研究生: |
吳家興 Wu, Jia-Xing |
---|---|
論文名稱: |
硫醇單分子層修飾蕭特基式氮氧化物感測器之研製 Fabrication of Thiol Monolayer Functionalized Schottky-type NOx Sensors |
指導教授: |
陳慧英
Chen, Huey-Ing |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 自組裝單分子層 、雙硫醇 、蕭特基二極體 、氣體感測器 、氮氧化物 |
外文關鍵詞: | Self-assembled monolayers, Dithiol, Schottky diode, Gas sensors, Nitrogen oxides |
相關次數: | 點閱:80 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以雙硫醇單分子層修飾金/磷化銦鎵(Au/InGaP)蕭特基二極體作為氮氧化物(NOX)之氣體感測器。實驗中,首先製作金/磷化銦鎵蕭特基二極體,再以含浸法將雙硫醇單分子層(簡稱SAM)修飾於金膜表面,並以此元件進行氮氧化物感測特性之探討。
文中改變雙硫醇碳數及含浸時間來選擇最適之SAM製備條件;另外,改變NOx濃度、溫度及氣體種類等操作變因來探討元件對NOx感測特性,如:靈敏度、選擇性、響應及回復速率等性質之影響。為測定雙硫醇分子在金膜上之吸附量,以循環伏安法來加以分析。
由實驗結果可知,當雙硫醇之碳數3~10間時,雙硫醇分子在金膜上之吸附量亦增加,故元件對NOx感測靈敏度亦隨之增加;但當碳數大於10時,雙硫醇在金膜上之吸附量反而減少,導致元件對NOx之感測靈敏度亦隨之下降。換言之,癸二硫醇(碳數10)為最佳之修飾劑。另外,由含浸時間探討顯示,當含浸時間增加時,SAM量增加,所得元件之感測靈敏度亦隨之增加,當含浸時間為60小時,元件呈現最佳之感測特性,在30℃,100 ppm下,元件對NO2之感測靈敏度為19.9,響應時間為10.7s,回復時間為27.0s;NO之感測靈敏度為8.7,響應時間為16.9s,回復時間為43.1s。
以癸二硫醇修飾Au/InGaP元件進行操作變因之探討時,發現元件對NOx之感測靈敏度隨濃度增加而增大,但隨溫度之升高而降低,即在30℃為最佳之感測溫度。以乙醇、二氧化碳、一氧化碳、甲醇、甲醛、氫氣、氨氣等氣體來進行選擇性之探討,發現元件對一氧化碳、甲醇、甲醛、氫氣、氨氣無響應,而對乙醇、二氧化碳呈現極佳之選擇性。進一步以吸附動力模式來描述元件對NOx之感測行為。結果發現暫態感測動力符合一階吸附模式,且在穩態下,感測靈敏度與濃度之關係符合Langmuir模式。
In this work, we devoted to fabricate the NOx sensor based on Au/InGaP Schottky diode. In order to enhance NOx selectivity and sensing response, self-assembled monolayer (SAM) – dithiol was used for modifying the Schottky contact because of its self-assembled property and particular functional group. The effect of SAM immersion time (t=1,6,12,24,36,48,60h) and carbon number of SAM (n=3,6,9,10,11,16) has been comprehensively discussed in our research. In addition, the selectivity and sensing performance of dithiol modified Au/InGaP Schottky diode in different temperature and NOx concentration has been researched. With a view to fabricating the best NOx sensing performance Schottky diode, cyclic voltammetry is applied to simulate the thiol monolayer self-assembled on Au surface and its amount is also further calculated by reduction peak current analysis. At the end of this study, the first order kinetic and thermodynamic model has been fitting successfully with NOx sensing results.
[1] A. W. Brewer, C. T. Mcelroy, and J. B. Kerr, “Nitrogen dioxide concentrations in atmosphere”, Nature, 246, 129-133, 1973.
[2] R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino, “Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges.”, Information Fusion, 35, 68-80, 2017.
[3] M. J. Tierney, and H. O. L. Kim, “Electrochemical gas sensor with extremely fast times”, Analytical Chemistry, 65, 3435-3440, 1993.
