簡易檢索 / 詳目顯示

研究生: 陳彥瑋
Chen, Yan-Wei
論文名稱: 使用溶液燃燒合成法製備奈米均混前驅物用於改良alpha-SiAlON螢光粉體之熱碳還原氮化法合成製程開發
Process Development for Carbothermal Reduction and Nitridation Synthesis of alpha-SiAlON Phosphors by Using Solution Combustion Synthesized Precursors
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 130
中文關鍵詞: 氮氧化物螢光粉SiAlON熱碳還原法溶液燃燒法
外文關鍵詞: Oxynitride, Solution combustion, Carbothermal nitridation, Phosphor
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前較有潛力和經濟性的方法合成氮化物或氮氧化物,以現階段而言多以氧化物在氮氣氣氛下進行還原反應得之,我們實驗室已經能非常成功地將氧化鋁或二氧化矽轉換成氮化鋁和氮化矽。因此整篇論文根據本實驗室既有的技術基礎,欲以氧化矽和氧化鋁混合物合成現今相當熱門之陶瓷材料-賽隆(SiAlONs),這是一種含有矽、鋁、氧、氮原子組成之結構。
    我們利用溶液燃燒法來製備混合均勻且粒徑趨向奈米級之氮化反應前驅物,並透過後續熱碳還原處理,我們成功得到以α-SiAlON為主要晶相之產物,隨著活性離子的添加獲得螢光效果,也能證實螢光粉的合成製備成功。
    研究的重點:1.碳數比例、2.反應溫度、3.晶種添加、4. 活性離子摻雜濃度、5.前驅物的形態影響,並透過XRD、SEM、PL等儀器分析成果。
    目前最好的實驗組別為碳數使用為4倍理論值,溫度1500℃,活性離子添加至0.5,晶種取代量為50mol﹪,由SEM觀察粒徑分佈在次微米級到數個微米級。

    A commercial and potential method to synthesis nitrides or oxynitrides currently is reducing oxides at nitrogen atmosphere. Our laboratory has already successfully product silicon nitride and aluminum nitride from silicon oxide and aluminum oxide.
    This study used previous technical basis that our laboratory established to synthesis an advanced oxynitride material, SiAlONs which include silicon, aluminum, oxygen and nitrogen atom in its structure.
    Solution combustion synthesis we used that could help nitridation reaction precursors mix very well and close to nano-scale particle size. We could obtain α-SiAlON which was mainly phase in the product after precursors underwent carbothermal reduction nitridation and doped activator made the host have luminescent property.
    The study mainly focused on 1. carbon ratio, 2. reaction temperature, 3. seeds effects, 4. activator concentrations, 5. the effects of morphology of the precursors. The analytic instruments included XRD, PL, SEM and the best result achieved in this study when carbon was 4 times theoretical value, reaction temperature was 1500℃, Eu2+ was doped 0.5 and seed was doped 50 mol﹪.According to the SEM, we observed particle size distribution was from submicron to micron.

    中文摘要……………I 英文摘要……………II 誌謝…………………III 本文目錄……………IV 圖目錄………………VII 表目錄………………XIII 第一章 緒論………………………………………1 1-1 研究動機……………………………………1 1-2 研究方向………………………………………2 第二章 文獻回顧和理論基礎……………………3 2-1 照明演進……………………………………3 2-2 螢光粉(Phosphor)簡介……………………5 2-2-1螢光粉活化和去活化………………………6 2-2-2 影響螢光效率因素………………………9 2-3賽龍(SiAlONs)介紹…………………………15 2-3-1 α-SiAlON和β-SiAlON……………………16 2-4 常見的氮氧化物合成法……………………19 2-5 熱碳還原的理論基礎………………………22 2-6 矽粉添加的影響 ……………………………25 2-7 燃燒合成法簡介……………………………27 2-8 稀土離子之特性與添加之影響……………28 2-8-1 添加稀土離子之作用……………………28 2-8-2 稀土離子之發光特性…………………29 2-8-3 Eu離子之能階結構與光譜特性…………30 2-9 TEOS的相關性質 ……………………………32 第三章 實驗材料與方法………………………39 3-1 實驗藥品相關………………………………39 3-2 實驗設備……………………………………41 3-2-1 分析儀器原理 ……………………………43 3-3 反應理論計量值計算………………………48 3-4 實驗流程……………………………………50 3-5 實驗設計與架構 ……………………………51 3-6 實驗裝置圖…………………………………52 第四章 結果與討論……………………………53 4-1 碳數和溫度對氮化反應的影響……………54 4-2 晶種添加的影響……………………………74 4-2-1 α-Si3N4的添加…………………………76 4-2-2 矽粉的添加………………………………80 4-3 矽粉添加再探討……………………………85 4-4 螢光光譜的分析……………………………90 4-4-1 矽粉添加的螢光特性……………………90 4-4-2 活性離子添加的影響……………………95 4-4-3 碳數使用量對螢光強度影響……………100 4-5 硝酸銨使用量對螢光強度影響……………103 4-6 粒徑表面結構初探…………………………111 第五章 結論……………………………………125 第六章 參考文獻………………………………127

