| 研究生: |
洪健雄 Hung, Chien-Hsiung |
|---|---|
| 論文名稱: |
非晶態氧化銦鎵鋅薄膜電晶體源/汲極優化結構與新穎通道/介電層材料之開發研究 The Development of Optimized Source/Drain Structures and Novel Channel/Dielectric Materials for Amorphous IGZO Thin-film Transistors |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 氧化銦鎵鋅 、薄膜電晶體 、接觸阻抗 、蕭基金半接觸 、共濺鍍沉積 、高介電常數 |
| 外文關鍵詞: | IGZO, thin-film transistor, contact resistance, Schottky contact, co-sputtering, high-k |
| 相關次數: | 點閱:124 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來針對以氧化物半導體作為通道材料的薄膜電晶體的研究已取得極大之進展,同時在商業化產品中也已出現以氧化銦鎵鋅薄膜電晶體作為主動式陣列之面板。預期在未來的面板產業整合於透明面板之邏輯系統的開發上,氧化物半導體,尤其以非晶態氧化銦鎵鋅為主的通道薄膜,因載子移動率較非晶矽為高、可允許低溫製程、適合應用於大面積及軟性電子應用,將扮演舉足輕重的角色。
為改善氧化物半導體薄膜電晶體的電性效能,包含降低操作電壓、提升載子遷移率、抑制元件漏電流、提升閘極操作能力以及拓展氧化物半導體元件的應用範疇,本論文將針對薄膜電晶體之源/汲極、閘極介電層與通道層等主要結構進行優化。於優化薄膜電晶體之源/汲極方面,藉由加入一層具高載子濃度之緩衝層,改善源/汲極與通道層之接觸阻抗,進而改善元件電特性。基於氧化銦鎵鋅薄膜電晶體為一常通(normally on, NO)結構,本論文提出一蕭基源極結構,藉由蕭基能障阻擋通道漏電流,以降低元件之關閉電流,進而提升元件開關比與調整關閉電壓。另一方面,本論文亦使用共濺鍍沉積技術,開發氧化矽鋯介電層與具鈦摻雜之氧化銦鎵鋅通道層。於氧化矽鋯介電層部分,藉由將適當含量之矽元素摻入氧化鋯介電層中,改善氧化鋯介電層之薄膜品質與介電層/通道層之介面缺陷,提升元件之電特性與可靠度。於鈦摻雜之氧化銦鎵鋅通道層部分,因氧化銦鎵鋅薄膜具有極高的缺陷密度,嚴重影響其與介電層之介面品質,本論文利用共濺鍍技術,結合TiO2與IGZO靶材,調整適當的沉積比例,改善氧化銦鎵鋅通道層之薄膜與介面品質。實驗結果顯示,經400 oC氮氣環境下的退火,可獲得於本研究之通道優工程項目的最佳電晶體可靠度。於電特性部份,其元件電流開關比為1.65×10^8、次臨界擺幅為90 mV/dec、載子遷移率為24.2 cm^2/Vs、界面缺陷密度為1.09×10^12 cm^(-2)eV^(-1);於可靠度部分,正負偏壓應力之臨界電壓偏移分別為0.157 V和-0.093 V。
本論文所開發之源/汲極優化工程,藉由加入緩衝層結構改善源/汲極接觸阻抗,亦開發蕭基源極結構降低於關閉狀態之通道漏電流。此外,透過共濺鍍技術之薄膜沉積功率比例,可調整所製備薄膜之材料組成與特性,藉由適當共濺鍍參數,可開發具低缺陷密度之閘極介電層及通道層材料,改善介面品質以提升閘極於通道之控制能力。本論文所提出之優化結構與新穎半導體材料,將有機會於未來使用在包含系統面板、有機發光二極體面板與可撓式裝置之應用上,並擴大非矽基材料之終端產品應用範疇。
Researches on oxide-semiconductor-based thin-film transistors (TFTs) have advanced remarkably in recent years. Commercial display products using indium gallium zinc oxide (IGZO) active arrays have also been successfully demonstrated. It is highly expected that the oxide semiconductor could have a high potential for using in display and system-on-panel application. In order to improve the electrical performance of IGZO TFTs, various technologies or schemes have been reported to lower driving-voltage, enhance carrier mobility, reduce leakage current, and improve gate control ability. In the present dissertation, to further polish the performance of IGZO TFTs, the optimized engineering of source/drain (S/D) contact, gate dielectrics, and channel of IGZO TFT is demonstrated. In the part of S/D contact, the sputtered ZnO buffer layer (BL) sandwiched between the S/D electrode and the a-IGZO channel is used to decrease the contact resistance of S/D and improve the electrical performance. Sequentially, in order to decrease the leakage current of IGZO TFT, the Schottky contact source would be used to provide a Schottky barrier height for resisting the carrier transport at off-state of device. In another aspect, we fabricated the ZrSiO gate dielectric and Ti-doped channel to improve the electrical performance and reliability of TFT. The best electrical performance of this dissertation is the use of co-sputtered Titanium doped indium gallium zinc oxide (Ti-IGZO) channel with Zr0.85Si0.15O2 gate dielectric. It is found that oxygen vacancies in Ti-IGZO channel is decreased after Ti atom incorporation and stability of the TFT could be considerably improved. It reveals that Ti-IGZO channel prepared at a power ratio of IGZO:TiO2=80 W:25 W with a PDA a shows the best device performance of I_on⁄I_off , the SS, and the ∆V_TH after 1000 s positive/negative gate-bias stress are of 1.65×10^8, 90 mV/dec, and 0.157 V/-0.093 V, respectively.
From the results mentioned above, the optimized engineering of source/drain contact and development of novel gate dielectric and channel layer have shown excellent electrical performance. In this thesis, the RDS can be decreased by insertion of buffer layer and advance the electrical performance. To improve the leakage performance of IGZO TFT, the IGZO SB-TFT with a Schottky source structure is fabricated and show the lowest leakage current at off-state. In addition, the novel channel and dielectric layer with low trap density are manufactured by co-sputtering technique. As the results, IGZO TFTs with the novel channel and dielectric layer show the excellent electrical and reliability performances. The S/D optimized engineering and development of novel gate dielectric and channel are very promising for application in system-on-panel (SoP) and organic light-emitting (OLED) display in the future.
Chapter 1
[1.1] S. B. Ogale, Thin films and heterostructures for oxide for oxide electronics, New York, NY: Springer, 2005.
[1.2] C. Jagadish and S. Pearton, Zinc oxide bulk, thin films and nanostructure, Oxford, UK: Elsevier, 2006.
[1.3] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan,V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301-1—¬041301-103, 2005.
[1.4] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, pp. 126501-1—126501-23, 2009.
[1.5] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, pp. 851-858, 2006.
[1.6] T. Kamiya and H. Hosono, “Electronic structures and device applications of transparent oxide semiconductors: What is the real merit of oxide semiconductors?” Int. J. Appl. Ceram. Tec., vol. 2, pp. 285-294, 2005.
[1.7] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, pp. 851-858, 2006.
[1.8] J. Yao, N. Xu, S. Deng, “Dual gate indium-gallium-zinc-oxide thin film transistor with an unisolated floating metal gate for threshold voltage modulation and mobility enhancement,” IEEE T. Electron Dev., vol. 58, pp. 1121-1126, 2011.
[1.9] H. W. Zan, W. T. Chen, H. W. Hsueh, S. C. Kao, M. C. Ku, C. C. Tsai, and H. F. Meng, “Amorphous indium-gallium-zinc-oxide visible-light phototransistor with a polymeric light absorption layer,” Appl. Phys. Lett., vol. 97, pp. 203506-1—203506-3, 2010.
