Emission Characteristics of Mo-Tip Field Emitter Arrays”, Journal of The
Electrochemical Society, 147 (12), (2000) 4705-4708.
232 Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, “Field emission from MoO3 nanobelts”, Appt. Phys. Lett.
81, 13, (2002)5048-5050.
233 Jun Zhou, Ning-Sheng Xu, Shao-Zhi Deng, Jun Chen, Jun-Cong She, and Zhong-Lin Wang, “Large-Area
Nanowire Arrays of Molybdenum and Molybdenum Oxides Synthesis and Field Emission Properties”,
Adv. Mater. 15,(2003)1835-1840.
234 X.T. Zhou, N. Wang, F.C.K. Au, H.L. Lai, H.Y. Peng, I. Bello, C.S. Lee and S.T. Lee, “Growth and
emission properties of β-SiC nanorods”, Mater. Sci. Eng. A 286, (2000), p. 119.
235 H.C. Lo, D. Das, J. S. Hwang, K.H. Chen, C.H. Hsu, C.F. Chen, L.C. Chen, “SiC-capped nanotip arrays
for field emission with ultralow turn-on field”, Appt. Phys. Lett. 83, (2003)1420-1422.
236 W.M. Zhou, Y.J. Wu, Eric Siu-Wai Kong, F. Zhu, Z.Y. Hou, Y.F. Zhang, “Field emission from
nonaligned SiC nanowires”, Applied Surface Science 253 ,(2006) 2056–2058.
237 Yonghwan Ryu, Youngjo Tak and Kijung Yong, “Direct growth of core–shell SiC–SiO2 nanowires and
field emission characteristics”, Nanotechnology 16, (2005) S370–S374.
238 F.G. Tarntair,C.Y. Wen, L.C. Chen, J.J. Wu, K.H. Chen, P.F. Kuo, S.W. Chang, Y.F. Chen, W.K. Hong
and H.C. Cheng, “Field emission from quasi-aligned SiCN nanorods”, Appt. Phys. Lett. 76,
(2000)2630-2632.
239 M.J. Colgan and M.J. Brett, “Field emission from carbon and silicon films with pillar microstructure”,
Thin Solid Films (Letter) 389 (2001), p. 1.
240 X.D. Bai, J.D. Guo, Jie Yu, E.G. Wang, Jun Yuan, Wuzong Zhou, “Synthesis and field-emission
behavior of highly oriented boron carbonitride nanofibers”, Appt. Phys. Lett. 76, (2000)2624-2626.
241 Jun Xu, Xiaohui Huang, Wei Li, Li Wang, Xinfan Huang, Kunji Chen, Jianbin Xu and I.H. Wilson,
“Vacuum electron emission with low turn-on electric field from hydrogenated amorphous carbon thin
films“ Appl. Phys. Lett. 79 (2001), p. 141.
242 A.V. Karabutov, V.I. Konov, V.G. Ralchenko, E.D. Obraztsova, V.D. Frolov, S.A. Uglov, H.J. Scheibe,
V.E. Strelnitskij and V.I. Polyakov, “Comparision of field electron emission from DLC films produced
by four different deposition techniques“, Diam. Relat. Mater. 6 (1998), p. 802.
179
243 N.A. Fox, W.N. Wang, T.J. Davis, J.W. Steeds and P.W. May, “Field emission properties of diamond
films of different qualities”, Appl. Phys. Lett. 71 (1997), p. 2337.
244 W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, “Large current density from carbon nanotube field
emitters”, Appl. Phys. Lett. 75 (1999), p. 873.
245 S.G. Wang, Qing Zhang, S.F. Yoon, J. Ahn, D.J. Yang, Q. Wang, Q. Zhou and J.Q. Li, “Electron field
emission from carbon nanotubes and undoped nano-diamond”, Diam. Relat. Mater. 12 (2003), p. 8-14.
246 S.G. Wang, Qing Zhang, S.F. Yoon, J. Ahn, Q. Zhou, Q. Wang, D.J. Yang and J.Q. Li, “Electron field
emission enhancement effects of nano-diamond films”, Surf. Coat. Technol. 167, (2003) p. 143.
247 A.Y. Cao, X.F. Zhang, X. Xiao, M.Q. Ding, D.M. Zhuang, C.L. Xu, B.Q. Wei, J. Liang and D.H. Wu,
“Field emission behavior of aligned carbon nanofiber arrays”, Mater. Lett. 51 (2001), p. 371.
248 Chia-Fu Chen, Chien-Liang Lin and Chi-Ming Wang, “Field emission from aligned carbon nanofibers
grown in situ by hot filament chemical vapor deposition”, Appl. Phys. Lett. 82 (2003), p. 2515.
