研究生: |
陳名一 Chen, Ming-Yi |
---|---|
論文名稱: |
第一原理計算輔助新穎燃料電池氧氣還原反應催化劑材料開發設計 First-principles calculation assisted design for developing novel fuel cell oxygen reduction reaction catalyst materials |
指導教授: |
許文東
Hsu, Wen-Dung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 134 |
中文關鍵詞: | 燃料電池 、氧氣還原反應 、催化劑 、高熵合金 、第一原理計算 |
外文關鍵詞: | Fuel Cell, Oxygen Reduction Reaction, catalyst, High-entropy alloys, First Principles Calculation |
相關次數: | 點閱:52 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一種用於氧還原反應(ORR)的新型催化劑,這是燃料電池技術中的關鍵步驟,以解決應用過程中高成本、化學穩定性差以及壽命短等問題。通過調控鉑基貴金屬催化劑(Pt/Cu@Pd)表面鉑的平均鄰近幾何分佈,發現以簇狀形式存在的鉑具有最佳的催化性能,但其熱力學穩定性較差。為了改善這一問題,研究通過採用高熵合金成功提高了熱力學穩定性,實現了與單一合金相當的分解能壘(約0.6 eV)。
此外,研究還討論了高熵合金相較於單一合金的優越催化性能。這種優越性源於高熵合金中多樣的化學鍵結環境以及其組成元素間的電負性差異,導致了d帶中心的降低。這種降低使得ORR的能壘下降,從而提升了催化性能。因此,結合本研究的發現,選擇穩定且高效的催化劑元素,並進一步調控催化劑元素之間的平均距離,對於催化劑的設計方向具有重要的意義。
This study aims to develop a novel catalyst for the Oxygen Reduction Reaction (ORR), a critical step in fuel cell technology, to address issues such as high costs, low chemical stability, and short lifespan during application. By regulating the geometric distribution of the average platinum proximity on the surface of platinum-based noble metal catalysts (Pt/Cu@Pd), it was discovered that platinum in a clustered form exhibits optimal catalytic performance. However, its thermodynamic stability is poor. To improve this, the study successfully enhanced the thermodynamic stability by employing high-entropy alloys, achieving a comparable decomposition energy barrier (~0.6 eV).
Additionally, the study discusses the superior catalytic performance of high-entropy alloys compared to individual alloys. This superiority arises from the diverse chemical bonding environments of high-entropy alloys and the distinction in electronegativity among their constituent elements, which lead to a reduction in the d-band center. This reduction lowers the ORR's energy barrier, resulting in improved catalytic performance. Therefore, combining the insights from this study, selecting appropriate catalyst elements that are stable and effective, and further regulating the average distance between catalytic elements significantly contribute to the design direction of catalysts.
[1] C.W. Blake, C.H. Rivkin, Stationary fuel cell application codes and standards: Overview and gap analysis, (2010).
[2] L. Carrette, K. Friedrich, U. Stimming, Fuel cells-fundamentals and applications, Fuel cells, 1 (2001).
[3] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, The Journal of Physical Chemistry B, 108 (2004) 17886-17892.
[4] H.D. Wallace, Fuel cells: A challenging history, Substantia, 3 (2019) 83-97.
[5] Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chemical Society Reviews, 44 (2015) 2168-2201.
[6] B. Hammer, J.K. Norskov, Why gold is the noblest of all the metals, Nature, 376 (1995) 238-240.
[7] O. Antoine, R. Durand, RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions, Journal of Applied Electrochemistry, 30 (2000) 839-844.
[8] E. Antolini, J.R. Salgado, E.R. Gonzalez, The stability of Pt–M (M= first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt–Co catalyst, Journal of Power Sources, 160 (2006) 957-968.
[9] N. Subramanian, T. Greszler, J. Zhang, W. Gu, R. Makharia, Pt-oxide coverage-dependent oxygen reduction reaction (ORR) kinetics, Journal of The Electrochemical Society, 159 (2012) B531.