    [1] D.G. Pelka, K. Patel, An Overview of LED
    Applications for General Illumination. Proc. of SPIE,
    5186, 15-26, 2003.
    [2] J. K. Roberts, Binary Complementary White LED
    Illumination. Proc. of SPIE, 4445, 23-38, 2001.
    [3] 葉耀宗、董建岳、劉偉仁、張學明與陳政民,白光LED
    與螢光粉特性探討(下)。工業材料雜誌,258,234-239,
    2008。
    [4] S. Jung, Y. C. Kang and J. H. Kim,
    Generation of Phosphor Particles for Photoluminescence
    Applications by Spray Pyrolysis. J Mater Sci, 42, 9783–
    9794, 2007.
    [5] B. Rangarajn, L.S. Coons and A.B. Scranton,
    Characterization of Hydrogels Using Luminescence
    Spectroscopy. Biomaterials, 17, 649-661, 1996.
    [6]S. Ekambaram, Effect of Host-Structure on the Charge of
    Europium Ion. Journal of Alloys and Compounds, 390, L1–
    L3, 2003.
    [7] Y. Q. Li, N. Hirosaki, R. J. Xie and M. Mitomo,
    Crystal Electronic and Luminescence Properties of
    Eu2+-doped Sr2Al2-xSi1+xO7-xNx. Science and Technology
    of Advanced Materials, 8, 607-616, 2007.
    [8] A. Suchocki, S.W. Biernacki, A. Kaminska and L.
    Arizmendi,Nephelauxetic Effect in Luminescence of Cr3+-
    doped Lithium Niobate and Garnets, Journal of
    Luminescence, 102-103, 571-574, 2003.
    [9] O. Chuying, L. Minsheng, Nephelauxetic-Effect in
    DMS Zn1-xCoxSe and Effect of Pressure on Nephelauxetic-
    Effect. Chinese Journal of Semiconductors, 23(12), 1233-
    1237, 2002.
    [10] X. Z. Bi, S. Y. Zhang, Energy Level Shifts and
    Nephelauxetic Effect of Rare Earths in solid. ACTA
    PHYSICA SINICA, 37(7), 1221-1226, 1998.
    [11] J. W. H. V. Krevel, H.T. Hintzen, R. Metselaar and A.
    Meijerink, Long Wavelength Ce Emission in Y–Si–O–N
    Materials. Journal of Alloys and Compounds, 268, 272-
    277, 1997.
    [12] S. W. Biernacki, A. Kamin´ska, and A. Suchocki,
    Nephelauxetic Effect in LiNbO3:Cr3+ crystals. APPLIED
    PHYSICS LETTERS, 81(3), 442-444, 2002.
    [13] P. Dorenbos, Crystal Field Splitting of Lanthanide 4f
    n-1 5d-Levels in Inorganic Compounds. Journal of Alloys
    and Compounds, 341, 156-159, 2002.
    [14] J. S. Kim, P. E. Jeon, J. C. Choi and H. L. Park,
    Emission Color Variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca)
    Phosphors for Light Emitting Diode. Solid State
    Communications, 133, 187-190, 2005.
    [15]H.L. Schlfer and G. Gliemann, Basic Principles of Ligand
    field theory : John Wiley & Sons, 1969.
    [16] S. H. Ju, S. G. Kim, J. C. Choi, H. L. Park, S. I.
    Mho, and T. W. Kim,Determination of the Solid
    Solubility of SrAl2O4 in CaAl2O4 Through Crystal Field-
    Dependent Eu2+ Signatures. Materials Research
    Bulletin, 34(12/13), 1905-1909, 1999.
    [17] D. Wang, Q. Yin, Y. X. Li and M. Wang, Concentration
    Quenching of Eu2+ in SrO‧Al2O3:Eu2+ Phosphor. Journal
    of Luminescence, 97(1), 1-6, 2002.
    [18] Y. Liu, C.N. Xu, H. Chen and K. Nonaka, Investigation
    of Temperature Dependence of Photoluminescence in RexY2-
    xSiO5.Optical Materials, 25, 243-250, 2004.
    [19] S. E. Derenzo, M. K. Klintenberg and M. J. Weber,
    Quantum Mechanical Cluster Calculations of Critical