249 Jun Chen, S.Z. Deng, N.S. Xu, Weixin Zhang, Xiaogang Wen, and Shihe Yang, “Temperature
dependence of field emission from cupric oxide nanobelt films”, Appt. Phys. Lett. 83, (2003)746-749.
250 Chien-Te Hsieh, Jin-Ming Chen,Hung-Hsiao Lin and Han-Chang Shih, “Field emission from various
CuO nanostructures”, Appt. Phys. Lett. 83, (2003)3383-3385.
251 Jun Zhou, Shaozhi Deng, Li Gong, Yong Ding, Jian Chen, Jianxing Huang, Jun Chen, Ningsheng Xu,
and Zhong Lin Wang, „Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature
Chemical Vapor Deposition Synthesis, Growth Mechanism, and Device Application“, J. Phys. Chem.
B110, (2006) 10296-10302.
252 Y.B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties”, Appt. Phys.
Lett. 82, (2003)1962-1964.
253 Y.B. Li, Y. Bando, D.Golberg, and K. Kurashima, “Field emission from MoO3 nanobelts”, Appt. Phys.
Lett. 81, (2003)5048-5050.
254 Jun Zhou, S.Z. Deng, N.S. Xu, Jun Chen, and J. C. She, “Synthesis and field-emission properties of
aligned MoO3 nanowires”, Appt. Phys. Lett. 83, (2003)2653-2655.
255 C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh and H.J. Lee, “Field emission from well-aligned zinc
oxide nanowires grown at low temperature”, Appt. Phys. Lett. 81, (2002)3648-3650.
256 Yung-Kuan Tseng, Chorng-Jye Huang, Hsin-Min Cheng, I-Nan Lin, Kuo-Shung Liu, and I-Cherng Chen,
“Characterization and Field-Emission Properties of Needle-like Zinc Oxide Nanowires Grown Vertically
on Conductive Zinc Oxide Films”, Adv. Funct. Mater. 13, (2003), p. 811.
257 Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D. P. Yu,
“Efficient field emission from ZnO nanoneedle arrays”, Appt. Phys. Lett. 83, (2003)144-146.
258 C.X. Xu and X.W. Sun, “Field emission from zinc oxide nanopins”, Appt. Phys. Lett. 83,
(2003)3806-3808.
180
259 Jun Zhon et al., “Tungsten nanorods: Synthesis and Field emission Characteristics”, Available from:
<http://ivmc2002.univ-lyon1.fr/Presentations/PP-M1.pdfhttp://ivmc2002.univ-lyon1.fr/Presentations/PPM1.
pdf>.
260 Qiang Wu, Zheng Hu, Xizhang Wang, Yinong Lu, Kaifu Huo, Shaozhi Deng, Ningsheng Xu, Bo Shen,
Rong Zhang and Yi Chen, “Extended vapor–liquid–solid growth and field emission properties of
aluminium nitride nanowires”, J. Mater. Chem. 13, (2003) 2024–2027.
261 V.N. Tondare, C. Balasubramanian, S.V. Shende, D.S. Joag, V.P. Godbole, S.V. Bhoraskar, M.
Bhadbhade, “Field emission from open ended aluminum nitride nanotubes”, Appt. Phys. Lett. 80,
(2002)4813-4815.
262 Byeongchul Ha, Sung Ho Seo, Jung Hee Cho, Chong S. Yoon, Jinkyoung Yoo,Gyu-Chul Yi, Chong Yun
Park,| and Cheol Jin Lee, “Optical and Field Emission Properties of Thin Single-Crystalline GaN
Nanowires”, J. Phys. Chem. B 109, (2005) 11095-11099.
263 Hwa-Mok Kim , T.W. Kang , K.S. Chung , J.P. Hong , W.B. Choi, “Field emission displays of
wide-bandgap gallium nitride nanorod arrays grown by hydride vapor phase epitaxy”, Chemical Physics
Letters 377, (2003) 491–494.
264 I. Umezu, K. Kohno, K. Aoki, Y. Kohama, A. Sugimura, M. Inada, “Effects of argon and hydrogen
plasmas on the surface of silicon”, Vacuum 66, (2002) 453-456.
265 Johnson NM, Donald C, Ponce F, Walker J, Anderson G, “Hydrogen in crystalline semiconductors A
review of experimental results”, Physica B (1991);170:3.
266 Johnson NM, Ponce FA, Street RA, Nemanechi RJ, “Defects in single-crystal silicon induced by
hydrogenation”, Phys Rev B 35, (1987)4166.
267 Jeng SJ, Oehrlein GS, Scilla GJ, “Hydrogen plasma induced defects in silicon”, Appl Phys Lett
(1988);53:1735.