[1.10] A. Chasin, M. Nag, A. Bhoolokam, K. Myny, S. Steudel, S. Schols, J. Genoe, G. Gielen, and P. Heremans, “Gigahertz operation of a-IGZO Schottky diodes,” IEEE Trans. Electron Devices, vol. 60, pp. 3407-3412, 2013.
[1.11] A. Klein and F. Sauberlich, B. Spath, T. Schulmeyer, and D. Kraft, “Non-stoichiometry and electronic properties of interfaces,” J. Mater. Sci., vol. 42, pp. 1890-1900, 2007.
[1.12] L. J. Brillson and Y. Lu, “ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys., vol. 109, pp. 121301-1—121301-33, 2011.
[1.13] W. C. Germs, W. H. Adriaans, A. K. Tripathi, W. S. C. Roelofs, B. Cobb, R. A. J. Janssen, G. H. Gelinck, and M. Kemerink, “Charge transport in amorphous InGaZnO thin-film transistors,” Phys. Rev. B, vol. 86, pp. 155319-1—155319-8, 2012.
[1.14] P. K. Weimer, “The TFT a new thin-film transistor,” IRE, vol. 50, pp. 1462-1469, 1962.
[1.15] F. V. Shallcross, “Cadmium selenide thin-film transistors,” Proc. IEEE, vol. 51, pp. 851-851, 1963.
[1.16] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82, pp. 733-735, 2003.
[1.17] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, pp.1624-1630, 2003.
[1.18] E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C. N. Carvalho, R. Martins, “High field-effect mobility zinc oxide thin film transistors produced at room temperature,” J Non-Cryst Solids., vol. 338, pp. 806-809, 2004.
[1.19] E. C. Fortunato, P. M. Barquinha, A. C. Pimentel, A. M. Goncalves, A. J. Marques, R. F. Martins, L. M. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Appl. Phys Lett., vol. 85, pp. 2541-2543, 2004.
[1.20] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269-1272, 2003.
[1.21] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, 2004.
[1.22] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., vol. 89, pp. 112123-1—112123-3, 2006.
[1.23] J. H. Na, M. Kitamura, and Y. Arakawa, “High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes,” Appl. Phys Lett., vol. 93, pp. 063501-1—063501-3, 2008.
[1.24] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys Lett., vol. 90, pp. 1235121-1—1235121-3, 2007.
[1.25] J. Y. Kwon, K. S. Son, Ji Sim Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, “Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display,” IEEE Electron Device Lett., vol. 29, pp. 1309-1311, 2008.
[1.26] T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Technological evolution for large screen size active mtrix OLED display,” SID Int. Symp. Dig. Tech. Pap., vol. 7, pp. 161-164, 2007.
[1.27] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev., vol. 71, pp. 717-727, 1947.
[1.28] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metalsemiconductor systems,” J. Appl. Phys., vol. 36, pp. 3212-3220, 1965.
[1.29] J. Tersoff, “Schottky barriers and semiconductor band structures,” Phys. Rev. B, vol. 32, pp. 6968-6971, 1985.
[1.30] S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, “Ionicity and the theory of Schottky barriers,” Phys. Rev. B, vol. 15, pp. 2154-2612, 1977.
[1.31] W. Mönch, “Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral inhomogeneities,” J. Vac. Sci. Technol. B, vol. 17, pp. 1867-1876, 1999.
[1.32] W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, “Unified defect model and beyond,” J. Vac. Sci. Technol., vol. 17, pp. 1019-1027, 1980.
[1.33] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. Technol. B, vol. 4, pp. 1130-1138, 1986.
[1.34] C. F. Lo, L. Liu, C. Y. Chang, F. Ren, V. Craciun, S. J. Pearton, Y. W. Heo, O. Laboutin, and J. W. Johnson, “Annealing temperature dependence of Ohmic contact resistance and morphology on InAlN/GaN high electron mobility transistor structures,” J. Vac. Sci. Technol. B, vol. 29, pp. 021002-1—021002-5, 2011.
[1.35] J. M. Lee, K. K. Kim, S. J. Park, and W. K. Choi, “Low-resistance and nonalloyed Ohmic contacts to plasma treated ZnO,” Appl. Phys. Lett., vol. 78, pp. 3842-3844, 2001.
[1.36] International Technology Roadmap for Semiconductors 2015.
[1.37] J. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Electron Device Lett., vol. 53, pp. 1048-1058, 2006.
[1.38] W. J. Cho, “Influences of trap states at metal/semiconductor interface on metallic source/drain Schottky-barrier MOSFET,” Journal of Semiconductor Technology and Science, vol. 7, pp. 82-87, 2007.
[1.39] H. C. Lin, M. F. Wang, F. J. Hou, J. T. Liu, T. Y. Huang, and S. M. Sze, “Application of field-induced source/drain Schottky metal-oxide-semiconductor to fin-like body field-effect transistor ,” Jpn. J. Appl. Phys., vol. 41, pp. L626-L628, 2002.
[1.40] M. Jang, Y. Kim, J. Shin, and S. Lee, “A 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxidesemiconductor field-effect transistor,” Appl. Phys. Lett., vol. 84, pp. 741-743, 2004.
[1.41] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, “Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of Sub-50-nm n-type devices with metal gate,” Jpn. J. Appl. Phys., vol. 38, pp. 6226-6231, 1999.
[1.42] S. Zhu, H. Y. Yu, S. J. Whang, J. H. Chen, C. Shen, C. Zhu, S. J. Lee, M. F. Li, D. S. H. Chan, W. J. Yoo, A. Du, C. H. Tung, J. Singh, A. Chin, and D. L. Kwong, “Schottky-barrier S/D MOSFETs with High- gate dielectrics and metal-gate electrode,” IEEE Electron Device Lett., vol. 25, pp. 268-270, 2004.
[1.43] T. T. Trinh, K. Jang, V. A. Dao, and J. Yi, “Effect of high conductivity amorphous InGaZnO active layer on the field effect mobility improvement of thin film transistors,” J. Appl. Phys., vol. 116, pp. 214504-1—214504-5 (5pp), 2014.
[1.44] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-5275, 2001.
[1.45] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, pp. 1785-1791, 2000.
[1.46] E. P. Gusev and V. Narayanan, M. M. Frank, “Advanced high-κ dielectric stacks with polySi and metal gates: Recent progress and current challenges,” J. Res. Dev., vol. 50, pp. 387-410, 2006.
[1.47] B. H. Lee, S. C. Song, R. Choi, and P. Kirsch, “Metal electrode/high- dielectric gate-stack technology for power management,” IEEE Tans. Electron Device, vol. 55, pp. 8-20, 2008.
[1.48] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, pp. 2757-2776, 1996.
[1.49] C. J. Forst, C. R. Ashman, K. Schwarz, and P. E. Blöchl, “The interface between silicon and a high- oxide,” Nature, vol. 427, pp. 53-1—53-10, 2004.
[1.50] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced gate dielectric materials for Sub100 nm CMOS,” IEDM Tech. Dig., pp. 625-628, 2002.
[1.51] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm logic technology with high- metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging ,” IEDM Tech. Dig., pp. 247-250, 2007.
[1.52] H. Wong and H. Iwai, “On the scaling issues and high-j replacement of ultrathin gate dielectrics for nanoscale MOS transistors,” Microelectronic Engineering, vol. 83, pp. 1867-1904, 2006.
[1.53] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, pp. 5243-5275, 2001.
[1.54] E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol., C. Krug, and M. A. Gribelyuk, “High-resolution depth profiling in ultrathin Al2O3 films on Si,” Applied Physics Letters, vol. 76, pp. 176-178, 2000.
