| 研究生: |
粘駿楠 Nian, Jun-Nan |
|---|---|
| 論文名稱: |
銅氧化物結構對其催化和光電化學反應性之影響 Structural Dependence of Catalytic and Photoelectrochemical Activities of Copper Oxides |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 分解水 、氫氣釋放 、二氧化鈦奈米管 、鈦酸鹽奈米管 、選擇性觸媒還原 、二氧化鈦載體 、氧化銅觸媒 、晶體的方向性 、電化學晶體成長 、氧化亞銅 |
| 外文關鍵詞: | Copper oxid, crystalline orientation, Cuprous oxide, Titania nanotube, Titanate nanotube, electroc |
| 相關次數: | 點閱:110 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在鈦酸鹽奈米管載入Cu2+,經鍛燒後,可在管狀的二氧化鈦上負載氧化銅。有著層狀結構的鈦酸鹽可很快的轉變成anatase二氧化鈦的結構,並使得銅更容易嵌入其層狀的結構。負載2 wt%銅的二氧化鈦管狀觸媒在選擇性NO還原反應的活性大於以二氧化鈦奈米粒子當載體的觸媒。XANES的分析結果顯示,觸媒載體上的銅離子皆為+2價。並由EXAFS的結果得知,在管狀觸媒上的氧化銅有較高的分散性並有較多的銅離子嵌入二氧化鈦的晶格中。在程溫還原的實驗中亦驗証,管狀的二氧化鈦觸媒其氧化銅擁有較高的分散性。利用in-situ離子嵌入法,可改善嵌入二氧化鈦晶格內的銅含量並形成CuxTi1-xO2的固態溶液。由計算可求得銅嵌入管狀觸媒和顆粒狀觸媒的比例分別為40%和20%。在此認為CuxTi1-xO2為使得Cu/TiO2觸媒擁有極佳反應性的主要活性座。
在導電玻璃上利用電化學沈積的方法製備p型的氧化亞銅薄膜,經由可見光的照射檢驗其氫氣的釋放量。在一開始特性的測試使用白金為相對電極,在Na2SO4電解質溶液中施加偏壓可觀察光電流的應答屬於p型半導體行為。不同沈積溫度可製備出不同優勢方向成長的薄膜,有著[111]優勢方向成長的薄膜,其沿[111]方向傳導時有較小的效率電洞質量,並展現出較大的光電流。由薄膜刮下所得之氧化亞銅在懸浮法照射可見光的空白實驗中並無發現氫氣的產生,當結合具n型半導體行為的氧化鎢後,由[111]優勢方向成長的粉末亦顯示出較大的氫釋放速率。氧化亞銅電極搭配氧化鎢薄膜所得的光電流比以白金當相對電極有明顯的提升,故利用p-n結合的方式可改善電荷分離的效果,進一步使得在可見光分解水的效率上能夠有所提升。
以電化學沈積的方式,在導電玻璃上製備具[100]優勢方向成長的氧化亞銅,經由光電化學及交流阻抗界面分析顯示,在沈積時間大於120分鐘後,其電極/電解質界面的應答行為由p型轉變為n型半導體行為。並由X光吸收光譜及EXAFS分析顯示,具n型半導體行為的氧化亞銅,晶格內銅空缺相較於一般氧化亞銅晶體情形更為嚴重。由TEM觀察得到,所製得之n型氧化亞銅其晶結構具奈米級的孔洞結構,此可能造成大量表面態的存在,進而使得氧化亞銅由p型半導體的行為轉變為n型半導體。
Copper oxide was deposited on tubular TiO2 via Cu2+ introduction into a titanate nanotube aggregate followed by calcination. The titanate has a layered structure allowing Cu intercalation and can readily transform to anatase TiO2 via calcination to condense the constituting layers. The activity of the tubular catalysts, with a Cu content of 2 wt.%, in selective NO reduction with NH3 was compared with those of other Cu/TiO2 catalysts using TiO2 nanoparticles as the support. The Cu species supported on the nanotubes showed a higher activity than those supported on the nanoparticles. XANES analysis showed that the Cu species on all the TiO2 supports are in the +2 state. EXAFS investigations of these catalysts reflected higher degrees of CuO dispersion and Cu2+ dissolution into the TiO2 lattice for the tubular Cu/TiO2 catalysts. Little bulk CuO was detected by a temperature-programmed reduction study on the tubular catalysts, confirming the high CuO-dispersion feature of the tubular catalysts. The dissolution of Cu2+ to form a CuxTi1-xO2 type of solid solution was improved by using an in-situ ion-intercalation method for Cu deposition on the nanotubes. A fraction as high as 40% for Cu2+ dissolution was obtained for the tubular catalysts while only 20% for the particulate catalysts. The CuxTi1-xO2 species were suggested to be the more active site on the Cu/TiO2 catalysts.
