簡易檢索 / 詳目顯示

研究生: 韓逸成
I-Chen, Hans
論文名稱: 機械力對於腎臟之 Focal Adhesion Complex 蛋白調控所扮演的角色
The Role of Mechanical Forces in Regulation of Focal Adhesion Complex Proteins in Developing Kidney
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 58
中文關鍵詞: 原子力顯微鏡剪流力鞭毛
外文關鍵詞: flow shear stress, FAK, cilia, kidney, AFM
相關次數: 點閱:95下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物理環境對於細胞的生理功能有很重要的影響。之前的研究指出,膠原蛋白的軟度會引起focal adhesion complex 蛋白的降低調控。軟基材也會擾亂腎臟上皮細胞鈣離子的平衡且活化-calpain。 而鈣離子的變化也可以經由細胞鞭毛因流力而彎曲所形成。另外,focal adhesion kinase (FAK) 在胎鼠腎臟發育晚期中漸漸被分解,且在老鼠出生後快速的消失。這其中的機制是如何調控的至今仍未有答案。 我們提出了兩個可能由機械力在腎臟發育過程對於focal adhesion complex 蛋白降低調控的假設:經由降低腎臟本身的軟度或因尿液流力而彎曲鞭毛的影響。第一步我們先利用動態機械分析儀和原子力顯微鏡來測量腎臟在不同發育階段的軟硬度。結果顯示腎臟的軟硬度在出生後是上升的。因此我們提出FAK在腎臟發育過程的降解是因為鞭毛被尿液流力彎曲,因而使得細胞內鈣離子的上升,活化-calpain 並切FAK。免疫組織染色顯示只有在胎鼠19.5日後才能從腎小管中找到鞭毛,而這個時間點和FAK 在腎臟發育過程開始被分解的時間是相同的。為了要模擬腎臟內尿液的流動,我們給予MDCK分支3B5細胞 4 dyne/cm2的剪流力。我們發現在30分鐘內focal adhesion complex 蛋白會被分解,而 -spectrin也會產生145 kD和120 kD的片段。這些結果的模式和發育中的腎臟相似,反映活化calpain和caspase-3的可能性。另一方面,將細胞擺在每秒20次的旋轉機或擺動機上所造成的雙方向或旋轉性流力都能使得FAK隨時間降低調控。螢光免疫染色顯示當剪流力增強時 (2, 4, 6 dyne/cm2),FAK會從細胞周圍轉移到細胞內。 這個研究提供機械力如何在腎臟發育過程中調控focal adhesion complex 蛋白的可能性。

    Physical environment plays an important role in modulating cellular physiological functions. Previous study showed that low rigidity of collagen gel induced downregulation of focal adhesion complex proteins. Soft substrate can also disturb calcium homeostasis and activate -calpain in renal epithelial cells. It has been shown that intracellular calcium concentration is altered when primary cilia on kidney epithelial cells sense shear flow. The bending of primary cilia increases intracellular calcium concentration. Our previous studies have found that focal adhesion kinase (FAK) was degraded gradually in late embryonic rat kidney development and rapidly diminished after birth, yet the regulating mechanism was unclear. We hypothesized two possibilities of how mechanical force regulates focal adhesion complex proteins in developing kidney: via decreasing kidney rigidity after birth or sensing urine flow by the primary cilia. We first measured the elasticity of kidney in different developing stages using dynamic mechanical analyzer and atomic force microscopy. The results showed that the rigidity was increased after birth. We therefore proposed that degradation of FAK in the developing kidney might be caused by urine shear flow mediated by primary cilium of epithelium. Immunohistochemical study showed that cilia formation was found in kidney tubules as early as at embryonic day 19.5 during development, which matched our initial observation in FAK degradation in embryonic kidney. In order to mimic urine flow in the kidney, we applied luminal shear flow (4 dyne/cm2) to MDCK subline 3B5 cells. We observed degradation of focal adhesion complex proteins and degraded fragments of -spectrin at 145 and 120 kD within 30 min. These results were similar as in the developing kidney, suggesting possible activation of calpain and caspase-3. On the other hand, bidirectional and rotational stress, produced by placing cultured cells on a shaker or rotator at 20 rpm, respectively, resulted in downregulation of FAK in time dependent manner. Immunofluorescence studies showed that as flow shear stress increased (2, 4, 6 dyne/cm2), FAK translocated from cell periphery to cytosol. This study provided a possible mechanism on how mechanical force regulates focal adhesion complex proteins during kidney development.

