簡易檢索 / 詳目顯示

研究生: 鍾喬斌
Chung, Chiao-Pin
論文名稱: 鍶鋇鈮之燒結機構及晶粒成長之理論探討
Sintering Mechanism and Grain Growth of Strontium Barium Niobate
指導教授: 方滄澤
Fang, Tsang-Tse
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 138
中文關鍵詞: 鍶鋇鈮燒結機構晶粒成長理論
外文關鍵詞: Strontium Barium Niobate, Sintering Mechanism, Grain Growth Theory
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鍶鋇鈮陶瓷是一種很好的透光材料,已可應用於工業上。雖然鍶鋇鈮單晶的性質已廣泛被研究,因受形狀大小、機械強度及價格的限制,並無法實際應用。因此開發鍶鋇鈮多晶陶瓷,仍必然趨勢。
    利用Rietveld method分析法深入探討不同Cr2O3添加量對SBN晶體結構的影響。拉曼光譜的譜線提供了SBN晶體中NbO6八面體的振動情形,以及極化行為。不連續晶粒成長發生在Cr2O3添加量少於2mol%,藉由STEM-HAADF偵測器可以發現少量析出在晶界上的Cr2O3,晶粒成長就此被抑制了。SBN晶體於不同持溫時間在掃描式電子顯微鏡下探究晶粒成長動力學。

     Strontium barium niobate ( SBN ) ceramic is a good electro-optic material and has been widely used. Though the properties of the single crystal, SBN, has been intensively studied, there are still some restrictions in their applications because of the small size, low mechanical strength, and high cost. Hence, it has been intrigued to strontium barium niobate ceramic.

    Using the Rietveld method to analyze the detailed crystal structure doping with different amount of Cr2O3. Raman spectrum provides the vibrational condition of the NbO6 octahedral and polarization behavior. Discontinuous grain growth occurs when the amount of Cr2O3 is less than 2mol%. We can observe little segregations at the grain boundary by STEM-HAADF detector system, grain growth was inhibited by these segregations. To research the grain growth kinetics of SBN crystals in different holding time, we use the SEM to do it.

    中文摘要.................................................Ⅰ Abstract.................................................Ⅱ 誌謝.....................................................Ⅲ 目錄.....................................................Ⅳ 表目錄...................................................Ⅶ 圖目錄...................................................Ⅸ 符號...................................................ⅩⅨ 第一章 緒論.............................................1 1.1 前言.............................................1 1.2 本研究之重點及目的...............................2 第二章 文獻回顧與理論基礎...............................3 2.1 SBN結構與性質.....................................3 2.1.1 SBN結構......................................3 2.1.2 SBN性質.....................................10 2.1.3 鍶鋇鈮陶瓷介電特性..........................15 2.1.4 鐵電特性....................................20 2.1.5 擴散性相變(DPT).............................23 2.2 陶瓷製程與燒結...................................26 2.2.1 粉末顆粒大小對於生胚結構的影響..............26 2.2.2 燒結........................................31 2.2.3 固態反應機構................................39 2.2.4 晶粒成長....................................43 2.3 拉曼光譜.........................................44 2.3.1 拉曼原理....................................44 2.3.2 SBN in Raman spectrum.......................51 2.4 Rietveld analysis method.........................60 第三章 實驗方法及步驟..................................64 3.1 實驗藥品........................................64 3.2 樣品準備........................................64 3.3 性質測量........................................66 3.3.1 X光繞射分析....................................66 3.3.2 拉曼光譜分析...................................67 3.3.3 TEM微結構分析..................................68 第四章 結果與討論......................................70 4.1 Rietveld analysis method........................70 4.1.1 