The p-type Cu2O films prepared with electrochemical deposition on transparent conducting glass from a Cu2SO4 solution was examined for H2 evolution from water-splitting under visible-light illumination. In the initial characterization test using Pt as the counter electrode, p-type photocurrents could be observed for the deposited Cu2O films in a Na2SO4 electrolyte under a potential bias. The Cu2O films obtained at different deposition temperatures showed different out-of-plane crystalline orientations as well as different responses to the illumination. The film with a [111] out-of-plane orientation, along which the carrier effective mass is smaller, exhibited a stronger photocurrent than that with a [110] orientation. The Cu2O powders scraped off from the films did not show water-splitting capability in a suspension system illuminated with visible light. When coupled with n-type WO3 to facilitate interparticle electron transfer, the Cu2O powders, however, were capable of catalyzing H2 evolution from a methanol solution or pure water under visible-light illumination. A larger amount of H2 evolution was observed for the Cu2O powder derived from the [111]-oriented film. By coupling with a WO3 film, the photocurrent of the Cu2O films under a potential bias was also shown to increase. Optimization of the Cu2O crystalline orientation and development of a strategy, such as the p-n coupling, to improve charge separation within Cu2O were looked to as the key issues for effective water-splitting under visible-light illumination.
Cu2O films, a [100] out-of-plane orientation, prepared with electrochemical deposition on transparent conducting glass from a Cu2SO4 solution was examined for photoelectrochemical measurement. Cu2O films, with a deposition time over 120 min, the p-type semiconductor behavior of electrode/electrolyte interface transform to an n-type behavior. XANES and EXAFS analysis showed that there are more Cu2+ vacancies in Cu2O lattice compared to ordinary one. Accroding to the result of TEM analysis, Cu2O crystal which shows n type behavior has nanoporous structure. This structure may produce more surface states on Cu2O crystal and cause a p-type behavior transform to n-type.
[1] Balkanski, M.; Petroff, Y.; Trivich, D. Solid State Commun. 1967, 5, 85.
[2] Toth, R.S.; Kilkson, R.; Trivich, D. Phys. Rev. 1961, 122, 482.
[3] Minomura, S.; Drickamer, H.G. J. Appl. Phys. 1963, 34, 3043.
[4] Gross, E.F. Suppl. Nuovo Cimento 1956, 3, 12.
[5] Trauernicht, D.P.; Wolfe, J.P. Phys. Rev. B 1986, 33, 8506.
[6] Ghijsen, J.; Tjeng, L.H.; Van Elp, J.; Eskes, H.; Westerink, J. Sawatzky, G.A.; Cżyżyk, M.T. Phys. Rev. B 1988, 38, 11322.
[7] Yang, B.X.; Tranquada, J.M.; Shirane, G. Phys. Rev. B 1988, 38, 174.
[8] Okamoto, Y.; Gotoh, H.; Aritani, H.; Tanake, T.; Yoshida, S. J. Chem. Soc., Faraday Trans. 1997, 93, 3879.
[9] Aritani, H.; Akasake, N.; Tanaka, T.; Funabiki, T.; Yoshida, S.; Gotoh, H.; Okamoto, Y. J. Chem. Soc., Faraday Trans. 1996, 92, 2625.
[10] Komatsu, T.; Nunokawa, M.; Moon, I.S.; Takahara, T.; Namba, S.; Yashima, T. J. Catal. 1994, 148, 427.
[11] Komatsu, T.; Ueda, T.; Yashima, T. J. Chem. Soc., Faraday Trans. 1998, 94, 949.
[12] Ramis, G.; Yi, L.; Busca, G.; Turco, M.; Kotur, E.; Willey, R.J. J. Catal. 1995, 157, 523.
[13] Van der Grigt, C.J.G.; Woldhuis, A.F.; Maaskant, O.L. Catal. Today 1996, 27, 23.
[14] Komova, O.V.; Simakov, A.V.; Tzykoza, L.T.; Sazonova, N.N.; Ushakov, A.V.; Barannik, G.B.; Ismagilov, Z.R. React. Kinet. Catal. Lett. 1995, 54, 361.