268 J. Weber, “Defect generation during plasma treatment of semiconductors”, Physica B (1991);170:201.
269 Kar S, Ashok S, “Investigation of room-temperature ion beam hydrogenation for the removal of traps in
silicon ion beam damaged metal-oxide-silicon structures”, J Appl Phys (1993);73:2187.
270 Y.H. Tang, P. Zhang, P.S. Kim, T.K. Sham, Y.F. Hu, X.H. Sun, N.B. Wong, M.K. Fung, Y.F. Zheng, C.S.
Lee, and S.T. Lee, “Amorphous carbon nanowires investigated by near edge x-ray absorption fine
structures”, Appl. Phys. Lett. 79, (2001) 3773.
271 H. Yokomichi, F. Sakai, M. Ichihara, and N. Kishimoto, “Carbon nanotubes and a-C films
simultaneously fabricated by thermal CVD”, Journal Non-crystalline Solids, 299-302 (2002) 868.
272 S. Botti, R. Ciardi, M.L. Terranova, S. Piccirillo, V. Sessa, and M. Rossi, “Carbon nanotubes and
nanowires grown from spherical carbon nano-particles”, Chemical Physics Letters 355, (2002) 395.
273 R.L. Vander Wal, and L.J. Hall, “Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni
catalyzed nanofibers:growth mechanisms and consequences”, Chemical Physics Letters 349, (2001) 178.
181
274 A.V. Melechko, V.I. Merkulov, D.H. Lowndes, M.A. Guillorn, and M.L. Simpson, “Transition between
base and tip carbon nanofiber growth modes”, Chemical Physics Letters 356, (2002) 527.
275 J. Han, J. Yoo, C.Y. Park, H. Kim, G.S. Park, M. Yang, I.T. Han, N. Lee, W. Yi, S.G. Yu, and J.M. Kim,
“Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor
deposition”, J. Appl. Phys. 91, (2002) 483.
276 Endo M, Takeuchi K, K0bori K, “Pyrolytic carbon nanotubes from vapor-grown carbon fibers”, Carbon
33,(1995) 873.
277 Kyung Ho Jung , Jin-Hyo Boo , Byungyou Hong, “Synthesis of carbon nanotubes grown by hot filament
plasma-enhanced chemical vapor deposition method”, Diamond and Related Materials 13 (2004)
299-304.
278 P.V. Huong, R. Cavagnat, P.M. Ajayan, O. Stephan, “Temperature-dependent vibrational spectra of
carbon nanotubes”, Phys. Rev. B 51, (1995) 10048.
279 Y. Ando, X. Zhao, H. Shimoyama, “Structure analysis of purified multiwalled carbon nanotubes”,
Carbon 39, (2001) 569.
280 M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, “Origin of dispersive effects
of the Raman D band in carbon materials”, Phys. Rev. B 59, (1999) R6585.
281 B. Marcus, L. Fayette, M. Mermoux, L. Abello, G. Lucazeau, “Analysis of the structure of
multi-component carbon films by resonant Raman scattering”, J. Appl. Phys. 76, (1994) 3463.
282 G.T. Vissher, David C. Nesting, John V. Badding, and Patricia A. Bianconi, “Poly(phenylcarbyne):A
Polymer Precursor to Diamond-Like Carbon”, Science 260, (1993) 1496-1499.
283 P. Lespade, R. Al-Jishi, M.S. Dresselhaus, “Model for Raman scattering from incompletely graphitized
carbons”, Carbon 20, (1982) 427.
284 陳俊雄,“第一原理之計算方法探討奈米碳管在外加電場下電子結構之變化”,物理雙月刊(廿七
卷四期)2005年8月
285 Jean-Marc Bonard, Hannes Kind, Thomas Stöckli, Lars-Ola Nilsson, “Field emission from carbon
nanotubes : the first five years”, Solid-State Electronics 45, (2001) 893-914.
286 De Heer WA, Châtelain A, Ugarte D, “A Carbon Nanotube Field-Emission Electron Source”, Science
1995, 270:1179.
287 W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J.-P. Schnell, V. Semet, V.
Thien Binhc and O. Groeningd, “Carbon nanotubes as field emission sources”, J. Mater. Chem. 14,
(2004) 933-943.
288 G. R. Fonda, “Evaporation Characteristics of Tungsten”, Phys Rev. 21, (1923) 343-347.
289 A.J. Learn and D.W. Foster, “Resistivity, grain size, and impurity effects in chemically vapor deposited
tungsten films”, J. Appl. Phys. 58, (1985) 2001.