    Scintillation Processes. 5th Int. Conf. on
    Scintillators and their Applications, 53-60, Moscow,
    2000.
    [20]Z. Tang, F. Zhang, Z. Zhang, C. Huang and Y. Lin,
    Luminescent Properties of SrAl2O4: Eu, Dy Material
    Prepared by the Gel Method. Journal of the European
    Ceramic Society, 20, 2129-2132, 2000.
    [21] S. GEORGESCU, E. COTOI, A. M. VOICULESCU and O. TOMA,
    Effects of Particle Size on the Luminescence of YVO4:Eu
    Nanocrystals. Romanian Reports in Physics, 60(4), 947–
    955, 2008.
    [22] G. Liu, H. Yu, K. Chen, F. Deng, H. Zhou, K. Ren, C.
    Pereira and J. M. F. Ferreira, Solid State NMR and XRD
    Study of α-SiAlON Powders Prepared by Combustion
    Synthesis. Journal of Alloys and Compounds, 439, 268-
    274, 2007.
    [23] J. X. Jiang, P. L. Wang, W. B. He, W. W. Chen, H. R.
    Zhuang, Y. B.Cheng and D. S. Yan, Eu Stabilized α-
    Sialon Ceramics Derived From SHS-Synthesized
    Powders.Materials Letters, 59, 205-209, 2005.
    [24] G. Z. Cao, R. Metselaar, α-Sialon Ceramics : A Review.
    Chem. Mater, 3, 242-252, 1991.
    [25] V. A. Izhevskiy, L. A. Genova, J. C. Bressiani and F.
    Aldinger,Progress in SiAlON Ceramics. Journal of the
    European Ceramic Society, 20, 2275-2295, 2000.
    [26] A. Rosenflanzy, I. W. Chen, Kinetics of Phase
    Transformations in SiAlON Ceramics: I. Effects of
    Cation Size, Composition and Temperature. Journal of
    the European Ceramic Society, 19, 2325-2335,1999.
    [27] L. Chen, E. Kny, G. Groboth, Sialon Ceramic with
    Gradient Microstructures. Surface and Coatings
    Technology, 100-101, 320-323,1998.
    [28] J. W. T. V. Rutten, R. A. Terpstra, J. C. T. V. D.
    Heijde, H. T. Hintzen and R. Metselaar, Carbothermal
    Preparation and Characterisation of Ca-α-sialon.
    Journal of the European Ceramic Society, 15, 599-604,
    1995.
    [29] T. Jiang, X. Xue, P. Duan, X. Liu, S. Zhang and R.
    Liu,Carbothermal Reduction–Nitridation of Titania-
    Bearing Blast Furnace Slag. Ceramics International,
    34, 1643–1651, 2008.
    [30]谷小華與王瑞生,SiAlON材料的製備方法,陶瓷,3,47-49,
    2006。
    [31] T. Wang, L. Xu, Y. Qian, Y. Yao, M. Liu and W. Li,
    Progress on Preparing Technology of SiAION
    Refractories Used on Purifying Metallurgy. JOURNAL OF
    THE CHINESE RARE EARTH SOCIETY, 22,453-456, 2004.
    [32] R. J. Xie, N. Hirosaki, Silicon-Based Oxynitride and
    Nitride Phosphors for White LEDs-A Review. Science and
    Technology of Advanced Materials, 8, 588-600, 2007.
    [33] J. b. Wu, T. Jiang, X. X. Xue and J. Li, Effect of
    Initial Composition on(Ca,Mg)a"-Sialon/BN Powder
    Synthesized from Boron-Rich Slag. Journal of
    Northeastern University(Natural Science),30(2), 221-
    237, 2009.
    [34]廖國宏,矽粉對二氧化矽碳熱還原氮化反應影響之研究;
    國立中央大學化學工程所碩士論文,1998。
    [35]A. S. Mukasyan, P. Epstein and P. Dinka, Solution
    Combustion Synthesis of Nanomaterials. Proceedings of
    the Combustion Institute, 31,1789-1795, 2007.
    [36]楊幼如,以奈米軟水鋁石合成銪鏑共摻鋁酸鍶螢光體初
    探;國立成功大學資源工程所碩士論文,2006。
    [37]廖益延,溶膠凝膠法合成單一分散之氧化矽奈米微球;逢
    甲大學材料科學與工程學系專題研究報告,2006。

    下載圖示 校內:2014-07-28公開
    校外:2014-07-28公開
    QR CODE