[1.55] J. Koo and H. Jeon, “Characteristics of an Al2O3/HfO2 bilayer deposited by atomic layer deposition for gate dielectric applications,” Journal of the Korean Physical Society, vol. 46, pp. 945-950, 2005.
[1.56] H.-H. Tseng, “The progress and challenges of applying high-/metal-gated devices to advanced CMOS technologies,” Solid State Circuits Technologies, Jacobus W. Swart (Ed.), ISBN: 978-953-307-045-2, InTech.
[1.57] H. Y. Haung, S. J. Wang, C. H. Wu, C. K. Chiang, Y. C. Huang, and J. Y. Su, “Low driving voltage amorphous In-Ga-Zn-O thin film transistors with small subthreshold swing using high-κ Hf-Si-O dielectrics,” Applied Physics Express, vol. 3, pp. 121501-1—121501-3, 2010.
Chapter 2
[2.1] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In-Ga-Zn-O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, pp. 044305-1—044305-23, 2010.
[2.2] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin Solid Films, vol. 520, pp. 1679-1693, 2012.
[2.3] H. C. Wu and C. H. Chien, “High performance InGaZnO thin film transistor with InGaZnO source and drain electrodes,” Appl. Phys. Lett., vol. 102, pp. 062103-1—062103-4, 2013.
[2.4] X. Li, D. Geng, M. Mativenga, and J. Jang, “High-speed dual-gate -IGZO TFT-based circuits with top-gate offset structure,” IEEE Electron Device Lett., vol. 35, pp. 461-463, 2014.
[2.5] G. J. Lee, J. Kim, J. H. Kim, S. M. Jeong, J. E. Jang, and J. Jeong, “High performance, transparent -IGZO TFTs on a flexible thin glass substrate,” Semicond. Sci. Technol., vol. 29, pp. 035003-1—035003-5, 2011.
[2.6] H. Chen, Y. Cao, J. Zhang, and C. Zhou, “Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors,” Nat. Commun., vol. 5, pp. 1-12, 2014.
[2.7] N. Gong, C. Park, J. Lee, I. Jeong, H. Han, J. Hwang, J. Park, K. Park, H. Jeong, Y. Ha, and Y. Hwang, “Implementation of 240 Hz 55-inch ultra definition LCD driven by -IGZO semiconductor TFT with copper signal lines,” SID Symposium Digest of Technical Papers, vol. 43, pp. 784-787, 2012.
[2.8] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, and S. S. Kim, “Amorphous-oxide TFT backplane for large-sized AMOLED TVs,” J. Soc. Inf. Disp., vol. 19, pp. 16-20, 2011.
[2.9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, 2004.
[2.10] J. Kyeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett., vol. 91, pp. 113505-1—113505-3, 2007.
[2.11] K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, and H. Hosono, “Depth analysis of subgap electronic states in amorphous oxide semiconductor, -In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy,” J. Appl. Phys., vol. 109, pp. 073726-1—073726-8, 2011.
[2.12] M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, “Trap densities in amorphous-InGaZnO4 thin-film transistors,” Appl. Phys. Lett., vol. 92, pp. 133512-1—133512-3, 2008.
[2.13] J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. P. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of -IGZO TFTs related to oxygen vacancy,” IEEE Trans. Electron Devices, vol. 58, pp. 1121-1126, 2011.
[2.14] A. Hino, Y. Takanashi, H. Tao, S. Morita, M. Ochi, H. Goto, K. Hayashi, and T. Kugimiya, “Effects of thermal annealing on variations of electron traps in the channel region of amorphous In-Ga-Zn-O thin film transistor,” J. Vac. Sci. Technol. B, vol. 32, pp. 031210-1—031210-6, 2014.
[2.15] W. Mtangi, F. D. Auret, W. E. Meyer, M. J. Legodi, P. J. Janse van Rensburg, S. M. M. Coelho, M. Diale, and J. M. Nel, “Effects of hydrogen, oxygen, and argon annealing on the electrical properties of ZnO and ZnO devices studied by current-voltage, deep level transient spectroscopy, and Laplace DLTS,” J. Appl. Phys., vol. 111, pp. 094504-1—094504-6, 2012.
[2.16] C. S. Hwang, B. T. Lee, C. S. Kang, J. W. Kim, K. H. Lee, H. J. Cho, H. Horii, W. D. Kim, S. I. Lee, Y. B. Roh, and M. Y. Lee, “A comparative study on the electrical conduction mechanisms of (Ba0.5Sr0.5)TiO3 thin films on Pt and IrO2 electrodes,” J. Appl. Phys., vol. 83, pp. 3703-3713, 1998.
[2.17] Y. C. Chen, T. C. Chang, H. W. Li, S. C. Chen, W. F. Chung, Y. H. Chen, Y. H. Tai, T. Y. Tseng, and F. S. Yeh, “Surface states related the bias stability of amorphous In-Ga-Zn-O thin fi lm transistors under different ambient gasses,” Thin Solid Films, vol. 520, pp. 1432-1436, 2011.
[2.18] Dieter K., Semiconductor Material and Device Characterization, p. 127.
[2.19] C. H. Wu, K. M. Chang, S. H. Huang, I. C. Deng, C. J. Wu, W. H. Chiang, J. W. Lin, and C. C. Chang, “The effect of thermal annealing on the properties of IGZO TFT prepared by atmospheric pressure plasma jet,” ECS Transactions, vol. 45, pp. 189-197, 2012.
[2.20] W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. Ahn, and J. W. Park, “An investigation of contact resistance between metal electrodes and amorphous gallium-indium-zinc oxide (-GIZO) thin- fi lm transistors,” Thin Solid Films, vol. 518, pp. 6357-6360, 2010.
[2.21] Y. C. Chen, T. C. Chang, H. W. Li, S. C. Chen, W. F. Chung, Y. H. Chen, Y. H. Tai, T. Y. Tseng, and F. S. Yeh, “Source/drain metallization effects on the specific contact resistance of indium tin zinc oxide thin film transistors,” Mater. Sci. Semicond. Process., vol. 39, pp. 649-653, 2015.
[2.22] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes,” Thin Solid Films, vol. 516, pp. 5899-5902, 2008.
[2.23] X. Zou, G. Fang, J. Wan, N. Liu, H. Long, H. Wang, and X. Zhao, “Enhanced performance of -IGZO thin-film transistors by forming AZO/IGZO heterojunction source/drain contacts,” Semicond. Sci. Technol., vol. 26, pp. 055003-1—055003-5, 2011.
[2.24] K. H. Choi, S. Jeon, and H. K. Kim, “A comparison of Ga:ZnO and Ga:ZnO/Ag/Ga:ZnO source/drain electrodes for In-Ga-Zn-O thin film transistors,” Mater. Res. Bull., vol. 47, pp. 2915-2918, 2012.
[2.25] J. L. Wu, H. Y. Lin, Y. C. Chen, S. Y. Chu, C. C. Chang, C. J. Wu, and Y. D. Juang, “Effects of ZnO buffer layer on characteristics of ZnO:Ga films grown on flexible substrates: investigation of surface energy, electrical, optical, and structural properties,” ECS J. Solid State Sci. vol. 2, pp. P115-P119, 2013.
[2.26] H. S. Bae, J. H. Kwon, S. Chang, M. H. Chung, T. Y. Oh, J. H. Park, S. Y. Lee, J. J. Pak, and B. K. Ju, “The effect of annealing on amorphous indium gallium zinc oxide thin fi lm transistors,” Thin Solid Films, vol. 518, pp. 6325-6329, 2010.
[2.27] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett., vol. 90, pp. 262106-1—262106-3, 2007.