NbO6八面體對a、c軸的貢獻......................70 4.1.2 SBN晶體中各原子佔有率.........................71 4.1.3 NbO6八面體與SBN晶體結構關係...................81 4.2 Dielectric properties...........................85 4.2.1 Fitting to the Curie-Weiss law................85 4.2.2 Fitting the modified Curie-Weiss law..........89 4.2.3 Vogel-Fulcher relationship....................90 4.3 Raman spectrum.................................111 4.4 Grain growth...................................122 4.5 STEM microstructure analysis...................129 第五章 結論...........................................132 第六章 參考文獻.........................................133 自述....................................................138 表目錄 表2-1 不同組成的鍶鋇鈮陶瓷之晶格常數與密度表..............9 表2-2 鍶鋇鈮單晶之鐵電及光學特性.........................14 表2-4 空間群P4bm在Γ點之可簡化表示法......................52 表4-1 S50的介電最大值(εm),介電值最大之溫度(Tm), Curie-Weiss temperature(To),Curie-Weiss constant(C), 開始偏移之溫度(Tcw),critical parameter(γ) 於不同頻 率下表4-2 0.5CrS50的介電最大值(εm),介電值最大之溫 度(Tm),Curie-Weiss temperature(To),Curie-Weiss constant(C),開始偏移之溫度(Tcw),critical parameter(γ) 於不同頻率下.........................103 表4-2 0.5CrS50的介電最大值(εm),介電值最大之溫度(Tm), Curie-Weiss temperature(To),Curie-Weiss constant(C), 開始偏移之溫度(Tcw),critical parameter(γ) 於不同頻 率下...............................................104 表4-3 1CrS50的介電最大值(εm),介電值最大之溫度(Tm), Curie-Weiss temperature(To),Curie-Weiss constant(C), 開始偏移之溫度(Tcw),critical parameter(γ) 於不同頻 率下...............................................105 表4-4 2CrS50的介電最大值(εm),介電值最大之溫度(Tm), Curie-Weiss temperature(To),Curie-Weiss constant(C), 開始偏移之溫度(Tcw),critical parameter(γ) 於不同頻 率下...............................................106 表4-5 3CrS50的介電最大值(εm),介電值最大之溫度(Tm), Curie-Weiss temperature(To),Curie-Weiss constant(C), 開始偏移之溫度(Tcw),critical parameter(γ) 於不同頻 率下...............................................107 表4-6 4CrS50的介電最大值(εm),介電值最大之溫度(Tm), Curie-Weiss temperature(To),Curie-Weiss constant(C), 開始偏移之溫度(Tcw),critical parameter(γ) 於不同頻 率下...............................................108 表4-7 2Cr,3Cr,4Cr之Vogel-Fulcher relation參數整理......110 表4-8 各成分SBN經解析後的拉曼光譜資訊....................118 表4-9 S50、0.5Cr、2Cr、3Cr之C value......................128 圖目錄 圖2-1 SBN在(001)的投影平面圖.................................4 圖2-2 鍶鋇鈮之鎢青銅結構中,各離子之配位結構.................6 圖2-3 不同組成的鍶鋇鈮(Sr1-xBaxNb2O6)相圖....................8 圖2-4 鍶鋇鈮結構中,各離子偏移及極化方向圖..................11 圖2-5 不同組成的鍶鋇鈮單晶在頻率1kHz,介電常數與溫度關係圖.. ............................................................12 圖2-6 以熱壓法製造SBN50(Sr0.5Ba0.5Nb2O6)陶瓷的顯微結構......16 圖2-7不同組成之SBN陶瓷在1kHz下,介電常數(k’)隨溫度的變化..........................................................19 圖2-8 磁滯曲線..............................................22 圖2-9 單一尺寸球型粒子之單層堆積,顯示會有一些缺陷存在......28 圖2-10 當壓力存在時,孔隙由平衡轉成似裂縫之示意圖...........30 圖2-11 燒結初期各種物質的傳輸路徑...........................32 圖2-12 (a) 顆粒之間互相接觸 (b) 最初燒結階段(c) 中期燒結階 段 (d) 後期燒結階段.................................34 圖2-13 具有相同體積及兩面角但不同配位數(A) n>nc,(B) n<nc 之孔隙率,顯示在相同孔隙體積時,包圍在孔隙四的晶粒愈 大 則其配位數愈小...................................35 圖2-14 未消失就被晶粒吞噬之孔隙............................37 圖2-15 三種不同之光散射圖譜................................45 圖2-16 一分子的能階........................................47 圖2-17 正常與共振拉曼散射機構..............................50 圖2-18 八面體分子(XY6)之正常振動模式.......................55 圖2-19 外振動模式訊號峰,約於70cm-1 ~ 150 cm-1之間........56 圖2-20 [NbO6]-7外在振動模式示意圖..........................58 圖2-21 經軟體解析之鍶鋇鈮(SrxBa1-xNb2O6)拉曼譜線...........59 圖2-22 校正後的Rietveld擬合曲線...........................61 圖3-1. 