[4] P. T. Moseley, “Solid state gas sensors”, Measurement Science and Technology, 8, 223-237, 1997.
[5] N. Miura, M. Nakatou, and S. Zhuiykov, “Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature”, Sensors and Actuators B: Chemical, 93, 221-228, 2003.
[6] G. Korotcenkov, “Metal oxides for solid-state gas sensors: What determines our choice?”, Materials Science and Engineering: B, 139, 1-23, 2007.
[7] E. B. Lee, I. S. Hwang, J. H. Cha, H. J. Lee, W. B. Lee, J. J. Pak, J. H. Lee, and B. K. Ju, “Micromachined catalytic combustible hydrogen gas sensor”, Sensors and Actuators B: Chemical, 153, 392-397, 2011.
[8] J. Hodgkinson, and R. P. Tatam, “Optical gas sensing: a review” Measurement Science and Technology, 24, 012004, 2013.
[9] T. H. Tsai, H. I. Chen, K. W. Lin, T. Y. Chen, C. C. Huang, K. S. Hsu, and W. C. Liu, “A hydrogen sensor based on a metamorphic high electron mobility transistor (MHEMT)”, Microelectronics Reliability, 50, 734-737, 2010.
[10] P. Feng, F. Shao, Y. Shi, and Q. Wan, “Gas sensors based on semiconducting nanowire field-effect transistors”, Sensors (Basel), 14, 17406-17429,2014.
[11] N. Singh, R. K. Gupta, and P. S. Lee, “Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response”, ACS Applied Materials and Interfaces, 3, 2246-2252, 2011.
[12] A. Dey, “Semiconductor metal oxide gas sensors: A review”, Materials Science and Engineering: B, 229, 206-217, 2018.
[13] E. H. Rhoderick, “The physics of Schottky barriers”, Journal of Physics D: Applied Physics, 3, 81-95, 1970.
[14] 施敏, 李明逵 著, 曾俊元 譯, “半導體元件物理與製作技術”, 交通大學出版社, 317-329, 2015.
[15] J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres”, Sensors and Actuators B: Chemical, 123, 1040-1048, 2007.
[16] I. Langmuir, “The constitution and fundamental properties of solids and liquids. Part II. Liquids”, Journal of the American Chemical Society, 38, 2221-2295, 1916.
[17] J. Sagiv, “Organized monolayers by adsorption, I . Formation and structure of oleophobic mixed monolayers on solid surfaces”, Journal of the American Chemical Society, 102, 92-98, 1978.
[18] L. C. F. Blackman, M. J. S. Dewar, and H. Hampson, “An investigation of compounds promoting the dropwise condensation of steam”, Journal of Applied Chemistry, 7, 160-171, 1957.
[19] C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce, “Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers”, Journal of the American Chemical Society, 112, 4301-4306, 1989.
[20] H. Hakkinen, “The gold-sulfur interface at the nanoscale”, Nature Chemistry, 4, 443-455, 2012.
[21] W. P. Fitts, and J. M. White, “Low-coverage decanethiolate structure on Au(111):substrate effects”, 18, 1561-1566, 2002.
[22] T. Y. B. Leung, M. C. Gerstenberg, D. J. Lavrich, and G. Scoles, “1,6-Hexanedithiol monolayers on Au(111)”, Langmuir, 16, 549-561, 2000.
[23] F. P. Cometto, G. Ruano, H. Ascolani, and G. Zampieri, “Adlayers of alkanedithiols on Au(111): effect of disulfide reducing agent” Langmuir, 29, 1400-1406, 2013.
[24] H. B. Akkerman, A. J. Kronemeijer, P. A. van Hal, D. M. de Leeuw, P. W. Blom, and B. de Boer, “Self-assembled-monolayer formation of long alkanedithiols in molecular junctions”, Small, 4, 100-104, 2008.
[25] 林秉頡, “自組裝烷基雙硫醇修飾金/砷化鎵蕭特基二極體式氮氧化物感測器之研究”, 成功大學化學工程學系碩士論文, 2010.