[10] H. Li, H. Zhao, B. Tao, G. Xu, S. Gu, G. Wang, H. Chang, Pt-based oxygen reduction reaction catalysts in proton exchange membrane fuel cells: controllable preparation and structural design of catalytic layer, Nanomaterials, 12 (2022) 4173.
[11] W.A. Saidi, T. Nandi, T. Yang, Designing multinary noble metal‐free catalyst for hydrogen evolution reaction, Electrochemical Science Advances, 3 (2023) e2100224.
[12] L. Banko, O.A. Krysiak, J.K. Pedersen, B. Xiao, A. Savan, T. Löffler, S. Baha, J. Rossmeisl, W. Schuhmann, A. Ludwig, Unravelling composition–activity–stability trends in high entropy alloy electrocatalysts by using a data‐guided combinatorial synthesis strategy and computational modeling, Advanced Energy Materials, 12 (2022) 2103312.
[13] Z. Xue, M. Yan, X. Wang, Z. Wang, Y. Zhang, Y. Li, W. Xu, Y. Tong, X. Han, C. Xiong, Tailoring Unsymmetrical‐Coordinated Atomic Site in Oxide‐Supported Pt Catalysts for Enhanced Surface Activity and Stability, Small, 17 (2021) 2101008.
[14] L. Xu, L.-M. Yang, E. Ganz, Electrocatalytic reduction of N2 using metal-doped borophene, ACS Applied Materials & Interfaces, 13 (2021) 14091-14101.
[15] S. Sarkar, S. Ramarao, T. Das, R. Das, C. Vinod, S. Chakraborty, S.C. Peter, Unveiling the roles of lattice strain and descriptor species on Pt-like oxygen reduction activity in Pd–Bi catalysts, ACS catalysis, 11 (2021) 800-808.
[16] T.P. Nguyen, I.T. Kim, Ag Nanoparticle-Decorated MoS2 Nanosheets for Enhancing Electrochemical Performance in Lithium Storage, Nanomaterials, 11 (2021) 626.
[17] Y. Zhao, Y. Mao, W. Zhang, Y. Tang, P. Wang, Reviews on the effects of contaminations and research methodologies for PEMFC, International journal of hydrogen energy, 45 (2020) 23174-23200.
[18] D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, H. Kitagawa, Platinum-group-metal high-entropy-alloy nanoparticles, Journal of the American Chemical Society, 142 (2020) 13833-13838.
[19] W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth‐abundant nanomaterials for oxygen reduction, Angewandte Chemie International Edition, 55 (2016) 2650-2676.
[20] F. Calle-Vallejo, M.T. Koper, First-principles computational electrochemistry: Achievements and challenges, Electrochimica Acta, 84 (2012) 3-11.
[21] G. Hautier, A. Jain, S.P. Ong, From the computer to the laboratory: materials discovery and design using first-principles calculations, Journal of Materials Science, 47 (2012) 7317-7340.
[22] S. Sun, H. Li, Z.J. Xu, Impact of surface area in evaluation of catalyst activity, Joule, 2 (2018) 1024-1027.
[23] R. O'hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons2016.
[24] A. Ray, I. Mukhopadhyay, R.K. Pati, Electrocatalysts for Fuel Cells and Hydrogen Evolution: Theory to Design, BoD–Books on Demand2018.
[25] M.S. Herdem, M.Y. Sinaki, S. Farhad, F. Hamdullahpur, An overview of the methanol reforming process: Comparison of fuels, catalysts, reformers, and systems, International Journal of Energy Research, 43 (2019) 5076-5105.
[26] E.I. Ortiz-Rivera, A.L. Reyes-Hernandez, R.A. Febo, Understanding the history of fuel cells, 2007 IEEE conference on the history of electric power, IEEE, 2007, pp. 117-122.
[27] A. Ohma, K. Fushinobu, K. Okazaki, Influence of Nafion® film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell, Electrochimica Acta, 55 (2010) 8829-8838.
[28] O.T. Holton, J.W. Stevenson, The role of platinum in proton exchange membrane fuel cells, Platinum Metals Review, 57 (2013) 259-271.
[29] K.B. Liew, W.R.W. Daud, M. Ghasemi, J.X. Leong, S.S. Lim, M. Ismail, Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review, International Journal of Hydrogen Energy, 39 (2014) 4870-4883.