實驗流程圖.........................................65 圖3-2 拉曼光譜儀裝置圖.....................................67 圖3-3 (A)~(H) 為FIB切TEM試片步驟圖.........................69 圖4-1 S50的Rietveld method分析結果........................73 圖4-2 0.5CrS50的Rietveld method分析結果...................74 圖4-3 1CrS50的Rietveld method分析結果.....................75 圖4-4 2CrS50的Rietveld method分析結果.....................76 圖4-5 3CrS50的Rietveld method分析結果.....................77 圖4-6 4CrS50的Rietveld method分析結果.....................78 圖4-7 NbO6八面體中(110)平面及[001]方向上,Nb-O平均鍵長與Cr 添加量關係圖........................................79 圖4-8 SBN單位晶胞中,氧空缺分佈情形.......................80 圖4-9 理想模型計算與實驗所得之ap值比較圖..................83 圖4-10 理想模型計算與實驗所得之cp值比較...................83 圖4-11 Nb(1)、Nb(2)八面體及理想模型計算之平均鍵長比較圖...84 圖4-12 Nb(1)、Nb(2)、所有八面體tetragonality及SBN晶體於 理想模型計算之tetragonality比較圖..................84 圖4-13 S50於不同頻率下介電對溫度圖........................86 圖4-14 0.5CrS50於不同頻率下介電對溫度圖...................86 圖4-15 1CrS50於不同頻率下介電對溫度圖.....................87 圖4-16 2CrS50於不同頻率下介電對溫度圖.....................87 圖4-17 3CrS50於不同頻率下介電對溫度圖.....................88 圖4-18 4CrS50於不同頻率下介電對溫度圖.....................88 圖4-19 S50各頻率介電溫度圖做Curie-Weiss fitting...........91 圖4-20 0.5CrS50各頻率介電溫度圖做Curie-Weiss fitting......92 圖4-21 1CrS50各頻率介電溫度圖做Curie-Weiss fitting........93 圖4-22 2CrS50各頻率介電溫度圖做Curie-Weiss fitting........94 圖4-23 3CrS50各頻率介電溫度圖做Curie-Weiss fitting........95 圖4-24 4CrS50各頻率介電溫度圖做Curie-Weiss fitting........96 圖4-25 S50各頻率介電溫度圖做modified Curie-Weiss fitting.. ...........................................................97 圖4-26 0.5CrS50各頻率介電溫度圖做modified Curie-Weiss fitting............................................98 圖4-27 1CrS50各頻率介電溫度圖做modified Curie-Weiss fitting...........................................99 圖4-28 2CrS50各頻率介電溫度圖做modified Curie-Weiss fitting..........................................100 圖4-29 3CrS50各頻率介電溫度圖做modified Curie-Weiss fitting..........................................101 圖4-30 4CrS50各頻率介電溫度圖做modified Curie-Weiss fitting..........................................102 圖4-31 2Cr,3Cr,4Cr之Vogel-Fulcher relation圖...........109 圖4-32 (A)S50,(B)0.5Cr,(C)1Cr,(D)2Cr,(E)3Cr,(F)4Cr 為 各成份之拉曼圖譜.................................114 圖4-33 (A)S50,(B)0.5Cr,(C)1Cr,(D)2Cr,(E)3Cr,(F)4Cr 為 各成份經解析之拉曼圖譜...........................117 圖4-34 在630cm-1訊號峰強度與Cr添加量關係圖...............119 圖4-35 在630cm-1訊號峰位置與Cr添加量關係圖...............120 圖4-36 在630cm-1訊號峰半高寬與Cr添加量關係圖.............121 圖4-37 S50於緻密度(A)92%、(B)93%、(C)94%、(D)95%時微結構圖 ..........................................................123 圖4-38 0.5Cr於緻密度(A)92%、(B)93%、(C)94%、(D)95%時微結構 圖................................................124 圖4-39 2Cr於緻密度(A)92%、(B)93%、(C)94%、(D)95%時微結構圖 ..........................................................125 圖4-40 3Cr於緻密度(A)92%、(B)93%、(C)94%、(D)95%時微結構圖 ..........................................................126 圖4-41 S50、0.5Cr、2Cr、3Cr於1300oC燒結之晶粒成長速率....127 圖4-42 3Cr的明像圖.......................................129 圖4-43 4Cr的明像圖.......................................130 圖4-44 4Cr之Z-contrast圖及點1,2的EDX成分析析............131

    第六章 參 考 文 獻

    1.P. B. Jamieson, S. S. Abrahams and J. L. Bernstein, "Ferroelectric Tungsten
     Bronze-Type Crystal Structure. I. Barium Strontium Niobate
     Ba0.27Sr0.75Nb2O5.78," J. Chem. Phys., 48, 5048 (1968).