[2.28] F. Lemmi, W. Chung, S. Lin, P. M. Smith, T. Sasagawa, B. C. Drews, A. Hua, J. R. Stern, and J. Y. Chen, “High-performance TFTs fabricated on plastic substrates,” IEEE Electron Device Lett., vol. 25, pp. 486-488, 2004.
[2.29] J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phys. Lett., vol. 95, pp. 013503-1—013503-3, 2009.
[2.30] K. Long, I. C. Cheng, A. Kattamis, H. Gleskova, S. Wagner, and J. C. Sturm, “Amorphous-silicon thin-film transistors made at 280°C on clear-plastic substrates by interfacial stress engineering,” J. Soc. Inf. Disp., vol. 15, pp. 167-176, 2007.
[2.31] J. M. Lee, K. M. Chang, S. W. Kim, C. Huh, I. H. Lee, and S. J. Park, “Dry etch damage in n-type GaN and its recovery by treatment with an N2 plasma,” J. Appl. Phys., vol. 87, pp. 7667-7670, 2000.
[2.32] D. Y. Choi, J. H. Lee, D. S. Kim, and S. T. Jung, “Formation of plasma induced surface damage in silica glass etching for optical waveguides,” J. Appl. Phys., vol. 95, pp. 8400-8407, 2004.
[2.33] S. H. Lee, M. Perez, M. A. Quevedo-Lopez, B. Gnade, and R. Ramirez-Bon, “Effect of sputtered ZnO layers on behavior of thin-film transistors deposited at room temperature in a nonreactive atmosphere,” J. Electron. Mater., vol. 40, pp. 1461-1469, 2011.
[2.34] Z. Zhang, C. Bao, S. Ma, L. Zhang, and S. Hou, “Effects of deposition power and pressure on the crystallinity of Al-doped ZnO thin films at glass substrates by low temperature RF magnetron sputtering,” J. Aust. Ceram. Soc., vol. 48, pp. 214-222, 2012.
[2.35] H. W. Wu, C. H. Chu, Y. F. Chen, Y. W. Chen, W. H. Tsai, S. H. Huang, and G. S. Chen, “Study of AZO thin films under different Ar flow and sputtering power by rf magnetron sputtering,” International MultiConference of Engineers and Computer Scientists, vol. 2, pp. 1-4, 2013.
[2.36] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” J. Nanomater., vol. 2012, pp. 264520-1—264520-22, 2012.
[2.37] X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, “Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2,” Physica B, vol. 388, pp. 145-152, 2007.
[2.38] D. K. Kim and H. B. Kim, “Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure,” J. Alloys Compd., vol. 509, pp. 421-425, 2011.
[2.39] S. Bang, S. Lee, J. Park, S. Park, Y. Ko, C. Choi, H. Chang, H. Park, and H. Jeon, “The effects of post-annealing on the performance of ZnO thin fi lm transistors,” Thin Solid Films, vol. 519, pp. 8109-8113, 2011.
[2.40] J. H. Na, M. Kitamura, and Y. Arakawa, “High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes,” Appl. Phys. Lett., vol. 93, pp. 063501-1—063501-3, 2008.
Chapter 3
[3.1] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In-Ga-Zn-O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, pp. 044305-1—044305-23, 2010.
[3.2] A. M. Ma, M. Gupta, F. R. Chowdhury, M. Shen, K. Bothe, K. Shankar, Y. Tsui, and D. W. Barlage, “Zinc oxide thin film transistors with Schottky source barriers,” Solid-State Elec., vol. 76, pp. 104-108, 2012.
[3.3] T. T. Trinh, K. Jang , V. A. Dao , and J. Yi, “Effect of high conductivity amorphous InGaZnO active layer on the field effect mobility improvement of thin film transistors,” J. Appl. Phys. vol. 116, pp. 214504-1—214504-5, 2014.
[3.4] D. H. Lee, K. Nomura, T. Kamiya, H. Hosono, “Diffusion-limited -IGZO/Pt Schottky junction fabricated at 200 ◦C on a flexible substrate,” IEEE Electron Device Lett., vol. 32, pp. 1695-1697, 2011.
[3.5] A. Chasin, M. Nag, A. Bhoolokam, K. Myny, S. Steudel, S. Schols, J. Genoe, G. Gielen, P. Heremans, “Gigahertz operation of -IGZO Schottky diodes,” IEEE Trans. Electron Devices, vol. 60, pp. 3407-3412, 2013.
[3.6] L. J. Brillson1 and Y. Lu, “ZnO Schottky barriers and Ohmic contacts,” J. Appl. Phys. vol. 109, pp. 121301-1—121301-33, 2011.
[3.7] H. Kim, S. Kim, K. K. Kim, S. N. Lee, and K. S. Ahn, “Electrical characteristics of Pt Schottky contacts fabricated on amorphous gallium indium zinc oxides,” Jpn. J. Appl. Phys., vol. 50, pp. 105702-1—105702-3, 2011.
[3.8] S.F. Feste, M. Zhang, J. Knoch, and S. Mantl, “Impact of variability on the performance of SOI Schottky barrier MOSFETs,” Solid-State Elec., vol. 53, pp. 418-423, 2009.
[3.9] R. H. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET: from bulk to SOI to bulk,” IEEE Trans. Electron Devices, vol. 39, pp. 1704-1710, 1992.
[3.10] R. Jhaveri, V. Nagavarapu, and C. S. Woo, “Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications,” IEEE Trans. Electron Devices, vol. 56, pp. 93-99, 2009.
[3.11] A. M. Ma, M. Gupta, A. Afshar, G. Shoute, Y. Y. Tsui, K. C. Cadien, and D. W. Barlage, “Schottky barrier source-gated ZnO thin film transistors by low temperature atomic layer deposition,” Appl. Phys. Lett., vol. 103, pp. 253503-1—253503-5, 2013.
Chapter 4
[4.1] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, “Review of recent developments in amorphous oxide semiconductor thin- film transistor devices,” Thin Solid Films, vol. 520, pp. 1679-1693, 2012.
[4.2] J. X. Wang, G. W. Hyung, Z. H. Li, S. Y. Son, S. J. Kwon, Y. K. Kim, and E. S. Cho, “Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor,” J. Nanosci. Nanotechnol., vol. 12, pp. 5644-5647, 2012.
[4.3] H. H. Hsu, C. H. Cheng, P. Chiou, Y. C. Chiu, S. S. Yen, C. H. Tung, and C. Y. Chang, “Temperature-dependent transfer characteristics of low turn-on voltage InGaZnO metal-oxide devices with thin titanium oxide capping layers,” Journal of Display Technology, vol. 11, pp. 512-517, 2015.
[4.4] Y. S. Chun, S. Chang, and S. Y. Lee, “Effects of gate insulators on the performance of -IGZO TFT fabricated at room-temperature,” Microelectronic Engineering, vol. 88, pp. 1590-1593, 2011.
[4.5] J. Robertson and R. M. Wallace, “High- materials and metal gates for CMOS applications,” Materials Science and Engineering R, vol. 88, pp. 1-41, 2015.
[4.6] R. D. Clark, “Emerging applications for high- materials in VLSI technology,” Materials, vol. 7, pp. 2913-2944, 2014.
[4.7] M. T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, “In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition,” Applied Physic Letters, vol. 87, pp. 133103-1—133103-3, 2005.
[4.8] P. Taechakumput, S. Taylor, O. Buiu, R. J. Potter, P. R. Chalker, and A. C. Jones, “Optical and electrical characterization of hafnium oxide deposited by liquid injection atomic layer deposition,” Microelectronics Reliability, vol. 47, pp. 825-829, 2007.
[4.9] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” Japanese Journal of Applied Physics, vol. 45, pp. 4303-4308, 2006.