[30] G. Varghese, V.B. KP, T.V. Joseph, P. Chippar, A Numerical Investigation on Thermal Gradients and Stresses in High Temperature PEM Fuel Cell During Start-up, International Journal of Heat and Mass Transfer, 175 (2021) 121365.
[31] M. Oszcipok, M. Zedda, D. Riemann, D. Geckeler, Low temperature operation and influence parameters on the cold start ability of portable PEMFCs, Journal of Power Sources, 154 (2006) 404-411.
[32] B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, Advances in catalysis, Elsevier2000, pp. 71-129.
[33] Y. Sha, T.H. Yu, B.V. Merinov, P. Shirvanian, W.A. Goddard III, Oxygen hydration mechanism for the oxygen reduction reaction at Pt and Pd fuel cell catalysts, The Journal of Physical Chemistry Letters, 2 (2011) 572-576.
[34] M.F. Li, L.W. Liao, D.F. Yuan, D. Mei, Y.-X. Chen, pH effect on oxygen reduction reaction at Pt (1 1 1) electrode, Electrochimica Acta, 110 (2013) 780-789.
[35] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co, Journal of the Electrochemical Society, 146 (1999) 3750.
[36] L. Guczi, A. Erdôhelyi, Catalysis for alternative energy generation, Springer Science & Business Media2012.
[37] M. Zhu, C. Zhao, X. Liu, X. Wang, F. Zhou, J. Wang, Y. Hu, Y. Zhao, T. Yao, L.-M. Yang, Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells, ACS Catalysis, 11 (2021) 3923-3929.
[38] Y. Meng, J.-X. Liang, C. Zhu, C.-Q. Xu, J. Li, Theoretical studies of MXene-supported single-atom catalysts: Os1/Ti2CS2 for low-temperature CO oxidation, Science China Materials, (2021) 1-10.
[39] L. Gao, X. Gao, P. Jiang, C. Zhang, H. Guo, Y. Cheng, Atomically Dispersed Iron with Densely Exposed Active Sites as Bifunctional Oxygen Catalysts for Zinc–Air Flow Batteries, Small, (2021) 2105892.
[40] H. Steininger, S. Lehwald, H. Ibach, Adsorption of oxygen on Pt (111), Surface Science, 123 (1982) 1-17.
[41] Y. Xu, A.V. Ruban, M. Mavrikakis, Adsorption and dissociation of O2 on Pt− Co and Pt− Fe alloys, Journal of the American Chemical Society, 126 (2004) 4717-4725.
[42] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56 (2005) 9-35.
[43] Z. Gu, P.B. Balbuena, Absorption of atomic oxygen into subsurfaces of Pt (100) and Pt (111): Density functional theory study, The Journal of Physical Chemistry C, 111 (2007) 9877-9883.
[44] K. Ma, X. Chang, Z. Wang, R. Deng, X. Wu, H. Yang, Tunable d-band center of a NiFeMo alloy with enlarged lattice strain enhancing the intrinsic catalytic activity for overall water-splitting, Nanoscale, 15 (2023) 5843-5854.
[45] T.P. Yadav, A. Kumar, S.K. Verma, N.K. Mukhopadhyay, High-entropy alloys for solid hydrogen storage: potentials and prospects, Transactions of the Indian National Academy of Engineering, 7 (2022) 147-156.
[46] B. Cantor, Multicomponent and high entropy alloys, Entropy, 16 (2014) 4749-4768.
[47] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375 (2004) 213-218.
[48] J.-W. Yeh, Overview of high-entropy alloys, High-entropy alloys: fundamentals and applications, (2016) 1-19.
[49] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials, 6 (2004) 299-303.
[50] M.-H. Tsai, J.-W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123.
[51] F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Materialia, 61 (2013) 2628-2638.
[52] Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Materialia, 65 (2014) 85-97.
[53] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom, 65 (2013) 1759-1771.
[54] J.-W. Yeh, Physical metallurgy of high-entropy alloys, Jom, 67 (2015) 2254-2261.
