| 研究生: |
莫皓全 Mok, Hou-Chun |
|---|---|
| 論文名稱: |
基於十字的序列立體匹配演算法 A Temporal Cross-Based Stereo Matching Method |
| 指導教授: |
詹寶珠
Chung, Pau-Choo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 立體匹配 |
| 外文關鍵詞: | stereo matching |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來, 很多的立體匹配演算法被提出用於生成更為精準的深度資訊, 但大部分的演算法都只考慮單一時間的資訊. 在這種情況下, 因為參考的資訊有限會造成精準度的瓶頸, 此外, 在一整串序列當中因為物件的移動和鄰近資訊的變化而造成閃爍的影響.
為了解決以上的問題, 我們提出一種演算法在考慮時間和空間上的資訊後使得深度圖更為精準和在序列上更為平順. 這篇論文主要分為兩個部分: 首先,我們先根據左右圖找出對應的深度圖, 再找出時間序列上每一張圖的對應點把時間上的資訊納入考量. 其後使用左右檢測,雙向濾波去除深度圖的雜訊. 最後利用時間上的中值濾波器使得序列更為平順.
In the recent year, many methods is developed for stereo matching to generate a better depth map, but lots of them consider an instant time only. It will meet a bottleneck to the accuracy because of the limited information. Moreover, the depth map of a video sequence will flicker due to the movement of the object and the neighborhood of each pixel.
In order to solve the problem mention above, in this thesis an algorithm which considers the spatial-temporal information is proposed to enhance the accuracy and the consistency in a sequence. The paper is divided into three parts. The first part is to compute the disparity between the left and the right images according to the similarity. Then, we search the corresponding pixel between the before and after frame and add the temporal cost into consideration. Third, we perform post processing such as left-right check and bilateral filter to de-noise. Temporal median smooth the flickering and discontinuity as a sequence.
[1] Liang Wang, Mingwei Gong, Minglun Gong and Ruigang Yang, “How Far Can We Go with Local Optimization in Real-Time Stereo Matching,” IEEE International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT 2006), pp.129-136, 2006.
[2] Ke Zhang, Jiangbo Lu, G. Lafruit, “Cross-based local stereo matching using orthogonal integral images,” IEEE Transactions on Circuits and Systems for Video Technology, pp.1073-1079, 2009.
[3] A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann, “Local stereo matching using
geodesic support weights,” IEEE International Conference on Image Processing,
pp.2093-2096, 2009.
[4] Dengfeng Chai, Qunsheng Peng, “Bilayer Stereo Matching,” IEEE International
Conference on Computer Vision, pp.1-8, 2007.
[5] Jong Dae Oh, Siwei Ma and C.-C.J. Kuo, “Stereo Matching via Disparity Estimation and Surface Modeling,” IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
[6] Yi Deng, Qiong Yang, Xueyin Lin and Xiaoou Tang, “Stereo Correspondence with
Occlusion Handling in a Symmetric Patch-Based Graph-Cuts Model,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.29 (6) pp.1068 - 1079,
2007.
[7] Li Hong and George Chen, “Segment-based stereo matching using graph cuts,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.I-74-I-81 vol.1, 2004.
[8] Yuri Boykov, Olga Veksler and Ramin Zabih, “Fast approximate energy minimization
via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
23 (11) pp.1222-1239, 2001.
[9] QingXiong Yang, Liang Wang, Ruigang Yang, H Stewenius and David Nister, “Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31 (3) pp.492 - 504, 2009.
[10] O. Williams, M. Isard, and J. MacCormick, “Estimating disparity and occlusions in stereo video sequences,” in Proc. Conf. Computer Vision and Pattern Recognition, 2005, pp. CD_ROM.
[11] Z. Li, B. Curless, and S.M. Seitz. Spacetime stereo: Shape recovery of dynamic scenes. In Conference on Computer Vision and Pattern Recognition, 2003
[12] Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: a unifying framework for depth from triangulation. In: PAMI, vol. 27(2), pp. 296-302 (2005)
[13] Bleyer, M., Gelautz, M.: Temporally consistent disparity maps from uncalibrated stereo videos. In: Image and Signal Processing and Analysis (2009)
[14] E.S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs, “Temporally Consistent Reconstruction from Multiple Video Streams Using Enhanced Belief Propagation,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 2355-2362, 2006
[15] Xing Mei, Xun Shun, Mingcai Zhou, Shaohui Jiao, Haitao Wang, Xiaopeng Zhang "On Building an Accurate Stereo Matching System on Graphic Hardware" Computer Vision Workshops, 2011 IEEE
[16] C.Stentoumis, L.Grammatikopoulos, I.Kalisperakis, E.Petsa, G.Karras "A Local Adaptive Approach for Dense Stereo Matching in Architectural Scene Reconstruction" 5th International Workshop on 3D Virtual Reconstruction and Visualization of Complex Architectures (3D-ARCH '2013), 25-26 February 2013
[17] Gunnar Farneback, Two-frame motion estimation based on polynomial expansion, Lecture Notes in Computer Science, 2003, (2749), , 363-370.
[18] Farneback, G.: Polynomial Expansion for Orientation and Motion Estimation. PhD thesis, Linkoping University, Sweden, SE-581 83 Linkoping, Sweden (2002) Dissertation No 790, ISBN 91-7373-475-6.
[19] Pedro F. Felzenszwalb algorithm [Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision. International Journal of Computer Vision, 70(1), October 2006
[20] Daniel Scharstein, Richard Szeliski "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms" International Journal of Computer Vision, Volume 47, Issue 1-3, pp 7-42, April 2002
[21] Kuk-Jin Yoon, In So Kweon "Adaptive Support-Weight Approach for Correspondence Search" IEEE Transactions on pattern analysis and machine intelligence, VOL 28, NO. 4, April 2006
[22] Christian Richardt, Douglas Orr, Ian Davies, Antonio Criminisi and Neil A. Dodgson, "Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid," European conference on Computer Vision, pp. 510-523, 2010
[23] H. Hirschmuller and D. Scharstein. Evaluation of stere- ¨ o matching costs on images with radiometric differences. IEEE TPAMI, 31(9):1582–1599, 2009.
校內:2020-08-31公開