[4.10] W. Song, L. Lan, P. Xiao, Z. Lin, S. Sun, Y, Li, E. Song, P. Gao, P, Zhang, H. Xu, D. Lu, M. Xu, and J. Peng, “Low-temperature, high-stability, flexible thin-film transistors with a novel ScxIn1−xO3 semiconductor,” J. Phys. D: Appl. Phys., vol. 49, pp. 24LT01-1—24LT01-6, 2016.
[4.11] K. C. Liu, J. R. Tsai, W. K. Lin, C. S. Li, and J. N. Chen, “Defect passivation by O2 plasma treatment on high-k dielectric HfO2 films at room temperature,” Thin Solid Films, vol. 519, pp. 5110-5113, 2011.
[4.12] M. Januar, S. P. Prakoso, S. Y. Lan, R. K. Mahanty, S. Y. Kuo, and K. C. Liu, “The role of oxygen plasma in the formation of oxygen defects in HfOx films deposited at room temperature,” J. Mater. Chem. C, vol. 3, pp. 4104-4114, 2015.
[4.13] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 96, pp. 242105-1—242105-3, 2010.
[4.14] P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, “High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment,” Appl. Phys. Lett., vol. 100, pp. 202106-1—202106-4, 2012.
[4.15] J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett., vol. 90, pp. 262106-1—262106-3, 2007.
[4.16] H. Y. Huang, S. J. Wang, C. H. Wu, and C. Y. Lu, “Improvement of electrical performance of InGaZnO/HfSiO TFTs with 248-nm excimer laser annealing,” Electron. Mater. Lett., vol. 10, pp. 899-902, 2014.
[4.17] C. C. Tsai, Y. J. Lee, J. L. Wang, K. F. Wei, I C. Lee, C. C. Chen, and H. C. Cheng, “High-performance top and bottom double-gate low-temperature poly-silicon thin film transistors fabricated by excimer laser crystallization,” Solid-State Electronics, vol. 52, pp. 365-371, 2008.
[4.18] L. F. Teng, P. T. Liu, Y. J. Lo, and Y. J. Lee, “Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor,” Appl. Phys. Lett., vol. 101, pp. 132901-1—132901-4, 2012.
[4.19] C. S. Fuh, P. T. Liu, L. F. Teng, S. W. Huang, Y. J. Lee, H. P. D. Shieh, and S. M. Sze, “Effects of microwave annealing on nitrogenated amorphous In-Ga-Zn-O thin-film transistor for low thermal budget process application,” IEEE Electron Device Letters, vol. 34, pp. 1157-1159, 2013.
[4.20] J. Song, C. Han, and P. T. Lai, “Comparative study of Nb2O5, NbLaO, and La2O3 as gate dielectric of InGaZnO thin-film transistor,” IEEE Transactions on Electron Devices, vol. 63, pp. 1928-1933, 2016.
[4.21] S. Kim, M. H. Ham, B. Y. Oh, H. J. Kim, and J. M. Myoung, “High- TixSi1-xO2 thin films prepared by co-sputtering method,” Microelectronic Engineering, vol. 85, pp. 100-103, 2008.
[4.22] Z. Tang, X. Lu, Y. Yang, J. Zhang, D. Ma, R. Li, X. Zhang, D. Hu, and T. Li, “Dependence of memory characteristics on the (ZrO2)x(SiO2)1-x elemental composition for charge trap flash memory applications,” Semicond. Sci. Technol., vol. 30, pp. 065010-1—065010-9, 2015.
[4.23] X. Ding, H. Zhang, H. Ding, J. Zhang, C. Huang, W. Shi, J. Li, X. Jiang, and Z. Zhang, “Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator,” Superlattices and Microstructures, vol. 76, pp. 156-162, 2014.
[4.24] Q. J. Sun, J. Peng, W. H. Chen, X. J. She, J. Liu, X. Gao, W. L Ma, and S. D. Wang, “Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric,” Organic Electronics, vol. 34, pp. 118-123, 2016.
[4.25] B. Deng, G. He, X. S. Chen, X. F. Chen, J. W. Zhang, M. Liu, J. G. Lv, and Z. Q. Sun, “Annealing temperature dependence on the structural and optical properties of sputtering-grown high- HfO2 gate dielectrics,” J Mater Sci: Mater Electron, vol. 25, pp. 4163-4169, 2014.
[4.26] T. Itoh, A. Kobayashi, K. Ueno, J. Ohta, and H. Fujioka, “Fabrication of InGaN thin-film transistors using pulsed sputtering deposition,” Scientific Reportsi, vol. 6, pp. 1-6, 2016.
[4.27] J. Liu, M. Liao, M. Imura, A. Tanaka, H. Iwai, and Y. Koide, “Low on-resistance diamond field effect transistor with high- ZrO2 as dielectric,” Scientific Reports, vol. 4, pp. 1-5, 2014.
[4.28] F. Shan, A. Liu, G. Liu, Y. Meng, E. Fortunato, and R. Martins, “Low-voltage high-stability InZnO thin-film transistor using ultra-thin solution-processed ZrO dielectric,” Journal of Display Technology, vol. 11, pp. 541-546, 2015.
[4.29] S. Chatterjee, S. K. Nandi, S. Maikap, S. K. Samanta, and C. K. Maiti, “Electrical properties of deposited ZrO2 films on ZnO/n-Si substrates,” Semicond. Sci. Technol., vol. 18, pp. 92-96, 2003.
[4.30] D. Fischer and A. Kersch, “The effect of dopants on the dielectric constant of and from first principles,” Appl. Phys. Lett., vol. 92, pp. 012908-1—012908-3, 2008.
[4.31] S. C. Tsai, S. L. Wu, B. C. Wang, S. J. Chang, C. H. Hsu, C. W. Yang, C. M. Lai, C. W. Hsu, O. Cheng, P. C. Huang, and J. F. Chen, “Low-frequency noise characteristics for various ZrO2-added HfO2-based 28-nm high-k/metal-gate nMOSFETs,” IEEE Electron Device Letters, vol. 34, pp. 834-836, 2013.
[4.32] F. H. Chen, C. H. Chen, and T. M. Pan, “Structural and electrical characteristics of high- Sm2TiO5 gate dielectrics for InGaZnO thin-film transistors,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, pp. 1337-1342, 2015.
[4.33] J. C. Park, I. T. Cho, E. S. Cho, D. H. Kim, C. Y. Jeong, and H. I. Kwon, “Comparative study of ZrO2 and HfO2 as a high- dielectric for amorphous InGaZnO thin film transistors,” J. Nanoelectron. Optoelectron., vol. 9, pp. 67-70, 2014.
[4.34] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary osides in contact with silicon,” J. Mater. Res., vol. 11, pp. 331-336, 1996.
[4.35] D. C. Hsu, M. T. Wang, J. Y. Lee, and P. C. Juan, “Electrical characteristics and reliability properties of metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric,” J. Appl. Phys., vol. 101, pp. 094105-1—094105-4, 2007.
[4.36] J. S. Lee, S. Chang, S.-M. Koo, and S. Y. Lee, “High-performance -IGZO TFT with ZrO2 gate dielectric fabricated at room temperature,” IEEE Electron Device Letters, vol. 31, pp. 225-227, 2010.
[4.37] D. Cho, S. Woo, J. Yang, D. Lee, Y. Lim, D. Kim, S. Park, and M. Yi, “High performance thin film transistor with HfSiOx dielectric fabricated at room temperature RF-magnetron sputtering,” Electronic Materials Letters, vol. 9, pp. 381-384, 2013.