    2.A. M. Glass, "Investigation of the Electrical Properties of Sr1-xBax Nb2O6
     with Specical Reference to Pyroelectric Detection," J. Appl. Phys., 40,
     4699-71 (1969).
    3.J. R. Carruther and M. Grasso "Phase Equilibria Relations in the Ternary
     System BaO-SrO-Nb2O5," J. Elcetrochem. Soc., 117, 1426(1970).
    4.A. A. Ballman and H. Brown, " The Growth and Property of Sr1-x Bax Nb2O6, A
     Tungsten Brownze Ferroelectric, " J. Cryst. Growth 1, 311 (1967).
    5.K. Sayano, A. Yariu, and R. R. Neurgaonkar, "Photorefractive gain and
     response time of Cr-doped strontium barium niobate"Appl. Lett., 55, 328  
     (1989).
    6.R. A. Vazguez, M. D. Ewbank, and R. R. Neurgaonkar, "Large photorefractive
     coupling coefficient in a thin cerium-doped strontium barium niobate crystal
     "Opt. Comm., 8[9], 253 (1991).
    7.R. A. Vazguez, F. R. Vachss, R. R. Neurgaonkar, "Photorefractive properties
     of SBN:60 systematically doped with rhodium"J. Opt. Soc. Am. B 9[8], 1932
     (1991).
    8.K. Nagata, Y. Yamamoto, H. Igarashi, and K. Okazaki, "Properties of the hot-
     pressed strontium barium niobate ceramics"Ferroelectrics 38, 853 (1981).
    9.S. I. Lee and W. K. Choo, "Modified ferroelectric high density strontium
     barium niobate ceramics for pyroelectric applications"Ferroelectrics 87,
     209 (1988).
    10.N. S. VanDamme, a. E. Sutherland, L. Jones, K. Bridger, and S. R.
     Winzer, "Fabrication of Optically Transparent and Electro-optic Strontium
     Barium Niobate Ceramics," J. Am. Ceram. Soc., 74[8] 1785 (1991).
    11.W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, in "Introduction to
     Ceramics," 2nd edition, John Wiley & Sons, New York, 1976 p.497.
    12.S. Hirano, T. Yogo, K. Kikuta, and K. Ogiso, "Preparation of Strontium
     Barium Niobate by Sol-Gel method," J. Am. Ceram. Soc., 75[6], 1797-1700
     (1992).
    13.L. E. Cross, Ferroelectrics "Relaxor ferroelectrics"76, 241 (1987).
    14.G. A. Smolensky and A. I. Agrenovuskaya, Sov. Phys. Solid State 1, 1429
     (1959).
    15.C. A. Randall and A. S. Bhalla, "Nanostructural-Property Relations in
     Complex Lead Perovskites"Jpn. J. Appl. Phys., 29[2], 327 (1990).
    16.L. Y. Cai, X. W. Zhang, and X. R. Wang, "Hrem study of ordered and
     disordered structures in Pb(Sc0.5Ta0.5)O3"Mater. Lett., 20, 169 (1994).
    17.R. Guo, A. S. Bhalla, C. A. Randall, and L. E. Cross,"Dielectric and
     pyroelectric properties of the morphotropic phase boundary lead barium
     niobate (PBN) single crystals at low temperature (10–300 K)" J. Appl.
     Phys. 67[10], 6405 (1990).
    18.G. Bruns and F. H. Dacol, Phys. Rev. B "Glassy polarization behavior in
     K2Sr4 (NbO3)10-type ferroelectrics"30[7], 4012 (1984).
    19.G. Bruns and F. H. Dacol, "Ferroelectrics with a glassy polarization phase
     "Ferroelectrics 104, 25 (1990).
    20.A. S. Bhalla, R. Guo, L. E. Cross, G. Burns, F. H. Dacol, and R. R.
     Neurgaonkar, "Glassy polarization in the ferroelectric tungsten bronze  
     (Ba,Sr)Nb2O6"J. Appl. Phys., 71[11], 5591 (1992).
    21.X. Xiao, Y. Xu, Z. Zeng, Z. Gui, L. Li, and X. Zhang, "Effect of A-site
     vacancy order-disorder states on diffuse phase transition of the
     morphotropic phase boundary Pb1–xBaxNb2O6 ferroelectrics"J. Mater. Res., 11
     [9], 2302 (1996).
    22.C. Herring, "Effect of Change of Scale on Sintering Phenomena" J. Appl.
     Phys., 21, 301 (1950).
    23.F. F. Lange, "Sinterability of Agglomerated Powders "J. Am. Ceram. Soc.,
     67, 83-89 (1984).