    Abstract…………………………………………..………… 3 Figure Content…………………………………..………… 8 Introduction………………………………………..………. 10 Materials and methods…………………………………… 18 Results……………………………………………………… 25 Discussion…………………………………………………. 30 References………………………………………………… 39 Figures…………………………………………………....... 44 Appendix…………………………………………………… 57

    Aboualaiwi W, Takahashi M, Mell B, Jones T, Ratnam S, Kolb R, Nauli S (2009) Ciliary Polycystin-2 Is a Mechanosensitive Calcium Channel Involved in Nitric Oxide Signaling Cascades. Circ Res
    Alcaraz J, Xu R, Mori H, Nelson C, Mroue R, Spencer V, Brownfield D, Radisky D, Bustamante C, Bissell M (2008) Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J 27:2829-2838
    Bhatt A, Kaverina I, Otey C, Huttenlocher A (2002) Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J Cell Sci 115:3415-3425
    Bisgrove B, Yost H (2006) The roles of cilia in developmental disorders and disease. Development 133:4131-4143
    Burridge K, Turner C, Romer L (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119:893-903
    Büki A, Okonkwo D, Wang K, Povlishock J (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20:2825-2834
    Calderwood D, Ginsberg M (2003) Talin forges the links between integrins and actin. Nat Cell Biol 5:694-697
    Carragher N, Westhoff M, Riley D, Potter D, Dutt P, Elce J, Greer P, Frame M (2002) v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol 22:257-269
    Chen W-C (2008) Low Substratum Stiffness Prevents TGF-beta1-Induced Epithelial-Mesenchymal Transition via Downregulation of beta1 integrin.
    Chevalier R (1982) Glomerular number and perfusion during normal and compensatory renal growth in the guinea pig. Pediatr Res 16:436-440
    Chiu J, Chen L, Chen C, Lee P, Lee C (2004) A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech 37:531-539
    Chiu W, Wang Y, Tang M, Shen M (2007) Soft substrate induces apoptosis by the disturbance of Ca2+ homeostasis in renal epithelial LLC-PK1 cells. J Cell Physiol 212:401-410
    Chou C, Marsh D (1987) Measurement of flow rate in rat proximal tubules with a nonobstructing optical method. Am J Physiol 253:F366-371
    Dourdin N, Bhatt A, Greer P, Arthur S, Elce J, Huttenlocher A (2000) Reduced cell migration and disruption of the actin cytoskeleton in calpain deficient embryonic fibroblasts. Mol Biol Cell 11:181A-181A
    Doyle A, Wang F, Matsumoto K, Yamada K (2009) One-dimensional topography underlies three-dimensional fibrillar cell migration. J Cell Biol 184:481-490
    Du Z, Duan Y, Yan Q, Weinstein A, Weinbaum S, Wang T (2004) Mechanosensory function of microvilli of the kidney proximal tubule. Proc Natl Acad Sci U S A 101:13068-13073
    Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein A, Wang T (2006) Axial flow modulates proximal tubule NHE3 and H-ATPase activities by changing microvillus bending moments. Am J Physiol Renal Physiol 290:F289-296
    Duan Y, Gotoh N, Yan Q, Du Z, Weinstein A, Wang T, Weinbaum S (2008) Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci U S A 105:11418-11423
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677-689
    Fischer E, Legue E, Doyen A, Nato F, Nicolas J, Torres V, Yaniv M, Pontoglio M (2006) Defective planar cell polarity in polycystic kidney disease. Nat Genet 38:21-23
    Friedland J, Lee M, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323:642-644
    Giannone G, Ronde P, Gaire M, Beaudouin J, Haiech J, Ellenberg J, Takeda K (2004) Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions. J Biol Chem 279:28715-28723
    Hauck C, Hsia D, Ilic D, Schlaepfer D (2002) v-Src SH3-enhanced interaction with focal adhesion kinase at beta(1) integrin-containing invadopodia promotes cell invasion. J Biol Chem 277:12487-12490
    Hauck C, Sieg D, Hsia D, Loftus J, Gaarde W, Monia B, Schlaepfer D (2001) Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res 61:7079-7090
    Huangfu D, Liu A, Rakeman A, Murcia N, Niswander L, Anderson K (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83-87