[15] Centi, G.; Perathoner, S.; Kartheuser, B.; Rohan, D.; Hodnett, B.K. Appl. Catal. 1992, 1, 129.
[16] Blanco, J.; Odenbrand, C.U.I.; Avila, P.; Knapp, C. Catal. Today 1998, 45, 103.
[17] Potdar, H.S.; Pavaskar, N.; Mitra, A.; Sinha, A.P.B. Sol. Energy Mater. 1981, 4, 291.
[18] Roos, A.; Chibuye, T.; Karlson, B. Sol. Energy Mater. 1983, 7, 453.
[19] Rakhshani, A.E. Solid State Electron. 1986, 29, 7.
[20] Rakhshani, A.E.; Varghese, J. Phys. Stat. Sol. 1987, 101, 479.
[21] Ikeda, S.; Takata, T.; Kondo, T.; Hitoki, G.; Hara, M.; Kondo, J.N.; Domen, K.; Hosono, H.; Kawazoe, H.; Tanaka, A. J. Chem. Soc. Chem. Commun. 1998, 2185.
[22] Hara, M.; Komoda, M.; Hasei, H.; Yashima, M.; Ikeda, S.; Takata, T.; Kondo, J.N.; Domen, K. J. Phys. Chem. B 2000, 104, 780.
[23] Georgieva, V.; Ristov, M. Sol. Energy Mater. Sol. Cells 2002, 73, 67.
[24] Laik, B.; Poizot, P.; Tarascon, J. J. Electrochem. Soc. 2000, 149, A251.
[25] Siripala, W.; Ivanovskaya, A.; Jaramillo, T.F.; S. Baeck, T.F.; McFarland, E.W. Sol. Energy Mater. Sol. Cells 2003, 77, 229.
[26] Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.; Tanaka, A.; Kondo, J.N.; Domen, K. Chem. Commun. 1998, 3, 357.
[27] de Jongh, P.E.; Vanmaekelbergh, D.; Kelly, J.J. Chem. Commun. 1999, 12, 1069.
[28] de Jongh, P.E.; Vanmaekelbergh, D.; Kelly, J.J. J. Electrochem. Soc. 2000, 147, 486.
[29] Golden, T.D.; Shumsky, M.G.; Zhou, Y.; Vanderwerf, R.A.; Van Leeuwen, R.A.; Switzer, J.A. Chem. Mater. 1996, 8, 2499.
[30] Pârvulescu, V.I.; Grange, P.; Delmon, B. Catal. Today 1999, 46, 233.
[31] 鄧熙聖,國內外選擇性觸媒還原法狀況及技術發展調查, 行政院國家 科學委員會專題研究計畫, 1997.
[32] Gandhi, H.S.; Graham, G.W.; McCabe, R.W. J. Catal. 2003, 216, 433.
[33] Bosch, H.; Janssen, F. Catalysis Today 1988, 2, 369.
[34] Bauerle, G.L.; Wu, S.C.; Nobe K. Ind. Eng. Chem. Prod. Res. Dev. 1975, 14, 268.
[35] Bauerle, G.L.; Wu, S.C.; Nobe K. Ind. Eng. Chem. Prod. Res. Dev. 1978, 17, 117.
[36] Fujimoto, K.; Shikada, T.; Kunugi, T.; Tominaga, H. Nenryo Kyokaishi 1977a, 56, 267.
[37] Fujimoto, K.; Shikada, T.; Kunugi, T.; Tominaga, H. Nenryo Kyokaishi 1977b, 56, 666.
[38] Davidová, M.; Nachtigallová, D.; Nachtigall, P. J. Phys. Chem. B 2004, 108, 13674.
[39] García-Cortés, J.M.; Pérez-Ramírez, J.; Illán-Gómez, M.J.; Kapteijn, F.; Moulijn, J.A.; Salinas-Martínez de Lecea, C. React. Kinet. Catal. Lett. 2000, 70, 199.
[40] Diebold, U. Surf. Sci. Rep. 2003, 48, 53.
[41] Matsumoto, T.; Murakami, Y.; Takasu, Y. Chem. Lett.1999, 177.
[42] Moriguchi, I.; Maeda, H.; Teraoka, Y.; Kagawa, S. J. Am. Chem. Soc. 1995 117, 1139.