    24.F. F. Lange, "Sinterability of Agglomerated Powders "J. Am. Ceram. Soc.,
     67, 83-89 (1984).
    25.M. F. Yan, R. M. Cannon, U. Chowdhry, and H. K. Bowen, "Effect of grain
     size distribution on sintered density"Mater. Sci. Eng., 60, 275-80 (1983).
    26.W. H. Rhodes, "Agglomerate and particle size effects on sintering yttria-
     stablized zirconia"J. Am. Ceram. Soc., 64, 19-22 (1981).
    27.E. A. Barringer and H. K. Bowen,"Agglomerate and Particle Size Effects on
     SinteringYttria-Stabilized Zirconia " J. Am. Ceram. Soc., 65, C-119 (1982).
    28.E. A. Barringer, R. J. Brook, and H. K. Bowen, in "Materials Science   
     Research, Vol.16, Sintering and Heterogeneous Catalysis," Edited by G. C.
     Kuczynski, A. E. Miller, and G. A. Sargent, Plenum Press, New York, 1984
     pp.1-21.
    29.E. Liniger and R. Raj, J. Am. Ceram. Soc.,"Packing and Sintering of Two-
     Dimensional Structures Made fro Bimodal Particle Size Distributions " 70,
     843 (1987).
    30.A. G. Evans, J. Am. Ceram. Soc., "Considerations of Inhomogeneity Effects
     in Sintering "65, 497 (1982).
    31.R. Pampuch, Ceramic Materials an Introduction to Their Properties, Elsevier
     Scientific Publishing Company, New York, 1976 p.130-136.
    32.R. L. Coble, J. Appl. Phys., "Sintering Crystalline Solids. I.
     Intermediate and Final State Diffusion Models"32, 787 (1961)
    33.C. Greskovich and J. H. Rosolowski, "Sintering of covalent colids"J. Am.
     Ceram. Soc., 59, 336 (1976).
    34.D. W. Budworth, "Theory of pore closure during sintering"Trans, Brit.
     Ceram. Soc., 69, 29 (1970).
    35.F. F. Lange and B. I. Davis, in " Advances in Ceramics, Vol.12, Science and
     Technology of Zirconua II", Edited by N. Claussen, M. Ruhle, and A. H.
     Heuer, Am. Ceram. Soc. Columbus, OH, 1984, pp.699-713.
    36.J. Zhao. and M. P. Harmer, "Effect of Pore Distribution on Microstructure
     Development: II, First- and Second-Generation Pores "J. Am. Ceram. Soc.,
     71, 530 (1988).
    37.T. T. Fang and H. Palmour III, "Useful extension of the statistical theory
     of sintering"Ceram. Int., 15, 329 (1989).
    38.T. T. Fang and H. Palmour III, "Evolution of pore morphology in sintering
     powder compacts"Ceram. Int., 16, 1 (1990).
    39.T. T. Fang and H. Palmour III, "Non-destructive characterization of
     morphological developemnt in sintered powder compacts"Ceram. Int., 16, 63
     (1990).
    40.G. C. Kuczynski, pp. 325-37 in Sintering and Related Phenomena. Edited by
     G. C. Kuczynski, Mater. Sci. Res. Vol.10, Plenum Press, New York, 1975.
    41.G. C. Kuczynski, pp. 233-245, in Ceramic Microstructure 76, Edited by R. M.
     Fulrath and J. A. Pask, Westview Press, Boulder, Colorado, 1977.
    42.The Ph.D. Thesis of H. L. Hsieh, Unversity of Cheng Kung, Tainan, Taiwan,
     R.O.C.
    43.W. Jander, "Reaktionen im Festen Zustande bie Hoheren Temperaturen," Z.
     Anorg. Allg. Chem., (in Ger.), 163, 1-30 (1927).
    44.A. M. Gistling and B. I. Brounshtein, "Concerning the Diffudtion Kinetics
     of Reactions in Spherical Particles," J. Appl. Chem. USSR, 23, 1327 (1950).
    45.G. Valensi," Cinetique de I'Oxydation de Spherules et de Poudres
     Matallics ", C. R. Hebd. Seances Acad. Sci., (in Fr.), 203, 309 (1936).
    46.R. E. Carter,"Kinetic Model for solid-state reactions," J. Chem. Phys., 34,
     2010 (1961).
    47.P. C. Kapur, "Kinetics of solid-state reactions of particulate ensembles
     with size distributions," J. Am. Ceram. Soc., 56, 79 (1973).