[55] W.-L. Hsu, C.-W. Tsai, A.-C. Yeh, J.-W. Yeh, Clarifying the four core effects of high-entropy materials, Nature Reviews Chemistry, (2024) 1-15.
[56] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat, 31 (2006) 633-648.
[57] R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, Surface facet of palladium nanocrystals: a key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment, Journal of the American Chemical Society, 135 (2013) 3200-3207.
[58] Y. Chida, T. Tomimori, T. Ebata, N. Taguchi, T. Ioroi, K. Hayashi, N. Todoroki, T. Wadayama, Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces, Nature Communications, 14 (2023) 4492.
[59] C. Zhang, Y. Wu, L. You, W. Qiu, Y. Zhang, Y. Yuan, Z. Lu, X. Song, Nanoscale phase separation of TiZrNbTa high entropy alloy induced by hydrogen absorption, Scripta Materialia, 178 (2020) 503-507.
[60] W.A. Saidi, W. Shadid, G.t. Veser, Optimization of high-entropy alloy catalyst for ammonia decomposition and ammonia synthesis, The Journal of Physical Chemistry Letters, 12 (2021) 5185-5192.
[61] G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang, X. Zheng, X. Bi, High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction, Electrochimica Acta, 279 (2018) 19-23.
[62] J.-W. Yeh, S.-J. Lin, Breakthrough applications of high-entropy materials, Journal of Materials Research, 33 (2018) 3129-3137.
[63] S. McArdle, S. Endo, A. Aspuru-Guzik, S.C. Benjamin, X. Yuan, Quantum computational chemistry, Reviews of Modern Physics, 92 (2020) 015003.
[64] F. Jensen, Introduction to computational chemistry, John wiley & sons2017.
[65] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical review, 136 (1964) B864.
[66] P. Makkar, N.N. Ghosh, A review on the use of DFT for the prediction of the properties of nanomaterials, RSC advances, 11 (2021) 27897-27924.
[67] J.M. Seminario, Recent developments and applications of modern density functional theory, (1996).
[68] E.S. Kryachko, E.V. Ludena, Density functional theory: Foundations reviewed, Physics Reports, 544 (2014) 123-239.
[69] E.H. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in mathematics, 23 (1977) 22-116.
[70] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical review, 140 (1965) A1133.
[71] J.W. Negele, Structure of finite nuclei in the local-density approximation, Physical review C, 1 (1970) 1260.
[72] M. Lewin, E.H. Lieb, R. Seiringer, The local density approximation in density functional theory, Pure and Applied Analysis, 2 (2019) 35-73.
[73] F.H. Clarke, Generalized gradients and applications, Transactions of the American Mathematical Society, 205 (1975) 247-262.
[74] W. Kohn, A.D. Becke, R.G. Parr, Density functional theory of electronic structure, The journal of physical chemistry, 100 (1996) 12974-12980.
[75] P. Ziesche, S. Kurth, J.P. Perdew, Density functionals from LDA to GGA, Computational materials science, 11 (1998) 122-127.
[76] V. Heine, The pseudopotential concept, Solid state physics, 24 (1970) 1-36.
[77] B.J. Austin, V. Heine, L.J. Sham, General theory of pseudopotentials, Physical Review, 127 (1962) 276.
[78] H. Jones, Applications of the Bloch theory to the study of alloys and of the properties of bismuth, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 147 (1934) 396-417.
[79] C.H. Wilcox, Theory of Bloch waves, J. Anal. Math, 33 (1978) 146-167.
[80] G. Makov, M.C. Payne, Periodic boundary conditions in ab initio calculations, Physical Review B, 51 (1995) 4014.
[81] J. Hafner, Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond, Journal of computational chemistry, 29 (2008) 2044-2078.
[82] G. Sun, J. Kürti, P. Rajczy, M. Kertesz, J. Hafner, G. Kresse, Performance of the Vienna ab initio simulation package (VASP) in chemical applications, Journal of Molecular Structure: THEOCHEM, 624 (2003) 37-45.
[83] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie - Crystalline Materials, 220 (2005) 567-570.
[84] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters, 77 (1996) 3865.