[26] T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, “Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films”, Applied Physics Letters, 86, 203104, 2005.
[27] X. Xia, S. Guo, W. Zhao, P. Xu, H. Yu, T. Xu, and X. Li, “Carboxyl functionalized gold nanoparticles in situ grown on reduced graphene oxide for micro-gravimetric ammonia sensing”, Sensors and Actuators B: Chemical, 202, 846-853, 2014.
[28] M. W. Hoffmann, L. Mayrhofer, O. Casals, L. Caccamo, F. Hernandez-Ramirez, G. Lilienkamp, W. Daum, M. Moseler, A. Waag, H. Shen, and J. D. Prades, “A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes”, Advanced Materials, 26, 8017-8022, 2014.
[29] A. M. Andringa, M. J. Spijkman, E. C. P. Smits, S. G. J. Mathijssen, P. A. v. Hal, S. Setayesh, N. P. Willard, O. V. Borshchev, S. A. Ponomarenko, P. W. M. Blom, and D. M. de Leeuw, “Gas sensing with self-assembled monolayer field-effect transistors”, Organic Electronics, 11, 895-898, 2010.
[30] Y. Chang, N. Tang, H. Qu, J. Liu, D. Zhang, H. Zhang, W. Pang, and X. Duan, “Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints”, Scientific Report, 6, 23970, 2016.
[31] F. M. Boldt, N. Baltes, K. Borgwarth, and J. Heinze, “Investigation of carboxylic-functionalized and n-alkanethiol self-assembled monolayers on gold and their application as pH-sensitive probes using scanning electrochemical microscopy”, Surface Science, 597, 51-64, 2005.
[32] T. Hu, Y. Zhang, T. C. Chilcott, and H. G. L. Coster, “Investigation of carboxylic-functionalized self-assembled monolayers on silicon and gold and their application as pH-sensitive probes using electrical impedance spectroscopy”, 4th Kuala Lumpur International Conference on Biomedical Engineering, 86-90, 2008.
[33] D. Liu, W. Qu, W. Chen, W. Zhang, Z. Wang, and X. Jiang, “Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at Rrom temperature”, Letters to Analytical Chemistry, 82, 9606-9610, 2010.
[34] Y. Chen, X. M. Liu, X. Wu, X. C. Liu, W. H. Dong, B. K. Han, X. Du, C. Zhang, Y. Y. Zhang, H. T. Wang, and Q. Chen, “An array of poly- l -histidine functionalized multi-walled carbon nanotubes on 4-aminothiophenol self-assembled monolayer and the application for sensitively glucose sensing”, Electrochimica Acta, 258, 988-997, 2017.
[35] Z. Li, K. Munro, I. I. Ebralize, M. R. Narouz, J. D. Padmos, H. Hao, C. M. Crudden, and J. H. Horton, “N-Heterocyclic Carbene Self-Assembled Monolayers on Gold as Surface Plasmon Resonance Biosensors”, Langmuir, 33, 13936-13944, 2017.
[36] M. Ben Haddada, M. Salmain, and S. Boujday, “Gold colloid-nanostructured surfaces for enhanced piezoelectric immunosensing of staphylococcal enterotoxin A”, Sensors and Actuators B: Chemical, 255, 1604-1613, 2018.
[37] S. Y. Yeung, A. Mucha, R. Deshmukh, M. Boutrus, T. Arnebrant, and B. Sellergren, “Reversible Self-Assembled Monolayers (rSAMs): Adaptable Surfaces for Enhanced Multivalent Interactions and Ultrasensitive Virus Detection”, ACS Central Science, 3, 1198-1207, 2017.
[38] N. F. Atta, A. Galal, and E. H. El-Ads, “A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate”, Analyst, 137, 2658-2668, 2012.
[39] F. P. Cometto, C. A. Calderón, E. M. Euti, D. K. Jacquelín, M. A. Pérez, E. M. Patrito, and V. A. Macagno, “Electrochemical study of adlayers of α,ω-alkanedithiols on Au(111): Influence of the forming solution, chain length and treatment with mild reducing agents”, Journal of Electroanalytical Chemistry, 661, 90-99, 2011.