[4.38] F. H. Chen, M. N. Hung, J. F. Yang, S. Y. Kuo, J. L. Her, Y. H. Matsuda, and T. M. Pan, “Effect of surface roughness on electrical characteristics in amorphous InGaZnO thin-film transistors with high- Sm2O3 dielectrics,” J. Phys. Chem. Solids, vol. 74, pp. 570-574, 2013.
[4.39] K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafría, M. Lanza, and G. Bersuker, “Grain boundary mediated leakage current in polycrystalline HfO2 films,” Microelectron. Eng., vol. 88, pp. 1272-1275, 2011.
[4.40] F. H. Chen, T. M. Pan, C. H. Chen, J. H. Liu, W. H. Lin, and P. H. Chen, “Two-step electrical degradation behavior in α-InGaZnO thin-film transistor under gate-bias stress,” IEEE Electron Device Lett., vol. 34, pp. 635-637, 2013.
[4.41] J. I. Kim, I. T. Cho, S. M. Joe, C. Y. Jeong, D. Lee, H. I. Kwon, S. H. Jin, and J. H. Lee, “Effect of temperature and electric field on degradation in amorphous InGaZnO TFTs under positive gate and drain bias stress,” IEEE Electron Device Lett., vol. 35, pp. 458-460, 2014.
[4.42] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, “Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 99, pp. 022104-1—022104-3, 2011.
[4.43] T. C. Chen, T. C. Chang, T. Y. Hsieh, C. T. Tsai, S. C. Chen, C. S. Lin, F. Y. Jian, and M. Y. Tsai, “Investigation of the gate-bias induced instability for InGaZnO TFTs under dark and light illumination,” Thin Solid Films, vol. 520, pp. 1422-1426, 2011.
[4.44] M. P. Hung, D. Wang, J. Jiang, and M. Furuta, “Negative bias and illumination stress induced electron trapping at back-channel interface of InGaZnO thin-film transistor,” ECS Solid State Lett., vol. 3, pp. Q13-Q16, 2014.
[4.45] H. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. K. Park, “Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor,” Appl. Phys. Lett., vol. 97, pp. 183502-1—183502-3, 2011.
[4.46] S. Migliorato, M. D. H. Chowdhury, J. G. Um, M. Seok, and J. Jang, “Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor,” Appl. Phys. Lett., vol. 101, pp. 123502-1—123502-5, 2012.
[4.47] J. W. Jo, Y. H. Kim, and S. K. Park, “Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors,” Appl. Phys. Lett., vol. 105, pp. 043503-1—043503-5, 2014.
[4.48] S. H. Kuk, S. Y. Lee, S. J. Kim, B. Kim, S. J. Park, J. Y. Kwon, and M. K. Han, “Light-induced hysteresis of In-Ga-Zn-O thin-film transistors with various temperatures,” IEEE Electron Device Lett., vol. 33, pp. 1279-1281, 2012.
[4.49] S. Y. Lee, J. Y. Kwon, and M. K. Han, “Investigation of photo-induced hysteresis and off-current in amorphous In-Ga-Zn oxide thin-film transistors under UV light irradiation,” IEEE T. Electron Dev., vol. 60, pp. 2574-2579, 2013.
Chapter 5
[5.1] H. H. Lu, H. C. Ting, C. S. Chuang, C. Yu Chen, and Y. Lin, “Development of IGZO TFTs and their applications to next‐generation flat‐panel displays,” J. Inf. Display, vol. 11, pp. 160-164, 2010.
[5.2] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, and S. S. Kim, “Amorphous-oxide TFT backplane for large-sized AMOLED TVs,” J. Soc. Inf. Display, vol. 19, pp. 16-20,2011.
[5.3] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, “Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 99, pp. 022104-1—022104-3, 2011.
[5.4] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In-Ga-Zn-O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, pp. 044305-1—044305-23, 2010.
[5.5] J. S. Park, W. J. Maeng, H. S. Kim, and J. S. Park, “Review of recent developments in amorphous oxide semiconductor thin-film transistor devices,” Thin Solid Films, vol. 520, pp. 1679-1693, 2012.
[5.6] H. C. Wu and C. H. Chien, “High performance InGaZnO thin film transistor with InGaZnO source and drain electrodes,” Appl. Phys. Lett., vol. 102, pp. 062103-1—062103-4, 2013.
[5.7] X. Li, D. Geng, M. Mativenga, and J. Jang, “High-speed dual-gate -IGZO TFT-based circuits with top-gate offset structure,” IEEE Electron Device Lett., vol. 35, pp. 461-463, 2014.
[5.8] G. J. Lee, J. Kim, J. H. Kim, S. M. Jeong, J. E. Jang, and J. Jeong, “High performance, transparent -IGZO TFTs on a flexible thin glass substrate,” Semicond. Sci. Technol., vol. 29, pp. 035003-1—035003-5, 2014.
[5.9] N. Gong, C. Park, J. Lee, I. Jeong, H. Han, J. Hwang, J. Park, K. Park, H. Jeong, Y. Ha, and Y. Hwang, “Implementation of 240Hz 55-inch ultra definition LCD driven by -IGZO semiconductor TFT with copper signal lines,” SID Symposium Digest of Technical Papers, vol. 43, pp. 784-787, 2012.
[5.10] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, and S. S. Kim, “Amorphous-oxide TFT backplane for large-sized AMOLED TVs,” J. Soc. Inf. Disp., vol. 19, pp. 16-20, 2011.
[5.11] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, 2004.
[5.12] J. Kyeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett., vol. 91, pp. 113505-1—113505-3, 2007.
[5.13] J. S. Lee, S. Chang, S. M. Koo, and S. Y. Lee, “High-performance -IGZO TFT with ZrO2 gate dielectric fabricated at room temperature,” IEEE Electron Device Lett., vol. 31, pp. 225-227, 2010.
[5.14] Y. H. Lin and J. C. Chou, J. Nanomater., vol. 2014, pp. 1-6, 2014.
[5.15] N. C. Su, S. J. Wang, and A. Chin, “High-performance InGaZnO thin-film transistors using HfLaO gate dielectric,” IEEE Electr. Device Lett., vol. 30, pp. 1317-1319, 2009.
[5.16] L. Han, University of Kentucky UKnowledge, p. 9 (2015).
[5.17] K. Nomura, T. Kamiya, E. Ikenaga, H. Yanagi, K. Kobayashi, and H. Hosono, “Depth analysis of subgap electronic states in amorphous oxide semiconductor, -In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy,” J. Appl. Phys., vol. 109, pp. 073726-1—073726-8, 2011.
[5.18] M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, “Trap densities in amorphous-InGaZnO4 thin-film transistors,” Appl. Phys. Lett., vol. 92, pp. 133512-1—133512-3, 2008.
[5.19] J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. P. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of -IGZO TFTs related to oxygen vacancy,” IEEE T. Electron Dev., vol. 58, pp. 1121-1126, 2011.
[5.20] Y. C. Chen, T. C. Chang, H. W. Li, S. C. Chen, W. F. Chung, Y. H. Chen, Y. H. Tai, T. Y. Tseng, and F. S. Yeh, “Surface states related the bias stability of amorphous In-Ga-Zn-O thin film transistors under different ambient gasses,” Thin Solid Films, vol. 520, pp. 1432-1436, 2011.
[5.21] D. K. Schroder, Semiconductor Material and Device Characterization, p. 127.
[5.22] C. H. Wu, K. M. Chang, S. H. Huang, I. C. Deng, C. J. Wu, W. H. Chiang, J. W. Lin, and C. C. Chang, “The effect of thermal annealing on the properties of IGZO TFT prepared by atmospheric pressure plasma jet,” ECS Transactions, vol. 45, pp. 189-197, 2012.