[43] Miao, Z.; Xu, D.; Ouyang, J.; Guo, G.; Zhao, X.; Tang, Y. Nano Lett. 2002, 2, 717.
[44] Limmer, S. J.; Cao, G. Adv. Mater. 2003, 15, 427.
[45] Park, I.-S.; Jang, S.-R.; Hong, J.S.; Vittal, R.; Kim, K.-J. Chem. Mater. 2003, 15, 4633.
[46] Nian, J.-N.; Teng, H. J. Phys. Chem. B 2006, 110, 4193.
[47] Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Application; John Wiley & Sons, New York, 1980.
[48] Pandey, R.K.; Sahu, S.N.; Chandra, S. Handbook of Semiconductor Electrodeposition; M. Dekker, New York, 1996.
[49] Schlesinger, M.; Paunovic, M. Modern Electroplating; John Wiley, New York, 2000.
[50] Hwang, B.J. ; Santhanam, Raman; Lin, Y.-L. J. Electrochem. Soc. 2000, 147, 2252.
[51] de Jongh, P.E.; Vanmaekelbergh, D.; Kelly, J.J. Chem. Mater. 1999, 11, 3512.
[52] Switzer, J.A.; Kothari, H.M.; Bohannan, E.W. J. Phys. Chem. B 2002, 106, 4027.
[53] Poizot, P.; Hung, C.J.; Nikiforov, M.P.; Bohannan, E.W.; Switzer, J.A. Electrochem. Solid State Lett. 2003, 6, c21.
[54] Barton, J.K.; Vertegel, A.A.; Bohannan, E.W.; Switzer, J.A. Chem. Mater. 2001, 13, 952.
[55] Liu, R.; Oba, F.; Bohannan, E.W.; Ernst, F.; Switzer, J.A. Chem. Mater. 2003, 15, 4882.
[56] Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solution; National Association of Corrosion Engineers, Houston, 1974.
[57] Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction; Prentice Hall, Upper Saddle River, 2001.
[58] Finklea, H.O. Semiconductor Electrodes; Elsevier, New York, 1988.
[59] Memming, R. Semiconductor Electrochemistry, Wiley-VCH, New York, 2001.
[60] Moss, T.S. Handbook on Semiconductors, Dover Publications Inc., New York, 1971.
[61] Brett, C.M.A.; Brett, A.M.O. Electrochemistry: Principles, Methods, and Applications, Oxford, New York, 1993.
[62] Macdonald, J.R. Impedance Spectroscopy: Emphasizing Solid Materials and Systems, Wiley, New York, 1987.
[63] Adlkofer, K.; Tanaka, M. Langmuir 2001, 17, 4267.
[64] Grätzel, M. Nature 2001, 414, 338.
[65] Licht, S. Semiconductor Electrodes and Photoelectrochemistry, Wiley-VCH, Weinheim, 2002.
[66] Becquerel, A.E. Acad. Science 1839, 9, 561.
[67] Brattain, W.H.; Garret, C.G.B. Semiconductor Surface Phenomena in Semiconducting Materials Proc. Conf. Univ. Reading, England, 1951, 37.
[68] Brattain, W.H.; Garrett, C.G.B. Phys. Rev. 1955, 99, 376.
[69] Fujishima, A.; Honda, K. Nature 1972, 238, 37.
[70] Gerischer, H. Semiconductor Electrochemistry: in Physical Chemistry: An Advanced Ttreatise, Academic Press, New York, 1970, p.463.
[71] Myamlin, V.A.; Pleskov, Y.V. Electrochemistry of Semiconductors, Plenum Press, New York, 1967.
[72] Fujishima, A.; Rao, T.N.; Tryk, D.A. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1.
[73] Sato, N. Electrochemistry at Metal and semiconductor electrodes, Elsevier, New York, 1998.
[74] Teo, K.B. EXAFS: Basic Principle and Data Analysis, Springer-Verlag, New York, 1986.
[75] Koningsberger, D.C.; Prins, R. X-Ray Absorption: Principles, Application, Techniques of EXAFS, SEXAFS, and XANES, John Wiley, New York, 1988.
[76] http://cms.mpi.univie.ac.at/VASP/
[77] Honhenber, P.; Kohn, W. Phy. Rev. 1964, 136, B864.
[78] Blochl, P.E. Phys. Rev. B 1994, 50,17953.
[79] Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59,1758.
[80] Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principles of Instrumental Analysis, Saunders College Publishing, Philadelphia, 1998.