[85] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical review b, 59 (1999) 1758.
[86] H.-Y.T. Chen, J.-P. Chou, C.-Y. Lin, C.-W. Hu, Y.-T. Yang, T.-Y. Chen, Heterogeneous Cu–Pd binary interface boosts stability and mass activity of atomic Pt clusters in the oxygen reduction reaction, Nanoscale, 9 (2017) 7207-7216.
[87] Y. Zhuang, J.-P. Chou, P.-Y. Liu, T.-Y. Chen, J.-j. Kai, A. Hu, H.-Y.T. Chen, Pt 3 clusters-decorated Co@ Pd and Ni@ Pd model core–shell catalyst design for the oxygen reduction reaction: a DFT study, Journal of Materials Chemistry A, 6 (2018) 23326-23335.
[88] M.M. Montemore, M.A. Van Spronsen, R.J. Madix, C.M. Friend, O2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts, Chemical reviews, 118 (2017) 2816-2862.
[89] H. Jónsson, G. Mills, K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, Classical and quantum dynamics in condensed phase simulations, World Scientific1998, pp. 385-404.
[90] D. Sheppard, P. Xiao, W. Chemelewski, D.D. Johnson, G. Henkelman, A generalized solid-state nudged elastic band method, The Journal of chemical physics, 136 (2012).
[91] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of chemical physics, 113 (2000) 9901-9904.
[92] R.F. Bader, P.J. MacDougall, Toward a theory of chemical reactivity based on the charge density, Journal of the American Chemical Society, 107 (1985) 6788-6795.
[93] C. Fonseca Guerra, J.W. Handgraaf, E.J. Baerends, F.M. Bickelhaupt, Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis, Journal of computational chemistry, 25 (2004) 189-210.
[94] A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, Efficient stochastic generation of special quasirandom structures, Calphad, 42 (2013) 13-18.
[95] A. van de Walle, Methods for first-principles alloy thermodynamics, Jom, 65 (2013) 1523-1532.
[96] M.-Y. Chen, N.T.T. Tran, W.-D. Hsu, Mitigating oxygen reduction reaction barriers: An in-depth first-principles exploration of high-entropy alloy as catalysts, Electrochemistry Communications, 166 (2024) 107782.
[97] S.K. Ignatov, A.G. Razuvaev, A.S. Loginova, A.m.E. Masunov, Global structure optimization of Pt clusters based on the modified empirical potentials, calibrated using density functional theory, The Journal of Physical Chemistry C, 123 (2019) 29024-29036.
[98] Z. Han, N. Chen, S. Zhao, L. Fan, G. Yang, Y. Shao, K. Yao, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics, 84 (2017) 153-157.
[99] U. Dahlborg, J. Cornide, M. Calvo-Dahlborg, T. Hansen, A. Fitch, Z. Leong, S. Chambreland, R. Goodall, Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques, Journal of Alloys and Compounds, 681 (2016) 330-341.
[100] A. Christensen, A. Ruban, P. Stoltze, K.W. Jacobsen, H.L. Skriver, J.K. Nørskov, F. Besenbacher, Phase diagrams for surface alloys, Physical Review B, 56 (1997) 5822.
[101] M.-Y. Chen, N.T.T. Tran, A.A. Alao, W.-D. Hsu, Enhancing oxygen reduction reaction with Pt-decorated Cu@ Pd and high-entropy alloy catalysts: Insights from first-principles analysis of Pt arrangement, Applied Catalysis A: General, 669 (2024) 119491.
[102] S. Bhattacharjee, U.V. Waghmare, S.-C. Lee, An improved d-band model of the catalytic activity of magnetic transition metal surfaces, Scientific reports, 6 (2016) 35916.
[103] M. Blanco-Rey, S. Jenkins, Surface stress in d-band metal surfaces, Journal of Physics: Condensed Matter, 22 (2010) 135007.
[104] L. Pauling, The nature ofthe chemical bond, Cornell University Press, Ithaca, NY, 6 (1960).
[105] J. Greeley, J.K. Nørskov, A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys, Surface science, 592 (2005) 104-111.