[5.23] W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. Ahn, and J. W. Park, “An investigation of contact resistance between metal electrodes and amorphous gallium-indium-zinc oxide (-GIZO) thin-film transistors,” Thin Solid Films, vol. 518, pp. 6357-6360, 2010.
[5.24] Y. C. Chen, T. C. Chang, H. W. Li, S. C. Chen, W. F. Chung, Y. H. Chen, Y. H. Tai, T. Y. Tseng, and F. S. Yeh, “Source/drain metallization effects on the specific contact resistance of indium tin zinc oxide thin film transistors,” Mater. Sci. Semicond. Process., vol. 39, pp. 649-653, 2015.
[5.25] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes,” Thin Solid Films, vol. 516, pp. 5899-5902, 2008.
[5.26] X. W. Ding, J. H. Zhang, H. Zhang, H. Ding, C. X. Huang, J. Li, W. M. Shi, X. Y. Jiang, and Z. L. Zhang, “ZrO2 insulator modified by a thin Al2O3 film to enhance the performance of InGaZnO thin-film transistor,” Microelectron. Reliab., vol. 54, pp. 2401-2405, 2014.
[5.27] C. H. Wu, B. W. Huang, K. M. Chang, S. J. Wang, J. H. Lin, and J. M. Hsu, “The performance improvement of N2 plasma treatment on ZrO2 gate dielectric thin-film transistors with atmospheric pressure plasma-enhanced chemical vapor deposition IGZO channel,” J Nanosci. Nanotechno., vol. 16, pp. 6044-6048, 2016.
[5.28] F. H. Chen, C. H. Chen, and T. M. Pan, “Structural and Electrical Characteristics of High- Sm2TiO5 Gate Dielectrics for InGaZnO Thin-film Transistors,” IEEE T. Dielect. El. In., vol. 22, pp. 1337-1342, 2015.
[5.29] J. Song, C. Han, and P. T. Lai, “Comparative study of Nb2O5, NbLaO, and La2O3 as gate dielectric of InGaZnO thin-film transistor,” IEEE T. Electron Dev., vol. 63, pp. 1928-1933, 2016.
[5.30] S. Dueñas, H. Castán, H. Garcia, A. Gómez, L. Bailón, K. Kukli, J. Niinistö, M. Ritala, and M. Leskelä, “Electrical properties of thin zirconium and hafnium oxide high- gate dielectrics grown by atomic layer deposition from cyclopentadienyl and ozone precursors,” J. Vac. Sci. Technol. B, vol. 27, pp. 389-393, 2009.
[5.31] J. C. Park, I. T. Cho, E. S. Cho, D. H. Kim, C. Y. Jeong, and H. I. Kwon, “Comparative study of ZrO2 and HfO2 as a high-k dielectric for amorphous InGaZnO thin film transistors,” J. Nanoelectron. Optoe., vol. 9, pp. 67-70, 2014.
[5.32] H. S. Choi, S. Jeon, H. Kim, J. Shin, C. Kim, and U. I. Chung, “Verification of interface state properties of -InGaZnO thin-film transistors with SiNx and SiO2 gate dielectrics by low-frequency noise measurements,” IEEE Electron Device Lett., vol. 32, pp. 1083-1085, 2011.
[5.33] P. S. Bagus, F. Illas, G. Pacchioni, and F. Parmigiani, “Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding,” J. Electron Spectrosc. Rel. Phenomena, vol. 100, pp. 215-236, 1999.
[5.34] M. G. Kim, H. S. Kim, Y. G. Ha, J. He, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, “High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors,” J. Am. Chem. Soc., vol. 132, pp. 10352-10364, 2010.
[5.35] J. Y. Tewg, Y. Kuo, and J. Lu, “Suppression of crystallization of tantalum oxide thin film by doping with zirconium,” Electrochem. Solid St., vol. 8, pp. G27-G29, 2005.
[5.36] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B., vol. 65, pp. 075105-1—075105-10, 2002.
[5.37] J. H. Kim, V. Ignatova, P. Kücher, J. Heitmann, L. Oberbeck, U. Schröder, “Physical and electrical characterization of high- ZrO2 metal-insulator-metal capacitor,” Thin Solid Films, vol. 516, pp. 8333-8336, 2008.
[5.38] F. H. Chen, M. N. Hung, J. F. Yang, S. Y. Kuo, J. L. Her, Y. H. Matsuda, and T. M. Pan, “Effect of surface roughness on electrical characteristics in amorphous InGaZnO thin-film transistors with high- Sm2O3 dielectrics,” J. Phys. Chem. Solids, vol. 74, pp. 570-574, 2013.
[5.39] K. McKenna, A. Shluger, V. Iglesias, M. Porti, M. Nafría, M. Lanza, and G. Bersuker, “Grain boundary mediated leakage current in polycrystalline HfO2 films,” Microelectron. Eng., vol. 88, pp. 1272-1275, 2011.
[5.40] I. C. Chen, C. W. Teng, D. J. Coleman, and A. Nishimura, “Interface-trap enhanced gate-induced leakage current in MOSFET,” IEEE Electr. Device Lett., vol. 10, pp. 216-218, 1989.
[5.41] D. S. Jeong and C. S. Hwang, “Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films,” J. Appl. Phys., vol. 98, pp. 113701-1—113701-6, 2005.
[5.42] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high- dielectrics reliability issues,” IEEE Trans. Device Mat. Rel., vol. 5, pp. 5-19, 2005.
[5.43] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, and C. S. Hwang, “Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors,” Electrochem. and Solid-State Lett., vol. 11, pp. H157-H159, 2008.
[5.44] J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Appl. Phys. Lett., vol. 92, pp. 072104-1—072104-3, 2008.
[5.45] C. G. Lee and A. Dodabalapur, “Solution-processed zinc-tin oxide thin-film transistors with low interfacial trap density and improved performance,” Appl. Phys. Lett., vol. 96, pp. 243501-1—243501-3, 2010.
[5.46] F. H. Chen, T. M. Pan, C. H. Chen, J. H. Liu, W. H. Lin, and P. H. Chen, “Two-step electrical degradation behavior in α-InGaZnO thin-film transistor under gate-bias stress,” IEEE Electron Device Lett., vol. 34, pp. 635-637, 2013.
[5.47] J. I. Kim, I. T. Cho, S. M. Joe, C. Y. Jeong, D. Lee, H. I. Kwon, S. H. Jin, and J. H. Lee, “Effect of temperature and electric field on degradation in amorphous InGaZnO TFTs under positive gate and drain bias stress,” IEEE Electron Device Lett., vol. 35, pp. 458-460, 2014.
[5.48] T. C. Chen, T. C. Chang, T. Y. Hsieh, W. S. Lu, F. Y. Jian, C. T. Tsai, S. Y. Huang, and C. S. Lin, “Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 99, pp. 022104-1—022104-3, 2011.
[5.49] T. C. Chen, T. C. Chang, T. Y. Hsieh, C. T. Tsai, S. C. Chen, C. S. Lin, F. Y. Jian, and M. Y. Tsai, “Investigation of the gate-bias induced instability for InGaZnO TFTs under dark and light illumination,” Thin Solid Films, vol. 520, pp. 1422-1426, 2011.
[5.50] M. P. Hung, D. Wang, J. Jiang, and M. Furuta, “Negative bias and illumination stress induced electron trapping at back-channel interface of InGaZnO thin-film transistor,” ECS Solid State Lett., vol. 3, pp. Q13-Q16, 2014.
[5.51] H. C. Oh, S. M. Yoon, M. K. Ryu, C. S. Hwang, S. Yang, and S. H. K. Park, “Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor,” Appl. Phys. Lett., vol. 97, pp. 183502-1—183502-3, 2011.