[40] 周彥伊, “鈀/磷化銦蕭特基二極體氫氣感測器之製備、特性分析及感測研究”, 成功大學化學工程學系碩士論文, 2005.
[41] V. L. Rideout, “A review of the theory, technology and applications of metal-semiconductor rectifiers”, Thin Solid Films, 48, 261-291, 1978.
[42] 游赫威, “蕭特基式氮氧化物感測器之製備研究”, 成功大學化學工程學系, 2012.
[43] A. Kunimoto, N. Abe, H. Uchida, and T. Katsube, “Highly sensitive semiconductor NOx gas sensor operating at room temperature”, Sensors and Actuators B: Chemical, 65, 122-124, 2000.
[44] L. Chandra, P. K. Sahu, R. Dwivedi, and V. N. Mishra, “Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature”, Materials Research Express, 4, 125017, 2017.
[45] C. Varenne, J. Brunet, A. Pauly, and B. Lauron, “Influence of electrical characteristics on the sensitivity of p-InP-based pseudo-Schottky diodes for NO2 monitoring in atmosphere”, Sensors and Actuators B: Chemical, 134, 597-603, 2008.
[46] P. C. Chou, H. I. Chen, I. P. Liu, C. C. Chen, J. K. Liou, C. J. Lai, and W. C. Liu, “Nitrogen Oxide (NO2) Gas Sensing Performance of ZnO Nanoparticles (NPs)/Sapphire-Based Sensors”, IEEE Sensors Journal, 15, 3759-3763, 2015.
[47] Z. Wang, L. Huang, X. Zhu, X. Zhou, and L. Chi, “An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films”, Advanced Material, 29,1703192, 2017.
[48] M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, “On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity”, Sensors and Actuators B: Chemical, 138, 168-173, 2009.
[49] M. W. G. Hoffmann, J. D. Prades, L. Mayrhofer, F. Hernandez-Ramirez, T. T. Järvi, M. Moseler, A. Waag, and H. Shen, “Highly Selective SAM-Nanowire Hybrid NO2 Sensor: Insight into Charge Transfer Dynamics and Alignment of Frontier Molecular Orbitals”, Advanced Functional Materials, 24, 595-602, 2014.
[50] M. A. Millone, H. Hamoudi, L. Rodriguez, A. Rubert, G. A. Benitez, M. E. Vela, R. C. Salvarezza, J. E. Gayone, E. A. Sanchez, O. Grizzi, C. Dablemont, and V. A. Esaulov, “Self-assembly of alkanedithiols on Au(111) from solution: effect of chain length and self-assembly conditions”, Langmuir, 25, 12945-12953, 2009.
[51] X. Zhuang, W. Huang, S. Han, Y. Jiang, H. Zheng, and J. Yu, “Interfacial modifying layer-driven high-performance organic thin-film transistors and their nitrogen dioxide gas sensors”, Organic Electronics, 49, 334-339, 2017.
[52] N. S. Harale, D. S. Dalavi, S. S. Mali, N. L. Tarwal, S. A. Vanalakar, V. K. Rao, C. K. Hong, J. H. Kim, and P. S. Patil, “Single-step hydrothermally grown nanosheet-assembled tungsten oxide thin films for sensitive and selective NO2 gas detection”, Journal of Materials Science, 53, 6094-6105, 2018.
[53] W. Du, N. Wu, Z. Wang, J. Liu, D. Xu, and W. Liu, “High response and selectivity of platinum modified tin oxide porous spheres for nitrogen dioxide gas sensing at low temperature”, Sensors and Actuators B: Chemical, 257, 427-435, 2018.
[54] Y. Zhao, M. Ikram, J. Zhang, K. Kan, H. Wu, W. Song, L. Li, and K. Shi, “Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions”, Applied Surface Science, 428, 415-421, 2018.
[55] C. A. Widrig, C. Chung and M. D. Porter, “The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes”, Journal of Electroanalytical Chemistry, 310, 335-359, 1991.