    Jonassen J, San Agustin J, Follit J, Pazour G (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 183:377-384
    Katsumi A, Orr A, Tzima E, Schwartz M (2004) Integrins in mechanotransduction. J Biol Chem 279:12001-12004
    Kaysen J, Campbell W, Majewski R, Goda F, Navar G, Lewis F, Goodwin T, Hammond T (1999) Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent. J Membr Biol 168:77-89
    Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:299-306
    Li S, Butler P, Wang Y, Hu Y, Han D, Usami S, Guan J, Chien S (2002) The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci U S A 99:3546-3551
    Li Y, Haga J, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949-1971
    Lim S, Chen X, Lim Y, Hanson D, Vo T, Howerton K, Larocque N, Fisher S, Schlaepfer D, Ilic D (2008) Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol Cell 29:9-22
    Liu W, Murcia N, Duan Y, Weinbaum S, Yoder B, Schwiebert E, Satlin L (2005) Mechanoregulation of intracellular Ca2+ concentration is attenuated in collecting duct of monocilium-impaired orpk mice. Am J Physiol Renal Physiol 289:F978-988
    McDaniel D, Shaw G, Elliott J, Bhadriraju K, Meuse C, Chung K, Plant A (2007) The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys J 92:1759-1769
    Nauli S, Alenghat F, Luo Y, Williams E, Vassilev P, Li X, Elia A, Lu W, Brown E, Quinn S, Ingber D, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129-137
    Parsons J (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409-1416
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241-254
    Patwari P, Lee R (2008) Mechanical control of tissue morphogenesis. Circ Res 103:234-243
    Piontek K, Menezes L, Garcia-Gonzalez M, Huso D, Germino G (2007) A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat Med 13:1490-1495
    Praetorius H, Spring K (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71-79
    Santos N, Reiter J (2008) Building it up and taking it down: the regulation of vertebrate ciliogenesis. Dev Dyn 237:1972-1981
    Schaller M (2001) Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20:6459-6472
    Schlaepfer D, Mitra S, Ilic D (2004) Control of motile and invasive cell phenotypes by focal adhesion kinase. BBA-Mol Cell Res 1692:77-102
    Shyy J, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769-775
    Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Krönig C, Schermer B, Benzing T, Cabello O, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537-543
    Tsai C-Y (2004) Regulation of focal adhesion complex proteins in developing kidney.
    Wang H, Dembo M, Wang Y (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279:C1345-1350
    Wang K (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20-26
    Wang Y, Wang Y, Wang C, Sung J, Chiu W, Lin S, Chang Y, Tang M (2003) Rigidity of collagen fibrils controls collagen gel-induced down-regulation of focal adhesion complex proteins mediated by alpha2beta1 integrin. J Biol Chem 278:21886-21892
    Wang YL, Pelham RJ, Jr. (1998) Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298:489-496
    Wei W, Lin H, Shen M, Tang M (2008) Mechanosensing machinery for cells under low substratum rigidity. Am J Physiol Cell Physiol 295:C1579-1589
    Wells R (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394-1400
    Wu C, Li Y, Haga J, Kaunas R, Chiu J, Su F, Usami S, Chien S (2007) Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc Natl Acad Sci U S A 104:1254-1259
    Yoder B (2007) Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 18:1381-1388
    Yoder B, Hou X, Guay-Woodford L (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508-2516
    Young S, Gerard-O'Riley R, Kim J, Pavalko F (2009) Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. J Bone Miner Res 24:411-424
    Ziegler W, Liddington R, Critchley D (2006) The structure and regulation of vinculin. Trends Cell Biol 16:453-460

    下載圖示 校內:2010-08-19公開
    校外:2010-08-19公開
    QR CODE