[5.52] P. Migliorato, M. D. H. Chowdhury, J. G. Um, M. J. Seok, and J. Jang, “Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor,” Appl. Phys. Lett., vol. 101, pp. 123502-1—123502-5, 2012.
[5.53] J. W. Jo, Y. H. Kim, and S. K. Park, “Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors,” Appl. Phys. Lett., vol. 105, pp. 043503-1—043503-5, 2014.
[5.54] S. H. Kuk, S. Y. Lee, S. J. Kim, B. Kim, S. J. Park, J. Y. Kwon, and M. K. Han, “Light-induced hysteresis of In-Ga-Zn-O thin-film transistors with various temperatures,” IEEE Electron Device Lett., vol. 33, pp. 1279-1281, 2012.
[5.55] S. Y. Lee, J. Y. Kwon, and M. K. Han, “Investigation of photo-induced hysteresis and off-current in amorphous In-Ga-Zn oxide thin-film transistors under UV light irradiation,” IEEE T. Electron Dev., vol. 60, pp. 2574-2579, 2013.
[5.56] Y. C. Chen, T. C. Chang, and H. W. Li, “Bias-induced oxygen adsorption in zinc tin oxide thin film transistors under dynamic stress,” Appl. Phys. Lett., vol. 96, pp. 262104-1—262104-3, 2010.
[5.57] J. Li, F. Zhou, H. P. Lin, and W. Q. Zhu, “Effect of reactive sputtered SiOx passivation layer on the stability of InGaZnO thin film transistors,” Vacuum, vol. 86, pp. 1840-1843, 2012.
[5.58] P. Barquinha, Anna M. Vilà, G. Gonçalves, L. Pereira, R. Martins, Joan R. Morante, and E. Fortunato, “Gallium-indium-zinc-oxide-based thin-film transistors: influence of the source/drain material,” IEEE T. Electron Dev., vol. 55, pp. 954-960, 2008.
[5.59] K. H. Ji, J. I. Kim, Y. G. Mo, J. H. Jeong, S. Yang, C. S. Hwang, S. H. Park, M. K. Ryu, S. Y. Lee, and J. K. Jeong, “Comparative study on light-induced bias stress instability of IGZO transistors with SiNx and SiO2 gate dielectrics,” IEEE Electron Device Lett., vol. 31, pp. 1404-1406, 2010.
[5.60] J. M. Lee, I. T. Cho, J. H. Lee, W. S. Cheong, C. S. Hwang, and H. I. Kwon, “Comparative study of electrical instabilities in top-gate InGaZnO thin film transistors with Al2O3 and Al2O3/SiNx gate dielectrics,” Appl. Phys. Lett., vol. 94, pp. 222112-1—222112-3, 2009.
Chapter 6
[6.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488-492, 2004.
[6.2] J. Kyeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett., vol. 91, pp. 113505-1—113505-3, 2007.
[6.3] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269-1272, 2003.
[6.4] M. A. Marrs, C. D. Moyer, E. J. Bawolek, R. J. Cordova, J. Trujillo, G. B. Raupp, and B. D. Vogt, “Control of threshold voltage and saturation mobility using dual-active-layer device based on amorphous mixed metal-oxide-semiconductor on flexible plastic substrates,” IEEE T. Electron Dev., vol. 58, pp. 3428-3434, 2011.
[6.5] H. C. Wu and C. H. Chien, “High performance InGaZnO thin film transistor with InGaZnO source and drain electrodes,” Appl. Phys. Lett., vol. 102, pp. 062103-1—062103-4, 2013.
[6.6] T. Kamiya and H. Hosono, “Electronic structures and device applications of transparent oxide semiconductors: what is the real merit of oxide smiconductors?” Int. J. Appl. Ceram. Tec., vol. 2, pp. 285-294, 2005.
[6.7] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, pp. 851-858, 2006.
[6.8] J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. P. D. Shieh, P. T. Liu, and Y. P. Huang, “Electrical and photosensitive characteristics of -IGZO TFTs related to oxygen vacancy,” IEEE T. Electron Dev., vol. 58, pp. 1121-1126, 2011.
[6.9] S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, “Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors,” Adv. Mater., vol. 22, pp. 1346-1350, 2010.
[6.10] K. W. Lee, K. M. Kim, K. Y. Heo, S. K. Park, S. K. Lee, and H. J. Kim, “Effects of UV light and carbon nanotube dopant on solution-based indium gallium zinc oxide thin-film transistors,” Curr. Appl. Phys., vol. 11, pp. 280-285, 2011.
[6.11] C. H. Jung, H. I. Kang, and D. H. Yoon, “The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors,” Solid-State Electron., vol. 79, pp. 125-129, 2013.
[6.12] H. Y. Chong, K. H. Han, Y. S. No, and T. W. Kim, “Effect of the Ti molar ratio on the electrical characteristics of titanium-indium-zinc-oxide thin-film transistors fabricated by using a solution process,” Appl. Phys. Lett., vol. 99, pp. 161908-1—161908-3, 2011.
[6.13] H. H. Hsu, C. Y. Chang, C. H. Cheng, S. H. Chiou, C. H. Huang, “High mobility bilayer metal-oxide thin film transistors using titanium-doped InGaZnO,” IEEE Electron Device Lett., vol. 35, pp. 87-89, 2014.
[6.14] C. H. Hung, S. J. Wang, P. Y. Liu, C. H. Wu, N. S. Wu, H. P. Yan, and T. H. Lin, “A room temperature process for the fabrication of amorphous indium gallium zinc oxide thin-film transistors with co-sputtered ZrxSi1-xO2 Gate dielectric and improved electrical and hysteresis performance,” Jpn. J. Appl. Phys., vol. 56, pp. 04CG06-1—04CG06-5, 2017.
[6.15] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, and H. S. Shin, “High mobility bottom gate InGaZnO thin film transistors with etch stopper,” Appl. Phys. Lett., vol. 90, pp. 212114-1—212114-3, 2007.
[6.16] J. Raja, K. Jang, N. Balaji, W. Choi, T. T. Trinh , and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Appl. Phys. Lett., vol. 102, pp. 083505-1—083505-4, 2013.
[6.17] S. Y. Sung, J. H. Choi, U. B. Han, K. C. Lee, J. H. Lee, J. J. Kim, W. Lim, S. J. Pearton, D. P. Norton, and Y. W. Heo, “Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors,” Appl. Phys. Lett., vol. 96, pp. 102107-1—102107-3, 2010.
Chapter 7
[7.1] M. F. Lin, X. Gao, N. Mitoma, T. Kizu, W. Ou-Yang, S. Aikawa, T. Nabatame, and K. Tsukagoshi, “Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process,” AIP Adv., vol. 5, pp. 017116-1—017116-9, 2015.
[7.2] J. Lu, Y. Kuo, J. Yan and C. H. Lin, “Nanocrystalline Silicon Embedded Zirconium-Doped Hafnium Oxide High-k Memory Device,” Jpn. J. Appl. Phys., vol. 45, pp. L901-L903, 2006.
[7.3] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Lett., vol. 8, pp. 405-410, 2008.
[7.4] S. Salahuddin, and Supriyo Datta, “Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?” IEDM, 2008.
[7.5] M. H. Lee, Y. T. Wei, K. Y. Chu, J. J. Huang, C. W. Chen, C. C. Cheng, M. J. Chen, H. Y. Lee, Y. S. Chen, L. H. Lee, and M. J. Tsai, “Steep Slope and Near Non-Hysteresis of FETs With Antiferroelectric-Like HfZrO for Low-Power Electronics,” IEEE Electron Device Lett., vol. 36, pp. 294-296, 2012.