[81] Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534.
[82] Brunaller, S.; Emmett, P.H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 390.
[83] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14, 3160.
[84] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11, 1307.
[85] Tsai, C.-C.; Teng, H. Chem. Mater. 2006, 18, 367.
[86] Power Diffraction Files of Joint Committee on Powder Diffraction Standards, Card No. 47-0124, Internationa Center for Diffraction Data.
[87] Zhang, S.; Peng, L.-M.; Chen, Q.; Du, G.H.; Dawson, G.; Zhou, W.Z. Phys. Rev. Lett. 2003, 9, 256103.
[88] Yang, J.; Jin, Z.; Wang, X.; Li, W.; Zhang, J.; Zhang, S.; Guo, X.; Zhang, Z. Dalton Trans. 2003, 3898.
[89] Nian, J.-N.; Teng, H. J. Phys. Chem. B 2006, 110, 4193.
[90] Kau, L.S.; Spira-Solomon, D.J.; Penner-Hahn, J.E.; Hodgson, K.O.; Solomon, E.I. J. Am. Chem. Soc. 1987, 109, 6433.
[91] Okamoto, Y.; Kubota, T.; Gotoh, H.; Ohto, Y.; Aritani, H.; Tanaka, T.; Yoshida, S. J. Chem. Soc., Faraday Trans. 1998, 94, 3743.
[92] Huang, Y.J.; Wang, H.P. J. Phys. Chem. A 1999, 103, 6514.
[93] Bouchet, R.; Weibel, A.; Knauth, P.; Mountjoy, G.; Chadwick, A.V. Chem. Mater. 2003, 15, 4996.
[94] Zhou, R.X.; Yu, T.M.; Jiang, X.Y.; Chen, F.; Zheng, X.M. Appl. Surf. Sci. 1999, 148, 263.
[95] Wang, D.; Mo, M.; Yu, D.; Xu, L.; Li, F.; Qian, Y. Cryst. Growth Des. 2003, 3, 717.
[96] Ching, W.Y.; Xu, Y.-N.; Wong, K.W.; Phys. Rev. B 1989, 40, 7684.
[97] Brigham, E.S.; Weisbecker, C.S.; Rudzinski, W.E.; Mallouk, T.E. Chem. Mater. 1996, 8, 2121.
[98] Siegfried, M.J.; Choi, K.-S. Adv. Mater. 2004, 16, 1743.
[99] Hong, J.; Cao, J.; Sun, J.; Li, H.; Chen, H.; Wang, M. Chem. Phys. Lett. 2003, 380, 366.
[100] Liu, Y.L.; Liu, Y.C.; Mu, R.; Yang, H.; Shao, C.L.; Zhang, J.Y.; Lu, Y.M.; Shen, D.Z.; Fan, X.W. Semicond. Sci. Technol. 2005, 20, 44.
[101] Šantić, B. Semicond. Sci. Technol. 2003, 18, 219.
[102] Nozik, A.J.; Memming, R. J. Phys. Chem. B 1996, 100, 13061.
[103] Grätzel, M. Nature, 2001, 414, 338.
[104] Pollack, G.P.; Trivich, D. J. Appl. Phys. 1975, 46, 163.
[105] Jayewardena, C.; Hewaparakrama, K.P.; Wijewardena, D.L.A.; Guruge, H. Sol. Energy Mater. Sol. Cells 1998, 56, 29.
[106] Hurtós, E.; Rodríguez-Viejo, J. J. Appl. Phys. 2000, 87, 1749.
[107] Liu, Y.L.; Liu, Y.C.; Mu, R.; Yang, H.; Shao, C.L.; Zhang, J.Y.; Lu, Y.M.; Shen, D.Z.; Fan, W. Semicond. Sci. Technol. 2005, 20, 44.
[108] Zheng, Y.B.; Wang, S.J.; Huan, A.C.H.; Tripathy, S.; Chai, J.W.; Kong, L.B.; Ong, C.K.; J. Appl. Phys. 2006, 99, 014106.
[109] Ruach-Nir, I.; Wagner, H.D.; Rubinstein, I.; Hodes, G. Adv. Funct. Mater. 2003, 13, 159.
[110] Leapman, R.D.; Grunes, L.A. Phys. Rev. Lett. 1980, 45, 397.
[111] Leapman, R.D.; Grunes, L.A.; Fejes, P.L. Phys. Rev. B 1982, 26, 614.