    48.C. H. Bamford and C. F. H. Tipper(Eds.), Comprehensive Chemical Kinetics,
     Vol.22, Reactions in Solud State. Elsevier Scientific Publishing Company New
     York, 1980.
    49.W. Jander, "Reaktionen im festen zustande bie hoheren temperaturen," Z.
     Anorg. Allg. Chem., (in Ger.), 163, 1-30 (1927).
    50.A. M. Gistling and B. I. Brounshtein, "Concerning the diffudtion kinetics
     of reactions in spherical particles," J. Appl. Chem. USSR, 23, 1327 (1950).
    51.G. Valensi," Cinetique de I'Oxydation de Spherules et de Poudres
     Matallics ", C. R. Hebd. Seances Acad. Sci., (in Fr.), 203, 309 (1936).
    52.R. E. Carter, "Kinetic model for solid-state reactions," J. Chem. Phys.,
     34, 2010 (1961).
    53.R. J. Brook,"The impurity –drag effect and grain growth kinetics", Scr.
     Mettall., 2, 375, (1968)
    54.F. A. Nichols,"Theory of grain growth in porous compacts",J. Appl. Phys.,
     37, 4599, (1966)
    55.M. F. Yan, R. M. Cannon, H. K. Bowen, and U. Chowdhry,"Effect of grain
     size distribution on sintered density", Mater. Sci. Eng.., 60, 275, (1983)
    56.R. J. Brook,"Pore-grain boundary interaction and grain growth", J. Am.
     Ceram. Soc., 52, 56, (1969)
    57.Willis B. Person, G.Zerbi"Vibrational intensities in infrared and Raman
     spectroscopy "Elsevier, New York, (1982)
    58.T. R. Gilson, P. J. Hendra, "Laser Raman Spectroscopy", Wiley-
     interscience, London. (1970)
    59.George Turrell, "Infrared and Raman spectra of crystals"Academic, New
     York, (1972)
    60.H. J. Bowley, D. J. Gardiner, D. L. Gerrard, P.R. Graves, J.D. Louden, G,
     Turrell, "Practical Raman Spectroscopy "Springer-Verlag, Berlin, (1989)
    61.Kazuo Nakamoto,"Infrared and Raman Spectra of Inorganic and Coordination
     Compounds"3rd edition, Wiley-interscience, New York, (1978)
    62.G. Burns, J. D. Axe, D. F. O’kane,"Raman measurement of NaBa2Nb5O15 and
     related Ferroelectrics"Solid State Communications, 7,933, (1969)
    63.K. G. Barrlett, L. S. Wall, "Temperature study of the polarized Raman
     spectra of strontium barium niobate"J. Appl. Phy. 44, 11, (1973)
    64.Melianie M. T. Ho, C. L. Mark, K. H. Wong,"Raman Scattering and X-ray
     Diffraction Investigation of Sol-Gel Derived SBN Powder "J. Euro. Cera.
     Soc. 19, 1115, (1998)
    65.H. R. Xia, H. C. Chen, K. X. Wang, B. Y. Zhao,"Vibrational spectra of a
     K0.3Ba0.1Sr0.48Ba0.32Nb2O6 single crystal studied by Raman and Infrared
     reflectivity spectroscopy",Phys. Stat. Sol. (b), 210, 47, (1998)
    66.H. R. Xia, L. X. Li, H. Yu, X. L. Meng, L. Zhu, L. J. Hu,"Raman and
     Infrared spectra of Nd-doped Barium Sodium Niobate crystals"Cryst. Res.
     Technol., 34, 7, 901, (1999)
    67.I. G. Siny, S. G. Lushnikov, S. I. Siny, V. H. Schmidt,"Light scattering
     from(K0.5Na0.5)0.2(Sr0.75Ba0.25)0.9Nb2O6 with the tungsten bronze structure:
     An analogy with relaxor ferroelectrics"J. Appl. Phys., 1671, 89, 3, (2001)
    68.H. R. Xia, S. Q. Sun,"Lattice vibrations and phase-transition soft mode in
     near stoichiometric lithium niobate crystals"J. Appl. Phys., 98, 033513,
     (2005)
    69.The Ph.D. Thesis of S. P. Dai, Unversity of Cheng Kung, Tainan, Taiwan,
     R.O.C, 2003
    70.The Ph.D. Thesis of Calin A. David, University of Osnabrucker,
     Germany, .2004

    下載圖示 校內:2007-07-25公開
    校外:2007-07-25公開
    QR CODE