290 Othon R Monteiro, “Thin Film Synthesis by Energetic Condensation”Annu. Rev. Mater. Res. 2001.
31:111–37
291 H.L. Hsiao, H.L. Hwang, A.B. Yang, L.W. Chen, T.R. Yew, “Study on low temperature facetting growth
182
of polycrystalline silicon thin films by ECR downstream plasma CVD with differenthydrogen dilution”,
Applied Surface Science 142, (1999) 316-321.
292 Y.G. Shen, Y.W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, and W.E. McBride, ”Residual stress
microstructure and structure of tungsten thin films deposited by magnetron sputtering”, J. Appl. Phys. 87,
(2000) 177.
293 Tansel Karabacak, Anupama Mallikarjunan, Jitendra P. Singh, Dexian Ye, Gwo-Ching Wang, and
Toh-Ming Lu, ”b-phase tungsten nanorod formation by oblique-angle sputter deposition”, J Appl. Phys.
Lett., 83, (2003) 3096-3098.
294 X.A. Zhao, C.W. Ong, Y.C. Tsang, “Relationship between the structure and the optical and electrical
properties of ion beam deposited CN x films”, Thin Solid Film 322, (1998) 245-253.
295 Y. Lifshitz, G.D. Lempert, E. Grossman, “Substantiation of subplantation model for diamondlike film
growth by atomic force microscopy”, Phys. Rev. Lett. 72,(1994) 2753.
296 H. Takenaka, Y. Ishii, K. Kurihara, and H. Kinoshita, “Soft and hard x-ray reflectivities of multilayers
fabricated by alternating-material sputter deposition”, Proc. SPIE 1345, (1990) 213.
297 A.K. Vasud´evan, J.J. Petrovic, “A comparative overview of molybdenum disilicide composites”, Mater.
Sci. Eng. A, 155, (1992) 1–17.
298 J.J. Petrovic, ”Mechanical behavior of MoSi2 and MoSi2 composites”, Mater. Sci. Eng. A 192/193, (1995)
31–37.
299 R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, C.J. Maggiore, ”Synthesis of molybdenum disilicide by
mechanical alloying”, Mater. Sci. Eng. A, 155, (1992) 75–83.
300 R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovitz, A. Basu, H. Chang, D.P. Mason, W. Yang,
“Mechanical behavior and interface design of MoSi2-based alloys and composites”, Mater. Sci. Eng. A,
155, (1992) 147–158.
301 Y.L. Jeng, E.J. Lavernia, ”Processing of molybdenum disilicide”, J. Mater. Sci. 29, (1994) 2557–2571.
302 N.S. Stoloff, “An overview of powder processing of silicides and their composites”, Mater. Sci. Eng. A
261, (1999) 169–180.
303 S.C. Deevi, N.N. Thadhani, “Reaction synthesis of high-temperature silicides”, Mater. Sci. Eng. A
192/193, (1995) 604–611.
304 Jin-Kook Yoon, Jong-Kwon Lee, Kyung-Hwan Lee, Ji-Young Byun, Gyeung-Ho Kim, Kyung-Tae Hong,
“Microstructure and growth kinetics of the Mo5Si3 and Mo3Si layers in MoSi2Mo diffusion couple”,
Intermetallics 11, (2003) 687–696.
305 C.L. Yeh ., W.H. Chen, “Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites” Journal of
Alloys and Compounds 438, (2007) 165–170.
306 Hisataka Takenaka, Tomoaki Kawamura, and Yoshikazu Ishii, “Heat resistance of MoSi MoSi2Si and
Mo5Si3Si multilayer soft x-ray mirrors”, J. Appl. Phys. 78, (1995) 5227-5230.
307 A.K. Srivastava, Pragya Tripathi, M. Nayak, G.S. Lodha, and R. V. Nandedkar, “Formation of Mo5Si3
phase in MoSi multilayers”, Journal of Applied Physics, vol. 92, (2002) 5119-5126.
308 C.W. Ong, H.Y. Wong, G.K.H. Pang, K.Z. Baba-Kishi, and C.L. Choy, “Relationship between the
microstructure and nanoindentation hardness of thermally evaporated and magnetron-sputtered
electrochromic tungsten oxide films”, J. Mater. Res., 16(6), (2001) 1541-1548.
309 Qingli Meng, Jizhong Zhang, Zhanping Li, Gaobao Li, Runbing Chen, “Synthesis of molybdenum
silicide by both ion implantation and ion beam assisted deposition”, Applied Surface Science 254, (2008)
2678-2684.
310 K.A. Gesheva, T. Ivanova, D. Gogova, G. Beshkov, “Formation of MoSi2 by rapid thermal annealing in
vacuum of CVD – Mo films on silicon substrate”, Vacuum 58, (2000) 502-508.